aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/include/llvm/CodeGen/MachineBasicBlock.h
blob: fb36c30de81e8583a21e59d3b7fec17ef5b40a83 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Collect the sequence of machine instructions for a basic block.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
#define LLVM_CODEGEN_MACHINEBASICBLOCK_H

#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBundleIterator.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Support/BranchProbability.h"
#include <cassert>
#include <cstdint>
#include <functional>
#include <iterator>
#include <string>
#include <vector>

namespace llvm {

class BasicBlock;
class MachineFunction;
class MCSymbol;
class ModuleSlotTracker;
class Pass;
class Printable;
class SlotIndexes;
class StringRef;
class raw_ostream;
class LiveIntervals;
class TargetRegisterClass;
class TargetRegisterInfo;

// This structure uniquely identifies a basic block section.
// Possible values are
//  {Type: Default, Number: (unsigned)} (These are regular section IDs)
//  {Type: Exception, Number: 0}  (ExceptionSectionID)
//  {Type: Cold, Number: 0}  (ColdSectionID)
struct MBBSectionID {
  enum SectionType {
    Default = 0, // Regular section (these sections are distinguished by the
                 // Number field).
    Exception,   // Special section type for exception handling blocks
    Cold,        // Special section type for cold blocks
  } Type;
  unsigned Number;

  MBBSectionID(unsigned N) : Type(Default), Number(N) {}

  // Special unique sections for cold and exception blocks.
  const static MBBSectionID ColdSectionID;
  const static MBBSectionID ExceptionSectionID;

  bool operator==(const MBBSectionID &Other) const {
    return Type == Other.Type && Number == Other.Number;
  }

  bool operator!=(const MBBSectionID &Other) const { return !(*this == Other); }

private:
  // This is only used to construct the special cold and exception sections.
  MBBSectionID(SectionType T) : Type(T), Number(0) {}
};

template <> struct ilist_traits<MachineInstr> {
private:
  friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.

  MachineBasicBlock *Parent;

  using instr_iterator =
      simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator;

public:
  void addNodeToList(MachineInstr *N);
  void removeNodeFromList(MachineInstr *N);
  void transferNodesFromList(ilist_traits &FromList, instr_iterator First,
                             instr_iterator Last);
  void deleteNode(MachineInstr *MI);
};

class MachineBasicBlock
    : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
public:
  /// Pair of physical register and lane mask.
  /// This is not simply a std::pair typedef because the members should be named
  /// clearly as they both have an integer type.
  struct RegisterMaskPair {
  public:
    MCPhysReg PhysReg;
    LaneBitmask LaneMask;

    RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
        : PhysReg(PhysReg), LaneMask(LaneMask) {}
  };

private:
  using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>;

  Instructions Insts;
  const BasicBlock *BB;
  int Number;
  MachineFunction *xParent;

  /// Keep track of the predecessor / successor basic blocks.
  std::vector<MachineBasicBlock *> Predecessors;
  std::vector<MachineBasicBlock *> Successors;

  /// Keep track of the probabilities to the successors. This vector has the
  /// same order as Successors, or it is empty if we don't use it (disable
  /// optimization).
  std::vector<BranchProbability> Probs;
  using probability_iterator = std::vector<BranchProbability>::iterator;
  using const_probability_iterator =
      std::vector<BranchProbability>::const_iterator;

  Optional<uint64_t> IrrLoopHeaderWeight;

  /// Keep track of the physical registers that are livein of the basicblock.
  using LiveInVector = std::vector<RegisterMaskPair>;
  LiveInVector LiveIns;

  /// Alignment of the basic block. One if the basic block does not need to be
  /// aligned.
  Align Alignment;

  /// Indicate that this basic block is entered via an exception handler.
  bool IsEHPad = false;

  /// Indicate that this basic block is potentially the target of an indirect
  /// branch.
  bool AddressTaken = false;

  /// Indicate that this basic block needs its symbol be emitted regardless of
  /// whether the flow just falls-through to it.
  bool LabelMustBeEmitted = false;

  /// Indicate that this basic block is the entry block of an EH scope, i.e.,
  /// the block that used to have a catchpad or cleanuppad instruction in the
  /// LLVM IR.
  bool IsEHScopeEntry = false;

  /// Indicate that this basic block is the entry block of an EH funclet.
  bool IsEHFuncletEntry = false;

  /// Indicate that this basic block is the entry block of a cleanup funclet.
  bool IsCleanupFuncletEntry = false;

  /// With basic block sections, this stores the Section ID of the basic block.
  MBBSectionID SectionID{0};

  // Indicate that this basic block begins a section.
  bool IsBeginSection = false;

  // Indicate that this basic block ends a section.
  bool IsEndSection = false;

  /// Indicate that this basic block is the indirect dest of an INLINEASM_BR.
  bool IsInlineAsmBrIndirectTarget = false;

  /// since getSymbol is a relatively heavy-weight operation, the symbol
  /// is only computed once and is cached.
  mutable MCSymbol *CachedMCSymbol = nullptr;

  /// Marks the end of the basic block. Used during basic block sections to
  /// calculate the size of the basic block, or the BB section ending with it.
  mutable MCSymbol *CachedEndMCSymbol = nullptr;

  // Intrusive list support
  MachineBasicBlock() = default;

  explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);

  ~MachineBasicBlock();

  // MachineBasicBlocks are allocated and owned by MachineFunction.
  friend class MachineFunction;

public:
  /// Return the LLVM basic block that this instance corresponded to originally.
  /// Note that this may be NULL if this instance does not correspond directly
  /// to an LLVM basic block.
  const BasicBlock *getBasicBlock() const { return BB; }

  /// Return the name of the corresponding LLVM basic block, or an empty string.
  StringRef getName() const;

  /// Return a formatted string to identify this block and its parent function.
  std::string getFullName() const;

  /// Test whether this block is potentially the target of an indirect branch.
  bool hasAddressTaken() const { return AddressTaken; }

  /// Set this block to reflect that it potentially is the target of an indirect
  /// branch.
  void setHasAddressTaken() { AddressTaken = true; }

  /// Test whether this block must have its label emitted.
  bool hasLabelMustBeEmitted() const { return LabelMustBeEmitted; }

  /// Set this block to reflect that, regardless how we flow to it, we need
  /// its label be emitted.
  void setLabelMustBeEmitted() { LabelMustBeEmitted = true; }

  /// Return the MachineFunction containing this basic block.
  const MachineFunction *getParent() const { return xParent; }
  MachineFunction *getParent() { return xParent; }

  using instr_iterator = Instructions::iterator;
  using const_instr_iterator = Instructions::const_iterator;
  using reverse_instr_iterator = Instructions::reverse_iterator;
  using const_reverse_instr_iterator = Instructions::const_reverse_iterator;

  using iterator = MachineInstrBundleIterator<MachineInstr>;
  using const_iterator = MachineInstrBundleIterator<const MachineInstr>;
  using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>;
  using const_reverse_iterator =
      MachineInstrBundleIterator<const MachineInstr, true>;

  unsigned size() const { return (unsigned)Insts.size(); }
  bool empty() const { return Insts.empty(); }

  MachineInstr       &instr_front()       { return Insts.front(); }
  MachineInstr       &instr_back()        { return Insts.back();  }
  const MachineInstr &instr_front() const { return Insts.front(); }
  const MachineInstr &instr_back()  const { return Insts.back();  }

  MachineInstr       &front()             { return Insts.front(); }
  MachineInstr       &back()              { return *--end();      }
  const MachineInstr &front()       const { return Insts.front(); }
  const MachineInstr &back()        const { return *--end();      }

  instr_iterator                instr_begin()       { return Insts.begin();  }
  const_instr_iterator          instr_begin() const { return Insts.begin();  }
  instr_iterator                  instr_end()       { return Insts.end();    }
  const_instr_iterator            instr_end() const { return Insts.end();    }
  reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
  const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
  reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
  const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }

  using instr_range = iterator_range<instr_iterator>;
  using const_instr_range = iterator_range<const_instr_iterator>;
  instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
  const_instr_range instrs() const {
    return const_instr_range(instr_begin(), instr_end());
  }

  iterator                begin()       { return instr_begin();  }
  const_iterator          begin() const { return instr_begin();  }
  iterator                end  ()       { return instr_end();    }
  const_iterator          end  () const { return instr_end();    }
  reverse_iterator rbegin() {
    return reverse_iterator::getAtBundleBegin(instr_rbegin());
  }
  const_reverse_iterator rbegin() const {
    return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
  }
  reverse_iterator rend() { return reverse_iterator(instr_rend()); }
  const_reverse_iterator rend() const {
    return const_reverse_iterator(instr_rend());
  }

  /// Support for MachineInstr::getNextNode().
  static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
    return &MachineBasicBlock::Insts;
  }

  inline iterator_range<iterator> terminators() {
    return make_range(getFirstTerminator(), end());
  }
  inline iterator_range<const_iterator> terminators() const {
    return make_range(getFirstTerminator(), end());
  }

  /// Returns a range that iterates over the phis in the basic block.
  inline iterator_range<iterator> phis() {
    return make_range(begin(), getFirstNonPHI());
  }
  inline iterator_range<const_iterator> phis() const {
    return const_cast<MachineBasicBlock *>(this)->phis();
  }

  // Machine-CFG iterators
  using pred_iterator = std::vector<MachineBasicBlock *>::iterator;
  using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator;
  using succ_iterator = std::vector<MachineBasicBlock *>::iterator;
  using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator;
  using pred_reverse_iterator =
      std::vector<MachineBasicBlock *>::reverse_iterator;
  using const_pred_reverse_iterator =
      std::vector<MachineBasicBlock *>::const_reverse_iterator;
  using succ_reverse_iterator =
      std::vector<MachineBasicBlock *>::reverse_iterator;
  using const_succ_reverse_iterator =
      std::vector<MachineBasicBlock *>::const_reverse_iterator;
  pred_iterator        pred_begin()       { return Predecessors.begin(); }
  const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
  pred_iterator        pred_end()         { return Predecessors.end();   }
  const_pred_iterator  pred_end()   const { return Predecessors.end();   }
  pred_reverse_iterator        pred_rbegin()
                                          { return Predecessors.rbegin();}
  const_pred_reverse_iterator  pred_rbegin() const
                                          { return Predecessors.rbegin();}
  pred_reverse_iterator        pred_rend()
                                          { return Predecessors.rend();  }
  const_pred_reverse_iterator  pred_rend()   const
                                          { return Predecessors.rend();  }
  unsigned             pred_size()  const {
    return (unsigned)Predecessors.size();
  }
  bool                 pred_empty() const { return Predecessors.empty(); }
  succ_iterator        succ_begin()       { return Successors.begin();   }
  const_succ_iterator  succ_begin() const { return Successors.begin();   }
  succ_iterator        succ_end()         { return Successors.end();     }
  const_succ_iterator  succ_end()   const { return Successors.end();     }
  succ_reverse_iterator        succ_rbegin()
                                          { return Successors.rbegin();  }
  const_succ_reverse_iterator  succ_rbegin() const
                                          { return Successors.rbegin();  }
  succ_reverse_iterator        succ_rend()
                                          { return Successors.rend();    }
  const_succ_reverse_iterator  succ_rend()   const
                                          { return Successors.rend();    }
  unsigned             succ_size()  const {
    return (unsigned)Successors.size();
  }
  bool                 succ_empty() const { return Successors.empty();   }

  inline iterator_range<pred_iterator> predecessors() {
    return make_range(pred_begin(), pred_end());
  }
  inline iterator_range<const_pred_iterator> predecessors() const {
    return make_range(pred_begin(), pred_end());
  }
  inline iterator_range<succ_iterator> successors() {
    return make_range(succ_begin(), succ_end());
  }
  inline iterator_range<const_succ_iterator> successors() const {
    return make_range(succ_begin(), succ_end());
  }

  // LiveIn management methods.

  /// Adds the specified register as a live in. Note that it is an error to add
  /// the same register to the same set more than once unless the intention is
  /// to call sortUniqueLiveIns after all registers are added.
  void addLiveIn(MCRegister PhysReg,
                 LaneBitmask LaneMask = LaneBitmask::getAll()) {
    LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
  }
  void addLiveIn(const RegisterMaskPair &RegMaskPair) {
    LiveIns.push_back(RegMaskPair);
  }

  /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
  /// this than repeatedly calling isLiveIn before calling addLiveIn for every
  /// LiveIn insertion.
  void sortUniqueLiveIns();

  /// Clear live in list.
  void clearLiveIns();

  /// Add PhysReg as live in to this block, and ensure that there is a copy of
  /// PhysReg to a virtual register of class RC. Return the virtual register
  /// that is a copy of the live in PhysReg.
  Register addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC);

  /// Remove the specified register from the live in set.
  void removeLiveIn(MCPhysReg Reg,
                    LaneBitmask LaneMask = LaneBitmask::getAll());

  /// Return true if the specified register is in the live in set.
  bool isLiveIn(MCPhysReg Reg,
                LaneBitmask LaneMask = LaneBitmask::getAll()) const;

  // Iteration support for live in sets.  These sets are kept in sorted
  // order by their register number.
  using livein_iterator = LiveInVector::const_iterator;
#ifndef NDEBUG
  /// Unlike livein_begin, this method does not check that the liveness
  /// information is accurate. Still for debug purposes it may be useful
  /// to have iterators that won't assert if the liveness information
  /// is not current.
  livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
  iterator_range<livein_iterator> liveins_dbg() const {
    return make_range(livein_begin_dbg(), livein_end());
  }
#endif
  livein_iterator livein_begin() const;
  livein_iterator livein_end()   const { return LiveIns.end(); }
  bool            livein_empty() const { return LiveIns.empty(); }
  iterator_range<livein_iterator> liveins() const {
    return make_range(livein_begin(), livein_end());
  }

  /// Remove entry from the livein set and return iterator to the next.
  livein_iterator removeLiveIn(livein_iterator I);

  /// Get the clobber mask for the start of this basic block. Funclets use this
  /// to prevent register allocation across funclet transitions.
  const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;

  /// Get the clobber mask for the end of the basic block.
  /// \see getBeginClobberMask()
  const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;

  /// Return alignment of the basic block.
  Align getAlignment() const { return Alignment; }

  /// Set alignment of the basic block.
  void setAlignment(Align A) { Alignment = A; }

  /// Returns true if the block is a landing pad. That is this basic block is
  /// entered via an exception handler.
  bool isEHPad() const { return IsEHPad; }

  /// Indicates the block is a landing pad.  That is this basic block is entered
  /// via an exception handler.
  void setIsEHPad(bool V = true) { IsEHPad = V; }

  bool hasEHPadSuccessor() const;

  /// Returns true if this is the entry block of the function.
  bool isEntryBlock() const;

  /// Returns true if this is the entry block of an EH scope, i.e., the block
  /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
  bool isEHScopeEntry() const { return IsEHScopeEntry; }

  /// Indicates if this is the entry block of an EH scope, i.e., the block that
  /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
  void setIsEHScopeEntry(bool V = true) { IsEHScopeEntry = V; }

  /// Returns true if this is the entry block of an EH funclet.
  bool isEHFuncletEntry() const { return IsEHFuncletEntry; }

  /// Indicates if this is the entry block of an EH funclet.
  void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }

  /// Returns true if this is the entry block of a cleanup funclet.
  bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }

  /// Indicates if this is the entry block of a cleanup funclet.
  void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }

  /// Returns true if this block begins any section.
  bool isBeginSection() const { return IsBeginSection; }

  /// Returns true if this block ends any section.
  bool isEndSection() const { return IsEndSection; }

  void setIsBeginSection(bool V = true) { IsBeginSection = V; }

  void setIsEndSection(bool V = true) { IsEndSection = V; }

  /// Returns the section ID of this basic block.
  MBBSectionID getSectionID() const { return SectionID; }

  /// Returns the unique section ID number of this basic block.
  unsigned getSectionIDNum() const {
    return ((unsigned)MBBSectionID::SectionType::Cold) -
           ((unsigned)SectionID.Type) + SectionID.Number;
  }

  /// Sets the section ID for this basic block.
  void setSectionID(MBBSectionID V) { SectionID = V; }

  /// Returns the MCSymbol marking the end of this basic block.
  MCSymbol *getEndSymbol() const;

  /// Returns true if this block may have an INLINEASM_BR (overestimate, by
  /// checking if any of the successors are indirect targets of any inlineasm_br
  /// in the function).
  bool mayHaveInlineAsmBr() const;

  /// Returns true if this is the indirect dest of an INLINEASM_BR.
  bool isInlineAsmBrIndirectTarget() const {
    return IsInlineAsmBrIndirectTarget;
  }

  /// Indicates if this is the indirect dest of an INLINEASM_BR.
  void setIsInlineAsmBrIndirectTarget(bool V = true) {
    IsInlineAsmBrIndirectTarget = V;
  }

  /// Returns true if it is legal to hoist instructions into this block.
  bool isLegalToHoistInto() const;

  // Code Layout methods.

  /// Move 'this' block before or after the specified block.  This only moves
  /// the block, it does not modify the CFG or adjust potential fall-throughs at
  /// the end of the block.
  void moveBefore(MachineBasicBlock *NewAfter);
  void moveAfter(MachineBasicBlock *NewBefore);

  /// Returns true if this and MBB belong to the same section.
  bool sameSection(const MachineBasicBlock *MBB) const {
    return getSectionID() == MBB->getSectionID();
  }

  /// Update the terminator instructions in block to account for changes to
  /// block layout which may have been made. PreviousLayoutSuccessor should be
  /// set to the block which may have been used as fallthrough before the block
  /// layout was modified.  If the block previously fell through to that block,
  /// it may now need a branch. If it previously branched to another block, it
  /// may now be able to fallthrough to the current layout successor.
  void updateTerminator(MachineBasicBlock *PreviousLayoutSuccessor);

  // Machine-CFG mutators

  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
  /// of Succ is automatically updated. PROB parameter is stored in
  /// Probabilities list. The default probability is set as unknown. Mixing
  /// known and unknown probabilities in successor list is not allowed. When all
  /// successors have unknown probabilities, 1 / N is returned as the
  /// probability for each successor, where N is the number of successors.
  ///
  /// Note that duplicate Machine CFG edges are not allowed.
  void addSuccessor(MachineBasicBlock *Succ,
                    BranchProbability Prob = BranchProbability::getUnknown());

  /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
  /// of Succ is automatically updated. The probability is not provided because
  /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
  /// won't be used. Using this interface can save some space.
  void addSuccessorWithoutProb(MachineBasicBlock *Succ);

  /// Set successor probability of a given iterator.
  void setSuccProbability(succ_iterator I, BranchProbability Prob);

  /// Normalize probabilities of all successors so that the sum of them becomes
  /// one. This is usually done when the current update on this MBB is done, and
  /// the sum of its successors' probabilities is not guaranteed to be one. The
  /// user is responsible for the correct use of this function.
  /// MBB::removeSuccessor() has an option to do this automatically.
  void normalizeSuccProbs() {
    BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
  }

  /// Validate successors' probabilities and check if the sum of them is
  /// approximate one. This only works in DEBUG mode.
  void validateSuccProbs() const;

  /// Remove successor from the successors list of this MachineBasicBlock. The
  /// Predecessors list of Succ is automatically updated.
  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
  /// after the successor is removed.
  void removeSuccessor(MachineBasicBlock *Succ,
                       bool NormalizeSuccProbs = false);

  /// Remove specified successor from the successors list of this
  /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
  /// If NormalizeSuccProbs is true, then normalize successors' probabilities
  /// after the successor is removed.
  /// Return the iterator to the element after the one removed.
  succ_iterator removeSuccessor(succ_iterator I,
                                bool NormalizeSuccProbs = false);

  /// Replace successor OLD with NEW and update probability info.
  void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);

  /// Copy a successor (and any probability info) from original block to this
  /// block's. Uses an iterator into the original blocks successors.
  ///
  /// This is useful when doing a partial clone of successors. Afterward, the
  /// probabilities may need to be normalized.
  void copySuccessor(MachineBasicBlock *Orig, succ_iterator I);

  /// Split the old successor into old plus new and updates the probability
  /// info.
  void splitSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New,
                      bool NormalizeSuccProbs = false);

  /// Transfers all the successors from MBB to this machine basic block (i.e.,
  /// copies all the successors FromMBB and remove all the successors from
  /// FromMBB).
  void transferSuccessors(MachineBasicBlock *FromMBB);

  /// Transfers all the successors, as in transferSuccessors, and update PHI
  /// operands in the successor blocks which refer to FromMBB to refer to this.
  void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);

  /// Return true if any of the successors have probabilities attached to them.
  bool hasSuccessorProbabilities() const { return !Probs.empty(); }

  /// Return true if the specified MBB is a predecessor of this block.
  bool isPredecessor(const MachineBasicBlock *MBB) const;

  /// Return true if the specified MBB is a successor of this block.
  bool isSuccessor(const MachineBasicBlock *MBB) const;

  /// Return true if the specified MBB will be emitted immediately after this
  /// block, such that if this block exits by falling through, control will
  /// transfer to the specified MBB. Note that MBB need not be a successor at
  /// all, for example if this block ends with an unconditional branch to some
  /// other block.
  bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;

  /// Return the fallthrough block if the block can implicitly
  /// transfer control to the block after it by falling off the end of
  /// it.  This should return null if it can reach the block after
  /// it, but it uses an explicit branch to do so (e.g., a table
  /// jump).  Non-null return  is a conservative answer.
  MachineBasicBlock *getFallThrough();

  /// Return true if the block can implicitly transfer control to the
  /// block after it by falling off the end of it.  This should return
  /// false if it can reach the block after it, but it uses an
  /// explicit branch to do so (e.g., a table jump).  True is a
  /// conservative answer.
  bool canFallThrough();

  /// Returns a pointer to the first instruction in this block that is not a
  /// PHINode instruction. When adding instructions to the beginning of the
  /// basic block, they should be added before the returned value, not before
  /// the first instruction, which might be PHI.
  /// Returns end() is there's no non-PHI instruction.
  iterator getFirstNonPHI();

  /// Return the first instruction in MBB after I that is not a PHI or a label.
  /// This is the correct point to insert lowered copies at the beginning of a
  /// basic block that must be before any debugging information.
  iterator SkipPHIsAndLabels(iterator I);

  /// Return the first instruction in MBB after I that is not a PHI, label or
  /// debug.  This is the correct point to insert copies at the beginning of a
  /// basic block.
  iterator SkipPHIsLabelsAndDebug(iterator I);

  /// Returns an iterator to the first terminator instruction of this basic
  /// block. If a terminator does not exist, it returns end().
  iterator getFirstTerminator();
  const_iterator getFirstTerminator() const {
    return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
  }

  /// Same getFirstTerminator but it ignores bundles and return an
  /// instr_iterator instead.
  instr_iterator getFirstInstrTerminator();

  /// Returns an iterator to the first non-debug instruction in the basic block,
  /// or end().
  iterator getFirstNonDebugInstr();
  const_iterator getFirstNonDebugInstr() const {
    return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr();
  }

  /// Returns an iterator to the last non-debug instruction in the basic block,
  /// or end().
  iterator getLastNonDebugInstr();
  const_iterator getLastNonDebugInstr() const {
    return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr();
  }

  /// Convenience function that returns true if the block ends in a return
  /// instruction.
  bool isReturnBlock() const {
    return !empty() && back().isReturn();
  }

  /// Convenience function that returns true if the bock ends in a EH scope
  /// return instruction.
  bool isEHScopeReturnBlock() const {
    return !empty() && back().isEHScopeReturn();
  }

  /// Split a basic block into 2 pieces at \p SplitPoint. A new block will be
  /// inserted after this block, and all instructions after \p SplitInst moved
  /// to it (\p SplitInst will be in the original block). If \p LIS is provided,
  /// LiveIntervals will be appropriately updated. \return the newly inserted
  /// block.
  ///
  /// If \p UpdateLiveIns is true, this will ensure the live ins list is
  /// accurate, including for physreg uses/defs in the original block.
  MachineBasicBlock *splitAt(MachineInstr &SplitInst, bool UpdateLiveIns = true,
                             LiveIntervals *LIS = nullptr);

  /// Split the critical edge from this block to the given successor block, and
  /// return the newly created block, or null if splitting is not possible.
  ///
  /// This function updates LiveVariables, MachineDominatorTree, and
  /// MachineLoopInfo, as applicable.
  MachineBasicBlock *
  SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P,
                    std::vector<SparseBitVector<>> *LiveInSets = nullptr);

  /// Check if the edge between this block and the given successor \p
  /// Succ, can be split. If this returns true a subsequent call to
  /// SplitCriticalEdge is guaranteed to return a valid basic block if
  /// no changes occurred in the meantime.
  bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;

  void pop_front() { Insts.pop_front(); }
  void pop_back() { Insts.pop_back(); }
  void push_back(MachineInstr *MI) { Insts.push_back(MI); }

  /// Insert MI into the instruction list before I, possibly inside a bundle.
  ///
  /// If the insertion point is inside a bundle, MI will be added to the bundle,
  /// otherwise MI will not be added to any bundle. That means this function
  /// alone can't be used to prepend or append instructions to bundles. See
  /// MIBundleBuilder::insert() for a more reliable way of doing that.
  instr_iterator insert(instr_iterator I, MachineInstr *M);

  /// Insert a range of instructions into the instruction list before I.
  template<typename IT>
  void insert(iterator I, IT S, IT E) {
    assert((I == end() || I->getParent() == this) &&
           "iterator points outside of basic block");
    Insts.insert(I.getInstrIterator(), S, E);
  }

  /// Insert MI into the instruction list before I.
  iterator insert(iterator I, MachineInstr *MI) {
    assert((I == end() || I->getParent() == this) &&
           "iterator points outside of basic block");
    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
           "Cannot insert instruction with bundle flags");
    return Insts.insert(I.getInstrIterator(), MI);
  }

  /// Insert MI into the instruction list after I.
  iterator insertAfter(iterator I, MachineInstr *MI) {
    assert((I == end() || I->getParent() == this) &&
           "iterator points outside of basic block");
    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
           "Cannot insert instruction with bundle flags");
    return Insts.insertAfter(I.getInstrIterator(), MI);
  }

  /// If I is bundled then insert MI into the instruction list after the end of
  /// the bundle, otherwise insert MI immediately after I.
  instr_iterator insertAfterBundle(instr_iterator I, MachineInstr *MI) {
    assert((I == instr_end() || I->getParent() == this) &&
           "iterator points outside of basic block");
    assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
           "Cannot insert instruction with bundle flags");
    while (I->isBundledWithSucc())
      ++I;
    return Insts.insertAfter(I, MI);
  }

  /// Remove an instruction from the instruction list and delete it.
  ///
  /// If the instruction is part of a bundle, the other instructions in the
  /// bundle will still be bundled after removing the single instruction.
  instr_iterator erase(instr_iterator I);

  /// Remove an instruction from the instruction list and delete it.
  ///
  /// If the instruction is part of a bundle, the other instructions in the
  /// bundle will still be bundled after removing the single instruction.
  instr_iterator erase_instr(MachineInstr *I) {
    return erase(instr_iterator(I));
  }

  /// Remove a range of instructions from the instruction list and delete them.
  iterator erase(iterator I, iterator E) {
    return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
  }

  /// Remove an instruction or bundle from the instruction list and delete it.
  ///
  /// If I points to a bundle of instructions, they are all erased.
  iterator erase(iterator I) {
    return erase(I, std::next(I));
  }

  /// Remove an instruction from the instruction list and delete it.
  ///
  /// If I is the head of a bundle of instructions, the whole bundle will be
  /// erased.
  iterator erase(MachineInstr *I) {
    return erase(iterator(I));
  }

  /// Remove the unbundled instruction from the instruction list without
  /// deleting it.
  ///
  /// This function can not be used to remove bundled instructions, use
  /// remove_instr to remove individual instructions from a bundle.
  MachineInstr *remove(MachineInstr *I) {
    assert(!I->isBundled() && "Cannot remove bundled instructions");
    return Insts.remove(instr_iterator(I));
  }

  /// Remove the possibly bundled instruction from the instruction list
  /// without deleting it.
  ///
  /// If the instruction is part of a bundle, the other instructions in the
  /// bundle will still be bundled after removing the single instruction.
  MachineInstr *remove_instr(MachineInstr *I);

  void clear() {
    Insts.clear();
  }

  /// Take an instruction from MBB 'Other' at the position From, and insert it
  /// into this MBB right before 'Where'.
  ///
  /// If From points to a bundle of instructions, the whole bundle is moved.
  void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
    // The range splice() doesn't allow noop moves, but this one does.
    if (Where != From)
      splice(Where, Other, From, std::next(From));
  }

  /// Take a block of instructions from MBB 'Other' in the range [From, To),
  /// and insert them into this MBB right before 'Where'.
  ///
  /// The instruction at 'Where' must not be included in the range of
  /// instructions to move.
  void splice(iterator Where, MachineBasicBlock *Other,
              iterator From, iterator To) {
    Insts.splice(Where.getInstrIterator(), Other->Insts,
                 From.getInstrIterator(), To.getInstrIterator());
  }

  /// This method unlinks 'this' from the containing function, and returns it,
  /// but does not delete it.
  MachineBasicBlock *removeFromParent();

  /// This method unlinks 'this' from the containing function and deletes it.
  void eraseFromParent();

  /// Given a machine basic block that branched to 'Old', change the code and
  /// CFG so that it branches to 'New' instead.
  void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);

  /// Update all phi nodes in this basic block to refer to basic block \p New
  /// instead of basic block \p Old.
  void replacePhiUsesWith(MachineBasicBlock *Old, MachineBasicBlock *New);

  /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
  /// and DBG_LABEL instructions.  Return UnknownLoc if there is none.
  DebugLoc findDebugLoc(instr_iterator MBBI);
  DebugLoc findDebugLoc(iterator MBBI) {
    return findDebugLoc(MBBI.getInstrIterator());
  }

  /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
  /// instructions.  Return UnknownLoc if there is none.
  DebugLoc findPrevDebugLoc(instr_iterator MBBI);
  DebugLoc findPrevDebugLoc(iterator MBBI) {
    return findPrevDebugLoc(MBBI.getInstrIterator());
  }

  /// Find and return the merged DebugLoc of the branch instructions of the
  /// block. Return UnknownLoc if there is none.
  DebugLoc findBranchDebugLoc();

  /// Possible outcome of a register liveness query to computeRegisterLiveness()
  enum LivenessQueryResult {
    LQR_Live,   ///< Register is known to be (at least partially) live.
    LQR_Dead,   ///< Register is known to be fully dead.
    LQR_Unknown ///< Register liveness not decidable from local neighborhood.
  };

  /// Return whether (physical) register \p Reg has been defined and not
  /// killed as of just before \p Before.
  ///
  /// Search is localised to a neighborhood of \p Neighborhood instructions
  /// before (searching for defs or kills) and \p Neighborhood instructions
  /// after (searching just for defs) \p Before.
  ///
  /// \p Reg must be a physical register.
  LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
                                              MCRegister Reg,
                                              const_iterator Before,
                                              unsigned Neighborhood = 10) const;

  // Debugging methods.
  void dump() const;
  void print(raw_ostream &OS, const SlotIndexes * = nullptr,
             bool IsStandalone = true) const;
  void print(raw_ostream &OS, ModuleSlotTracker &MST,
             const SlotIndexes * = nullptr, bool IsStandalone = true) const;

  enum PrintNameFlag {
    PrintNameIr = (1 << 0), ///< Add IR name where available
    PrintNameAttributes = (1 << 1), ///< Print attributes
  };

  void printName(raw_ostream &os, unsigned printNameFlags = PrintNameIr,
                 ModuleSlotTracker *moduleSlotTracker = nullptr) const;

  // Printing method used by LoopInfo.
  void printAsOperand(raw_ostream &OS, bool PrintType = true) const;

  /// MachineBasicBlocks are uniquely numbered at the function level, unless
  /// they're not in a MachineFunction yet, in which case this will return -1.
  int getNumber() const { return Number; }
  void setNumber(int N) { Number = N; }

  /// Return the MCSymbol for this basic block.
  MCSymbol *getSymbol() const;

  Optional<uint64_t> getIrrLoopHeaderWeight() const {
    return IrrLoopHeaderWeight;
  }

  void setIrrLoopHeaderWeight(uint64_t Weight) {
    IrrLoopHeaderWeight = Weight;
  }

private:
  /// Return probability iterator corresponding to the I successor iterator.
  probability_iterator getProbabilityIterator(succ_iterator I);
  const_probability_iterator
  getProbabilityIterator(const_succ_iterator I) const;

  friend class MachineBranchProbabilityInfo;
  friend class MIPrinter;

  /// Return probability of the edge from this block to MBB. This method should
  /// NOT be called directly, but by using getEdgeProbability method from
  /// MachineBranchProbabilityInfo class.
  BranchProbability getSuccProbability(const_succ_iterator Succ) const;

  // Methods used to maintain doubly linked list of blocks...
  friend struct ilist_callback_traits<MachineBasicBlock>;

  // Machine-CFG mutators

  /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this
  /// unless you know what you're doing, because it doesn't update Pred's
  /// successors list. Use Pred->addSuccessor instead.
  void addPredecessor(MachineBasicBlock *Pred);

  /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
  /// unless you know what you're doing, because it doesn't update Pred's
  /// successors list. Use Pred->removeSuccessor instead.
  void removePredecessor(MachineBasicBlock *Pred);
};

raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);

/// Prints a machine basic block reference.
///
/// The format is:
///   %bb.5           - a machine basic block with MBB.getNumber() == 5.
///
/// Usage: OS << printMBBReference(MBB) << '\n';
Printable printMBBReference(const MachineBasicBlock &MBB);

// This is useful when building IndexedMaps keyed on basic block pointers.
struct MBB2NumberFunctor {
  using argument_type = const MachineBasicBlock *;
  unsigned operator()(const MachineBasicBlock *MBB) const {
    return MBB->getNumber();
  }
};

//===--------------------------------------------------------------------===//
// GraphTraits specializations for machine basic block graphs (machine-CFGs)
//===--------------------------------------------------------------------===//

// Provide specializations of GraphTraits to be able to treat a
// MachineFunction as a graph of MachineBasicBlocks.
//

template <> struct GraphTraits<MachineBasicBlock *> {
  using NodeRef = MachineBasicBlock *;
  using ChildIteratorType = MachineBasicBlock::succ_iterator;

  static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
};

template <> struct GraphTraits<const MachineBasicBlock *> {
  using NodeRef = const MachineBasicBlock *;
  using ChildIteratorType = MachineBasicBlock::const_succ_iterator;

  static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
};

// Provide specializations of GraphTraits to be able to treat a
// MachineFunction as a graph of MachineBasicBlocks and to walk it
// in inverse order.  Inverse order for a function is considered
// to be when traversing the predecessor edges of a MBB
// instead of the successor edges.
//
template <> struct GraphTraits<Inverse<MachineBasicBlock*>> {
  using NodeRef = MachineBasicBlock *;
  using ChildIteratorType = MachineBasicBlock::pred_iterator;

  static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
    return G.Graph;
  }

  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
};

template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> {
  using NodeRef = const MachineBasicBlock *;
  using ChildIteratorType = MachineBasicBlock::const_pred_iterator;

  static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
    return G.Graph;
  }

  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
};

/// MachineInstrSpan provides an interface to get an iteration range
/// containing the instruction it was initialized with, along with all
/// those instructions inserted prior to or following that instruction
/// at some point after the MachineInstrSpan is constructed.
class MachineInstrSpan {
  MachineBasicBlock &MBB;
  MachineBasicBlock::iterator I, B, E;

public:
  MachineInstrSpan(MachineBasicBlock::iterator I, MachineBasicBlock *BB)
      : MBB(*BB), I(I), B(I == MBB.begin() ? MBB.end() : std::prev(I)),
        E(std::next(I)) {
    assert(I == BB->end() || I->getParent() == BB);
  }

  MachineBasicBlock::iterator begin() {
    return B == MBB.end() ? MBB.begin() : std::next(B);
  }
  MachineBasicBlock::iterator end() { return E; }
  bool empty() { return begin() == end(); }

  MachineBasicBlock::iterator getInitial() { return I; }
};

/// Increment \p It until it points to a non-debug instruction or to \p End
/// and return the resulting iterator. This function should only be used
/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
/// const_instr_iterator} and the respective reverse iterators.
template<typename IterT>
inline IterT skipDebugInstructionsForward(IterT It, IterT End) {
  while (It != End && It->isDebugInstr())
    ++It;
  return It;
}

/// Decrement \p It until it points to a non-debug instruction or to \p Begin
/// and return the resulting iterator. This function should only be used
/// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
/// const_instr_iterator} and the respective reverse iterators.
template<class IterT>
inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin) {
  while (It != Begin && It->isDebugInstr())
    --It;
  return It;
}

/// Increment \p It, then continue incrementing it while it points to a debug
/// instruction. A replacement for std::next.
template <typename IterT> inline IterT next_nodbg(IterT It, IterT End) {
  return skipDebugInstructionsForward(std::next(It), End);
}

/// Decrement \p It, then continue decrementing it while it points to a debug
/// instruction. A replacement for std::prev.
template <typename IterT> inline IterT prev_nodbg(IterT It, IterT Begin) {
  return skipDebugInstructionsBackward(std::prev(It), Begin);
}

/// Construct a range iterator which begins at \p It and moves forwards until
/// \p End is reached, skipping any debug instructions.
template <typename IterT>
inline auto instructionsWithoutDebug(IterT It, IterT End) {
  return make_filter_range(make_range(It, End), [](const MachineInstr &MI) {
    return !MI.isDebugInstr();
  });
}

} // end namespace llvm

#endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif