1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//===- RDFLiveness.h --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Recalculate the liveness information given a data flow graph.
// This includes block live-ins and kill flags.
#ifndef LLVM_LIB_TARGET_HEXAGON_RDFLIVENESS_H
#define LLVM_LIB_TARGET_HEXAGON_RDFLIVENESS_H
#include "RDFGraph.h"
#include "RDFRegisters.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/MC/LaneBitmask.h"
#include <map>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <utility>
namespace llvm {
class MachineBasicBlock;
class MachineDominanceFrontier;
class MachineDominatorTree;
class MachineRegisterInfo;
class TargetRegisterInfo;
} // namespace llvm
namespace llvm {
namespace rdf {
namespace detail {
using NodeRef = std::pair<NodeId, LaneBitmask>;
} // namespace detail
} // namespace rdf
} // namespace llvm
namespace std {
template <> struct hash<llvm::rdf::detail::NodeRef> {
std::size_t operator()(llvm::rdf::detail::NodeRef R) const {
return std::hash<llvm::rdf::NodeId>{}(R.first) ^
std::hash<llvm::LaneBitmask::Type>{}(R.second.getAsInteger());
}
};
} // namespace std
namespace llvm {
namespace rdf {
struct Liveness {
public:
// This is really a std::map, except that it provides a non-trivial
// default constructor to the element accessed via [].
struct LiveMapType {
LiveMapType(const PhysicalRegisterInfo &pri) : Empty(pri) {}
RegisterAggr &operator[] (MachineBasicBlock *B) {
return Map.emplace(B, Empty).first->second;
}
private:
RegisterAggr Empty;
std::map<MachineBasicBlock*,RegisterAggr> Map;
};
using NodeRef = detail::NodeRef;
using NodeRefSet = std::unordered_set<NodeRef>;
using RefMap = std::unordered_map<RegisterId, NodeRefSet>;
Liveness(MachineRegisterInfo &mri, const DataFlowGraph &g)
: DFG(g), TRI(g.getTRI()), PRI(g.getPRI()), MDT(g.getDT()),
MDF(g.getDF()), LiveMap(g.getPRI()), Empty(), NoRegs(g.getPRI()) {}
NodeList getAllReachingDefs(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
bool TopShadows, bool FullChain, const RegisterAggr &DefRRs);
NodeList getAllReachingDefs(NodeAddr<RefNode*> RefA) {
return getAllReachingDefs(RefA.Addr->getRegRef(DFG), RefA, false,
false, NoRegs);
}
NodeList getAllReachingDefs(RegisterRef RefRR, NodeAddr<RefNode*> RefA) {
return getAllReachingDefs(RefRR, RefA, false, false, NoRegs);
}
NodeSet getAllReachedUses(RegisterRef RefRR, NodeAddr<DefNode*> DefA,
const RegisterAggr &DefRRs);
NodeSet getAllReachedUses(RegisterRef RefRR, NodeAddr<DefNode*> DefA) {
return getAllReachedUses(RefRR, DefA, NoRegs);
}
std::pair<NodeSet,bool> getAllReachingDefsRec(RegisterRef RefRR,
NodeAddr<RefNode*> RefA, NodeSet &Visited, const NodeSet &Defs);
NodeAddr<RefNode*> getNearestAliasedRef(RegisterRef RefRR,
NodeAddr<InstrNode*> IA);
LiveMapType &getLiveMap() { return LiveMap; }
const LiveMapType &getLiveMap() const { return LiveMap; }
const RefMap &getRealUses(NodeId P) const {
auto F = RealUseMap.find(P);
return F == RealUseMap.end() ? Empty : F->second;
}
void computePhiInfo();
void computeLiveIns();
void resetLiveIns();
void resetKills();
void resetKills(MachineBasicBlock *B);
void trace(bool T) { Trace = T; }
private:
const DataFlowGraph &DFG;
const TargetRegisterInfo &TRI;
const PhysicalRegisterInfo &PRI;
const MachineDominatorTree &MDT;
const MachineDominanceFrontier &MDF;
LiveMapType LiveMap;
const RefMap Empty;
const RegisterAggr NoRegs;
bool Trace = false;
// Cache of mapping from node ids (for RefNodes) to the containing
// basic blocks. Not computing it each time for each node reduces
// the liveness calculation time by a large fraction.
DenseMap<NodeId, MachineBasicBlock *> NBMap;
// Phi information:
//
// RealUseMap
// map: NodeId -> (map: RegisterId -> NodeRefSet)
// phi id -> (map: register -> set of reached non-phi uses)
DenseMap<NodeId, RefMap> RealUseMap;
// Inverse iterated dominance frontier.
std::map<MachineBasicBlock*,std::set<MachineBasicBlock*>> IIDF;
// Live on entry.
std::map<MachineBasicBlock*,RefMap> PhiLON;
// Phi uses are considered to be located at the end of the block that
// they are associated with. The reaching def of a phi use dominates the
// block that the use corresponds to, but not the block that contains
// the phi itself. To include these uses in the liveness propagation (up
// the dominator tree), create a map: block -> set of uses live on exit.
std::map<MachineBasicBlock*,RefMap> PhiLOX;
MachineBasicBlock *getBlockWithRef(NodeId RN) const;
void traverse(MachineBasicBlock *B, RefMap &LiveIn);
void emptify(RefMap &M);
std::pair<NodeSet,bool> getAllReachingDefsRecImpl(RegisterRef RefRR,
NodeAddr<RefNode*> RefA, NodeSet &Visited, const NodeSet &Defs,
unsigned Nest, unsigned MaxNest);
};
raw_ostream &operator<<(raw_ostream &OS, const Print<Liveness::RefMap> &P);
} // end namespace rdf
} // end namespace llvm
#endif // LLVM_LIB_TARGET_HEXAGON_RDFLIVENESS_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|