aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/include/llvm/CodeGen/BasicTTIImpl.h
blob: 9d2c9571a5fff70b47a10ceb62976c4db6b82ae7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file provides a helper that implements much of the TTI interface in
/// terms of the target-independent code generator and TargetLowering
/// interfaces.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_CODEGEN_BASICTTIIMPL_H
#define LLVM_CODEGEN_BASICTTIIMPL_H

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/TargetTransformInfoImpl.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <limits>
#include <utility>

namespace llvm {

class Function;
class GlobalValue;
class LLVMContext;
class ScalarEvolution;
class SCEV;
class TargetMachine;

extern cl::opt<unsigned> PartialUnrollingThreshold;

/// Base class which can be used to help build a TTI implementation.
///
/// This class provides as much implementation of the TTI interface as is
/// possible using the target independent parts of the code generator.
///
/// In order to subclass it, your class must implement a getST() method to
/// return the subtarget, and a getTLI() method to return the target lowering.
/// We need these methods implemented in the derived class so that this class
/// doesn't have to duplicate storage for them.
template <typename T>
class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> {
private:
  using BaseT = TargetTransformInfoImplCRTPBase<T>;
  using TTI = TargetTransformInfo;

  /// Helper function to access this as a T.
  T *thisT() { return static_cast<T *>(this); }

  /// Estimate a cost of Broadcast as an extract and sequence of insert
  /// operations.
  unsigned getBroadcastShuffleOverhead(FixedVectorType *VTy) {
    unsigned Cost = 0;
    // Broadcast cost is equal to the cost of extracting the zero'th element
    // plus the cost of inserting it into every element of the result vector.
    Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy, 0);

    for (int i = 0, e = VTy->getNumElements(); i < e; ++i) {
      Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy, i);
    }
    return Cost;
  }

  /// Estimate a cost of shuffle as a sequence of extract and insert
  /// operations.
  unsigned getPermuteShuffleOverhead(FixedVectorType *VTy) {
    unsigned Cost = 0;
    // Shuffle cost is equal to the cost of extracting element from its argument
    // plus the cost of inserting them onto the result vector.

    // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
    // index 0 of first vector, index 1 of second vector,index 2 of first
    // vector and finally index 3 of second vector and insert them at index
    // <0,1,2,3> of result vector.
    for (int i = 0, e = VTy->getNumElements(); i < e; ++i) {
      Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy, i);
      Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy, i);
    }
    return Cost;
  }

  /// Estimate a cost of subvector extraction as a sequence of extract and
  /// insert operations.
  unsigned getExtractSubvectorOverhead(VectorType *VTy, int Index, 
                                       FixedVectorType *SubVTy) {
    assert(VTy && SubVTy &&
           "Can only extract subvectors from vectors");
    int NumSubElts = SubVTy->getNumElements();
    assert((!isa<FixedVectorType>(VTy) || 
            (Index + NumSubElts) <= 
                (int)cast<FixedVectorType>(VTy)->getNumElements()) && 
           "SK_ExtractSubvector index out of range");

    unsigned Cost = 0;
    // Subvector extraction cost is equal to the cost of extracting element from
    // the source type plus the cost of inserting them into the result vector
    // type.
    for (int i = 0; i != NumSubElts; ++i) {
      Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
                                          i + Index);
      Cost +=
          thisT()->getVectorInstrCost(Instruction::InsertElement, SubVTy, i);
    }
    return Cost;
  }

  /// Estimate a cost of subvector insertion as a sequence of extract and
  /// insert operations.
  unsigned getInsertSubvectorOverhead(VectorType *VTy, int Index, 
                                      FixedVectorType *SubVTy) {
    assert(VTy && SubVTy &&
           "Can only insert subvectors into vectors");
    int NumSubElts = SubVTy->getNumElements();
    assert((!isa<FixedVectorType>(VTy) || 
            (Index + NumSubElts) <= 
                (int)cast<FixedVectorType>(VTy)->getNumElements()) && 
           "SK_InsertSubvector index out of range");

    unsigned Cost = 0;
    // Subvector insertion cost is equal to the cost of extracting element from
    // the source type plus the cost of inserting them into the result vector
    // type.
    for (int i = 0; i != NumSubElts; ++i) {
      Cost +=
          thisT()->getVectorInstrCost(Instruction::ExtractElement, SubVTy, i);
      Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy,
                                          i + Index);
    }
    return Cost;
  }

  /// Local query method delegates up to T which *must* implement this!
  const TargetSubtargetInfo *getST() const {
    return static_cast<const T *>(this)->getST();
  }

  /// Local query method delegates up to T which *must* implement this!
  const TargetLoweringBase *getTLI() const {
    return static_cast<const T *>(this)->getTLI();
  }

  static ISD::MemIndexedMode getISDIndexedMode(TTI::MemIndexedMode M) {
    switch (M) {
      case TTI::MIM_Unindexed:
        return ISD::UNINDEXED;
      case TTI::MIM_PreInc:
        return ISD::PRE_INC;
      case TTI::MIM_PreDec:
        return ISD::PRE_DEC;
      case TTI::MIM_PostInc:
        return ISD::POST_INC;
      case TTI::MIM_PostDec:
        return ISD::POST_DEC;
    }
    llvm_unreachable("Unexpected MemIndexedMode");
  }

protected:
  explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
      : BaseT(DL) {}
  virtual ~BasicTTIImplBase() = default;

  using TargetTransformInfoImplBase::DL;

public:
  /// \name Scalar TTI Implementations
  /// @{
  bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
                                      unsigned AddressSpace, unsigned Alignment,
                                      bool *Fast) const {
    EVT E = EVT::getIntegerVT(Context, BitWidth);
    return getTLI()->allowsMisalignedMemoryAccesses(
        E, AddressSpace, Alignment, MachineMemOperand::MONone, Fast);
  }

  bool hasBranchDivergence() { return false; }

  bool useGPUDivergenceAnalysis() { return false; }

  bool isSourceOfDivergence(const Value *V) { return false; }

  bool isAlwaysUniform(const Value *V) { return false; }

  unsigned getFlatAddressSpace() {
    // Return an invalid address space.
    return -1;
  }

  bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
                                  Intrinsic::ID IID) const {
    return false;
  }

  bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
    return getTLI()->getTargetMachine().isNoopAddrSpaceCast(FromAS, ToAS); 
  }

  unsigned getAssumedAddrSpace(const Value *V) const { 
    return getTLI()->getTargetMachine().getAssumedAddrSpace(V); 
  } 
 
  Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
                                          Value *NewV) const {
    return nullptr;
  }

  bool isLegalAddImmediate(int64_t imm) {
    return getTLI()->isLegalAddImmediate(imm);
  }

  bool isLegalICmpImmediate(int64_t imm) {
    return getTLI()->isLegalICmpImmediate(imm);
  }

  bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
                             bool HasBaseReg, int64_t Scale,
                             unsigned AddrSpace, Instruction *I = nullptr) {
    TargetLoweringBase::AddrMode AM;
    AM.BaseGV = BaseGV;
    AM.BaseOffs = BaseOffset;
    AM.HasBaseReg = HasBaseReg;
    AM.Scale = Scale;
    return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I);
  }

  bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty,
                          const DataLayout &DL) const {
    EVT VT = getTLI()->getValueType(DL, Ty);
    return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M), VT);
  }

  bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty,
                           const DataLayout &DL) const {
    EVT VT = getTLI()->getValueType(DL, Ty);
    return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M), VT);
  }

  bool isLSRCostLess(TTI::LSRCost C1, TTI::LSRCost C2) {
    return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
  }

  bool isNumRegsMajorCostOfLSR() { 
    return TargetTransformInfoImplBase::isNumRegsMajorCostOfLSR(); 
  } 
 
  bool isProfitableLSRChainElement(Instruction *I) {
    return TargetTransformInfoImplBase::isProfitableLSRChainElement(I);
  }

  int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
                           bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
    TargetLoweringBase::AddrMode AM;
    AM.BaseGV = BaseGV;
    AM.BaseOffs = BaseOffset;
    AM.HasBaseReg = HasBaseReg;
    AM.Scale = Scale;
    return getTLI()->getScalingFactorCost(DL, AM, Ty, AddrSpace);
  }

  bool isTruncateFree(Type *Ty1, Type *Ty2) {
    return getTLI()->isTruncateFree(Ty1, Ty2);
  }

  bool isProfitableToHoist(Instruction *I) {
    return getTLI()->isProfitableToHoist(I);
  }

  bool useAA() const { return getST()->useAA(); }

  bool isTypeLegal(Type *Ty) {
    EVT VT = getTLI()->getValueType(DL, Ty);
    return getTLI()->isTypeLegal(VT);
  }

  unsigned getRegUsageForType(Type *Ty) { 
    return getTLI()->getTypeLegalizationCost(DL, Ty).first; 
  } 
 
  int getGEPCost(Type *PointeeType, const Value *Ptr,
                 ArrayRef<const Value *> Operands) {
    return BaseT::getGEPCost(PointeeType, Ptr, Operands);
  }

  unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
                                            unsigned &JumpTableSize,
                                            ProfileSummaryInfo *PSI,
                                            BlockFrequencyInfo *BFI) {
    /// Try to find the estimated number of clusters. Note that the number of
    /// clusters identified in this function could be different from the actual
    /// numbers found in lowering. This function ignore switches that are
    /// lowered with a mix of jump table / bit test / BTree. This function was
    /// initially intended to be used when estimating the cost of switch in
    /// inline cost heuristic, but it's a generic cost model to be used in other
    /// places (e.g., in loop unrolling).
    unsigned N = SI.getNumCases();
    const TargetLoweringBase *TLI = getTLI();
    const DataLayout &DL = this->getDataLayout();

    JumpTableSize = 0;
    bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent());

    // Early exit if both a jump table and bit test are not allowed.
    if (N < 1 || (!IsJTAllowed && DL.getIndexSizeInBits(0u) < N))
      return N;

    APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue();
    APInt MinCaseVal = MaxCaseVal;
    for (auto CI : SI.cases()) {
      const APInt &CaseVal = CI.getCaseValue()->getValue();
      if (CaseVal.sgt(MaxCaseVal))
        MaxCaseVal = CaseVal;
      if (CaseVal.slt(MinCaseVal))
        MinCaseVal = CaseVal;
    }

    // Check if suitable for a bit test
    if (N <= DL.getIndexSizeInBits(0u)) {
      SmallPtrSet<const BasicBlock *, 4> Dests;
      for (auto I : SI.cases())
        Dests.insert(I.getCaseSuccessor());

      if (TLI->isSuitableForBitTests(Dests.size(), N, MinCaseVal, MaxCaseVal,
                                     DL))
        return 1;
    }

    // Check if suitable for a jump table.
    if (IsJTAllowed) {
      if (N < 2 || N < TLI->getMinimumJumpTableEntries())
        return N;
      uint64_t Range =
          (MaxCaseVal - MinCaseVal)
              .getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1;
      // Check whether a range of clusters is dense enough for a jump table
      if (TLI->isSuitableForJumpTable(&SI, N, Range, PSI, BFI)) {
        JumpTableSize = Range;
        return 1;
      }
    }
    return N;
  }

  bool shouldBuildLookupTables() {
    const TargetLoweringBase *TLI = getTLI();
    return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
           TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
  }

  bool haveFastSqrt(Type *Ty) {
    const TargetLoweringBase *TLI = getTLI();
    EVT VT = TLI->getValueType(DL, Ty);
    return TLI->isTypeLegal(VT) &&
           TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
  }

  bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
    return true;
  }

  unsigned getFPOpCost(Type *Ty) {
    // Check whether FADD is available, as a proxy for floating-point in
    // general.
    const TargetLoweringBase *TLI = getTLI();
    EVT VT = TLI->getValueType(DL, Ty);
    if (TLI->isOperationLegalOrCustomOrPromote(ISD::FADD, VT))
      return TargetTransformInfo::TCC_Basic;
    return TargetTransformInfo::TCC_Expensive;
  }

  unsigned getInliningThresholdMultiplier() { return 1; }
  unsigned adjustInliningThreshold(const CallBase *CB) { return 0; } 

  int getInlinerVectorBonusPercent() { return 150; }

  void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                               TTI::UnrollingPreferences &UP) {
    // This unrolling functionality is target independent, but to provide some
    // motivation for its intended use, for x86:

    // According to the Intel 64 and IA-32 Architectures Optimization Reference
    // Manual, Intel Core models and later have a loop stream detector (and
    // associated uop queue) that can benefit from partial unrolling.
    // The relevant requirements are:
    //  - The loop must have no more than 4 (8 for Nehalem and later) branches
    //    taken, and none of them may be calls.
    //  - The loop can have no more than 18 (28 for Nehalem and later) uops.

    // According to the Software Optimization Guide for AMD Family 15h
    // Processors, models 30h-4fh (Steamroller and later) have a loop predictor
    // and loop buffer which can benefit from partial unrolling.
    // The relevant requirements are:
    //  - The loop must have fewer than 16 branches
    //  - The loop must have less than 40 uops in all executed loop branches

    // The number of taken branches in a loop is hard to estimate here, and
    // benchmarking has revealed that it is better not to be conservative when
    // estimating the branch count. As a result, we'll ignore the branch limits
    // until someone finds a case where it matters in practice.

    unsigned MaxOps;
    const TargetSubtargetInfo *ST = getST();
    if (PartialUnrollingThreshold.getNumOccurrences() > 0)
      MaxOps = PartialUnrollingThreshold;
    else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
      MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
    else
      return;

    // Scan the loop: don't unroll loops with calls.
    for (BasicBlock *BB : L->blocks()) {
      for (Instruction &I : *BB) {
        if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
          if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
            if (!thisT()->isLoweredToCall(F))
              continue;
          }

          return;
        }
      }
    }

    // Enable runtime and partial unrolling up to the specified size.
    // Enable using trip count upper bound to unroll loops.
    UP.Partial = UP.Runtime = UP.UpperBound = true;
    UP.PartialThreshold = MaxOps;

    // Avoid unrolling when optimizing for size.
    UP.OptSizeThreshold = 0;
    UP.PartialOptSizeThreshold = 0;

    // Set number of instructions optimized when "back edge"
    // becomes "fall through" to default value of 2.
    UP.BEInsns = 2;
  }

  void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
                             TTI::PeelingPreferences &PP) {
    PP.PeelCount = 0;
    PP.AllowPeeling = true;
    PP.AllowLoopNestsPeeling = false;
    PP.PeelProfiledIterations = true;
  }

  bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
                                AssumptionCache &AC,
                                TargetLibraryInfo *LibInfo,
                                HardwareLoopInfo &HWLoopInfo) {
    return BaseT::isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
  }

  bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
                                   AssumptionCache &AC, TargetLibraryInfo *TLI,
                                   DominatorTree *DT,
                                   const LoopAccessInfo *LAI) {
    return BaseT::preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
  }

  bool emitGetActiveLaneMask() {
    return BaseT::emitGetActiveLaneMask();
  }

  Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC, 
                                               IntrinsicInst &II) { 
    return BaseT::instCombineIntrinsic(IC, II); 
  } 
 
  Optional<Value *> simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, 
                                                     IntrinsicInst &II, 
                                                     APInt DemandedMask, 
                                                     KnownBits &Known, 
                                                     bool &KnownBitsComputed) { 
    return BaseT::simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known, 
                                                   KnownBitsComputed); 
  } 
 
  Optional<Value *> simplifyDemandedVectorEltsIntrinsic( 
      InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, 
      APInt &UndefElts2, APInt &UndefElts3, 
      std::function<void(Instruction *, unsigned, APInt, APInt &)> 
          SimplifyAndSetOp) { 
    return BaseT::simplifyDemandedVectorEltsIntrinsic( 
        IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 
        SimplifyAndSetOp); 
  } 
 
  int getInstructionLatency(const Instruction *I) {
    if (isa<LoadInst>(I))
      return getST()->getSchedModel().DefaultLoadLatency;

    return BaseT::getInstructionLatency(I);
  }

  virtual Optional<unsigned>
  getCacheSize(TargetTransformInfo::CacheLevel Level) const {
    return Optional<unsigned>(
      getST()->getCacheSize(static_cast<unsigned>(Level)));
  }

  virtual Optional<unsigned>
  getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const {
    Optional<unsigned> TargetResult =
        getST()->getCacheAssociativity(static_cast<unsigned>(Level));

    if (TargetResult)
      return TargetResult;

    return BaseT::getCacheAssociativity(Level);
  }

  virtual unsigned getCacheLineSize() const {
    return getST()->getCacheLineSize();
  }

  virtual unsigned getPrefetchDistance() const {
    return getST()->getPrefetchDistance();
  }

  virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
                                        unsigned NumStridedMemAccesses,
                                        unsigned NumPrefetches,
                                        bool HasCall) const {
    return getST()->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
                                         NumPrefetches, HasCall);
  }

  virtual unsigned getMaxPrefetchIterationsAhead() const {
    return getST()->getMaxPrefetchIterationsAhead();
  }

  virtual bool enableWritePrefetching() const {
    return getST()->enableWritePrefetching();
  }

  /// @}

  /// \name Vector TTI Implementations
  /// @{

  unsigned getRegisterBitWidth(bool Vector) const { return 32; }

  Optional<unsigned> getMaxVScale() const { return None; } 
 
  /// Estimate the overhead of scalarizing an instruction. Insert and Extract
  /// are set if the demanded result elements need to be inserted and/or
  /// extracted from vectors.
  unsigned getScalarizationOverhead(VectorType *InTy, const APInt &DemandedElts,
                                    bool Insert, bool Extract) {
    /// FIXME: a bitfield is not a reasonable abstraction for talking about
    /// which elements are needed from a scalable vector
    auto *Ty = cast<FixedVectorType>(InTy);

    assert(DemandedElts.getBitWidth() == Ty->getNumElements() &&
           "Vector size mismatch");

    unsigned Cost = 0;

    for (int i = 0, e = Ty->getNumElements(); i < e; ++i) {
      if (!DemandedElts[i])
        continue;
      if (Insert)
        Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, Ty, i);
      if (Extract)
        Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
    }

    return Cost;
  }

  /// Helper wrapper for the DemandedElts variant of getScalarizationOverhead.
  unsigned getScalarizationOverhead(VectorType *InTy, bool Insert,
                                    bool Extract) {
    auto *Ty = cast<FixedVectorType>(InTy);

    APInt DemandedElts = APInt::getAllOnesValue(Ty->getNumElements());
    return thisT()->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
  }

  /// Estimate the overhead of scalarizing an instruction's unique 
  /// non-constant operands. The types of the arguments are ordinarily
  /// scalar, in which case the costs are multiplied with VF.
  unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
                                            unsigned VF) {
    unsigned Cost = 0;
    SmallPtrSet<const Value*, 4> UniqueOperands;
    for (const Value *A : Args) {
      // Disregard things like metadata arguments. 
      Type *Ty = A->getType(); 
      if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy() && 
          !Ty->isPtrOrPtrVectorTy()) 
        continue; 
 
      if (!isa<Constant>(A) && UniqueOperands.insert(A).second) {
        auto *VecTy = dyn_cast<VectorType>(Ty); 
        if (VecTy) {
          // If A is a vector operand, VF should be 1 or correspond to A.
          assert((VF == 1 ||
                  VF == cast<FixedVectorType>(VecTy)->getNumElements()) &&
                 "Vector argument does not match VF");
        }
        else
          VecTy = FixedVectorType::get(Ty, VF); 

        Cost += getScalarizationOverhead(VecTy, false, true);
      }
    }

    return Cost;
  }

  unsigned getScalarizationOverhead(VectorType *InTy,
                                    ArrayRef<const Value *> Args) {
    auto *Ty = cast<FixedVectorType>(InTy);

    unsigned Cost = 0;

    Cost += getScalarizationOverhead(Ty, true, false);
    if (!Args.empty())
      Cost += getOperandsScalarizationOverhead(Args, Ty->getNumElements());
    else
      // When no information on arguments is provided, we add the cost
      // associated with one argument as a heuristic.
      Cost += getScalarizationOverhead(Ty, false, true);

    return Cost;
  }

  unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }

  unsigned getArithmeticInstrCost(
      unsigned Opcode, Type *Ty,
      TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
      TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
      TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
      TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
      TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None,
      ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
      const Instruction *CxtI = nullptr) {
    // Check if any of the operands are vector operands.
    const TargetLoweringBase *TLI = getTLI();
    int ISD = TLI->InstructionOpcodeToISD(Opcode);
    assert(ISD && "Invalid opcode");

    // TODO: Handle more cost kinds.
    if (CostKind != TTI::TCK_RecipThroughput)
      return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind,
                                           Opd1Info, Opd2Info,
                                           Opd1PropInfo, Opd2PropInfo,
                                           Args, CxtI);

    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);

    bool IsFloat = Ty->isFPOrFPVectorTy();
    // Assume that floating point arithmetic operations cost twice as much as
    // integer operations.
    unsigned OpCost = (IsFloat ? 2 : 1);

    if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
      // The operation is legal. Assume it costs 1.
      // TODO: Once we have extract/insert subvector cost we need to use them.
      return LT.first * OpCost;
    }

    if (!TLI->isOperationExpand(ISD, LT.second)) {
      // If the operation is custom lowered, then assume that the code is twice
      // as expensive.
      return LT.first * 2 * OpCost;
    }

    // Else, assume that we need to scalarize this op.
    // TODO: If one of the types get legalized by splitting, handle this
    // similarly to what getCastInstrCost() does.
    if (auto *VTy = dyn_cast<VectorType>(Ty)) {
      unsigned Num = cast<FixedVectorType>(VTy)->getNumElements();
      unsigned Cost = thisT()->getArithmeticInstrCost(
          Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info, 
          Opd1PropInfo, Opd2PropInfo, Args, CxtI); 
      // Return the cost of multiple scalar invocation plus the cost of
      // inserting and extracting the values.
      return getScalarizationOverhead(VTy, Args) + Num * Cost;
    }

    // We don't know anything about this scalar instruction.
    return OpCost;
  }

  unsigned getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, int Index,
                          VectorType *SubTp) {

    switch (Kind) {
    case TTI::SK_Broadcast:
      return getBroadcastShuffleOverhead(cast<FixedVectorType>(Tp));
    case TTI::SK_Select:
    case TTI::SK_Reverse:
    case TTI::SK_Transpose:
    case TTI::SK_PermuteSingleSrc:
    case TTI::SK_PermuteTwoSrc:
      return getPermuteShuffleOverhead(cast<FixedVectorType>(Tp));
    case TTI::SK_ExtractSubvector:
      return getExtractSubvectorOverhead(Tp, Index, 
                                         cast<FixedVectorType>(SubTp));
    case TTI::SK_InsertSubvector:
      return getInsertSubvectorOverhead(Tp, Index, 
                                        cast<FixedVectorType>(SubTp));
    }
    llvm_unreachable("Unknown TTI::ShuffleKind");
  }

  unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                            TTI::CastContextHint CCH, 
                            TTI::TargetCostKind CostKind,
                            const Instruction *I = nullptr) {
    if (BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I) == 0) 
      return 0;

    const TargetLoweringBase *TLI = getTLI();
    int ISD = TLI->InstructionOpcodeToISD(Opcode);
    assert(ISD && "Invalid opcode");
    std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, Src);
    std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(DL, Dst);

    TypeSize SrcSize = SrcLT.second.getSizeInBits();
    TypeSize DstSize = DstLT.second.getSizeInBits();
    bool IntOrPtrSrc = Src->isIntegerTy() || Src->isPointerTy();
    bool IntOrPtrDst = Dst->isIntegerTy() || Dst->isPointerTy();

    switch (Opcode) {
    default:
      break;
    case Instruction::Trunc:
      // Check for NOOP conversions.
      if (TLI->isTruncateFree(SrcLT.second, DstLT.second))
        return 0;
      LLVM_FALLTHROUGH;
    case Instruction::BitCast:
      // Bitcast between types that are legalized to the same type are free and
      // assume int to/from ptr of the same size is also free.
      if (SrcLT.first == DstLT.first && IntOrPtrSrc == IntOrPtrDst &&
          SrcSize == DstSize)
        return 0;
      break;
    case Instruction::FPExt:
      if (I && getTLI()->isExtFree(I))
        return 0;
      break;
    case Instruction::ZExt:
      if (TLI->isZExtFree(SrcLT.second, DstLT.second))
        return 0;
      LLVM_FALLTHROUGH;
    case Instruction::SExt:
      if (I && getTLI()->isExtFree(I)) 
        return 0;

      // If this is a zext/sext of a load, return 0 if the corresponding
      // extending load exists on target.
      if (CCH == TTI::CastContextHint::Normal) { 
        EVT ExtVT = EVT::getEVT(Dst);
        EVT LoadVT = EVT::getEVT(Src);
        unsigned LType =
          ((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD);
        if (TLI->isLoadExtLegal(LType, ExtVT, LoadVT))
          return 0;
      }
      break;
    case Instruction::AddrSpaceCast:
      if (TLI->isFreeAddrSpaceCast(Src->getPointerAddressSpace(),
                                   Dst->getPointerAddressSpace()))
        return 0;
      break;
    }

    auto *SrcVTy = dyn_cast<VectorType>(Src);
    auto *DstVTy = dyn_cast<VectorType>(Dst);

    // If the cast is marked as legal (or promote) then assume low cost.
    if (SrcLT.first == DstLT.first &&
        TLI->isOperationLegalOrPromote(ISD, DstLT.second))
      return SrcLT.first;

    // Handle scalar conversions.
    if (!SrcVTy && !DstVTy) {
      // Just check the op cost. If the operation is legal then assume it costs
      // 1.
      if (!TLI->isOperationExpand(ISD, DstLT.second))
        return 1;

      // Assume that illegal scalar instruction are expensive.
      return 4;
    }

    // Check vector-to-vector casts.
    if (DstVTy && SrcVTy) {
      // If the cast is between same-sized registers, then the check is simple.
      if (SrcLT.first == DstLT.first && SrcSize == DstSize) {

        // Assume that Zext is done using AND.
        if (Opcode == Instruction::ZExt)
          return SrcLT.first;

        // Assume that sext is done using SHL and SRA.
        if (Opcode == Instruction::SExt)
          return SrcLT.first * 2;

        // Just check the op cost. If the operation is legal then assume it
        // costs
        // 1 and multiply by the type-legalization overhead.
        if (!TLI->isOperationExpand(ISD, DstLT.second))
          return SrcLT.first * 1;
      }

      // If we are legalizing by splitting, query the concrete TTI for the cost
      // of casting the original vector twice. We also need to factor in the
      // cost of the split itself. Count that as 1, to be consistent with
      // TLI->getTypeLegalizationCost().
      bool SplitSrc =
          TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) ==
          TargetLowering::TypeSplitVector;
      bool SplitDst =
          TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) ==
          TargetLowering::TypeSplitVector;
      if ((SplitSrc || SplitDst) &&
          cast<FixedVectorType>(SrcVTy)->getNumElements() > 1 &&
          cast<FixedVectorType>(DstVTy)->getNumElements() > 1) {
        Type *SplitDstTy = VectorType::getHalfElementsVectorType(DstVTy);
        Type *SplitSrcTy = VectorType::getHalfElementsVectorType(SrcVTy);
        T *TTI = static_cast<T *>(this);
        // If both types need to be split then the split is free.
        unsigned SplitCost =
            (!SplitSrc || !SplitDst) ? TTI->getVectorSplitCost() : 0;
        return SplitCost +
               (2 * TTI->getCastInstrCost(Opcode, SplitDstTy, SplitSrcTy, CCH, 
                                          CostKind, I));
      }

      // In other cases where the source or destination are illegal, assume
      // the operation will get scalarized.
      unsigned Num = cast<FixedVectorType>(DstVTy)->getNumElements();
      unsigned Cost = thisT()->getCastInstrCost(
          Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind, I); 

      // Return the cost of multiple scalar invocation plus the cost of
      // inserting and extracting the values.
      return getScalarizationOverhead(DstVTy, true, true) + Num * Cost;
    }

    // We already handled vector-to-vector and scalar-to-scalar conversions.
    // This
    // is where we handle bitcast between vectors and scalars. We need to assume
    //  that the conversion is scalarized in one way or another.
    if (Opcode == Instruction::BitCast) {
      // Illegal bitcasts are done by storing and loading from a stack slot.
      return (SrcVTy ? getScalarizationOverhead(SrcVTy, false, true) : 0) +
             (DstVTy ? getScalarizationOverhead(DstVTy, true, false) : 0);
    }

    llvm_unreachable("Unhandled cast");
  }

  unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
                                    VectorType *VecTy, unsigned Index) {
    return thisT()->getVectorInstrCost(Instruction::ExtractElement, VecTy,
                                       Index) +
           thisT()->getCastInstrCost(Opcode, Dst, VecTy->getElementType(),
                                     TTI::CastContextHint::None, TTI::TCK_RecipThroughput); 
  }

  unsigned getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) {
    return BaseT::getCFInstrCost(Opcode, CostKind);
  }

  unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
                              CmpInst::Predicate VecPred, 
                              TTI::TargetCostKind CostKind,
                              const Instruction *I = nullptr) {
    const TargetLoweringBase *TLI = getTLI();
    int ISD = TLI->InstructionOpcodeToISD(Opcode);
    assert(ISD && "Invalid opcode");

    // TODO: Handle other cost kinds.
    if (CostKind != TTI::TCK_RecipThroughput)
      return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, 
                                       I); 

    // Selects on vectors are actually vector selects.
    if (ISD == ISD::SELECT) {
      assert(CondTy && "CondTy must exist");
      if (CondTy->isVectorTy())
        ISD = ISD::VSELECT;
    }
    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);

    if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
        !TLI->isOperationExpand(ISD, LT.second)) {
      // The operation is legal. Assume it costs 1. Multiply
      // by the type-legalization overhead.
      return LT.first * 1;
    }

    // Otherwise, assume that the cast is scalarized.
    // TODO: If one of the types get legalized by splitting, handle this
    // similarly to what getCastInstrCost() does.
    if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
      unsigned Num = cast<FixedVectorType>(ValVTy)->getNumElements();
      if (CondTy)
        CondTy = CondTy->getScalarType();
      unsigned Cost = thisT()->getCmpSelInstrCost(
          Opcode, ValVTy->getScalarType(), CondTy, VecPred, CostKind, I); 

      // Return the cost of multiple scalar invocation plus the cost of
      // inserting and extracting the values.
      return getScalarizationOverhead(ValVTy, true, false) + Num * Cost;
    }

    // Unknown scalar opcode.
    return 1;
  }

  unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
    std::pair<unsigned, MVT> LT =
        getTLI()->getTypeLegalizationCost(DL, Val->getScalarType());

    return LT.first;
  }

  unsigned getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment,
                           unsigned AddressSpace,
                           TTI::TargetCostKind CostKind,
                           const Instruction *I = nullptr) {
    assert(!Src->isVoidTy() && "Invalid type");
    // Assume types, such as structs, are expensive.
    if (getTLI()->getValueType(DL, Src,  true) == MVT::Other)
      return 4;
    std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Src);

    // Assuming that all loads of legal types cost 1.
    unsigned Cost = LT.first;
    if (CostKind != TTI::TCK_RecipThroughput)
      return Cost;

    if (Src->isVectorTy() &&
        // In practice it's not currently possible to have a change in lane 
        // length for extending loads or truncating stores so both types should 
        // have the same scalable property. 
        TypeSize::isKnownLT(Src->getPrimitiveSizeInBits(), 
                            LT.second.getSizeInBits())) { 
      // This is a vector load that legalizes to a larger type than the vector
      // itself. Unless the corresponding extending load or truncating store is
      // legal, then this will scalarize.
      TargetLowering::LegalizeAction LA = TargetLowering::Expand;
      EVT MemVT = getTLI()->getValueType(DL, Src);
      if (Opcode == Instruction::Store)
        LA = getTLI()->getTruncStoreAction(LT.second, MemVT);
      else
        LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);

      if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
        // This is a vector load/store for some illegal type that is scalarized.
        // We must account for the cost of building or decomposing the vector.
        Cost += getScalarizationOverhead(cast<VectorType>(Src),
                                         Opcode != Instruction::Store,
                                         Opcode == Instruction::Store);
      }
    }

    return Cost;
  }

  unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, 
                                  const Value *Ptr, bool VariableMask, 
                                  Align Alignment, TTI::TargetCostKind CostKind, 
                                  const Instruction *I = nullptr) { 
    auto *VT = cast<FixedVectorType>(DataTy); 
    // Assume the target does not have support for gather/scatter operations 
    // and provide a rough estimate. 
    // 
    // First, compute the cost of extracting the individual addresses and the 
    // individual memory operations. 
    int LoadCost = 
        VT->getNumElements() * 
        (getVectorInstrCost( 
             Instruction::ExtractElement, 
             FixedVectorType::get(PointerType::get(VT->getElementType(), 0), 
                                  VT->getNumElements()), 
             -1) + 
         getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind)); 
 
    // Next, compute the cost of packing the result in a vector. 
    int PackingCost = getScalarizationOverhead(VT, Opcode != Instruction::Store, 
                                               Opcode == Instruction::Store); 
 
    int ConditionalCost = 0; 
    if (VariableMask) { 
      // Compute the cost of conditionally executing the memory operations with 
      // variable masks. This includes extracting the individual conditions, a 
      // branches and PHIs to combine the results. 
      // NOTE: Estimating the cost of conditionally executing the memory 
      // operations accurately is quite difficult and the current solution 
      // provides a very rough estimate only. 
      ConditionalCost = 
          VT->getNumElements() * 
          (getVectorInstrCost( 
               Instruction::ExtractElement, 
               FixedVectorType::get(Type::getInt1Ty(DataTy->getContext()), 
                                    VT->getNumElements()), 
               -1) + 
           getCFInstrCost(Instruction::Br, CostKind) + 
           getCFInstrCost(Instruction::PHI, CostKind)); 
    } 
 
    return LoadCost + PackingCost + ConditionalCost; 
  } 
 
  unsigned getInterleavedMemoryOpCost(
      unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
      Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
      bool UseMaskForCond = false, bool UseMaskForGaps = false) {
    auto *VT = cast<FixedVectorType>(VecTy);

    unsigned NumElts = VT->getNumElements();
    assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");

    unsigned NumSubElts = NumElts / Factor;
    auto *SubVT = FixedVectorType::get(VT->getElementType(), NumSubElts);

    // Firstly, the cost of load/store operation.
    unsigned Cost;
    if (UseMaskForCond || UseMaskForGaps)
      Cost = thisT()->getMaskedMemoryOpCost(Opcode, VecTy, Alignment,
                                            AddressSpace, CostKind);
    else
      Cost = thisT()->getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace,
                                      CostKind);

    // Legalize the vector type, and get the legalized and unlegalized type
    // sizes.
    MVT VecTyLT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
    unsigned VecTySize = thisT()->getDataLayout().getTypeStoreSize(VecTy);
    unsigned VecTyLTSize = VecTyLT.getStoreSize();

    // Return the ceiling of dividing A by B.
    auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; };

    // Scale the cost of the memory operation by the fraction of legalized
    // instructions that will actually be used. We shouldn't account for the
    // cost of dead instructions since they will be removed.
    //
    // E.g., An interleaved load of factor 8:
    //       %vec = load <16 x i64>, <16 x i64>* %ptr
    //       %v0 = shufflevector %vec, undef, <0, 8>
    //
    // If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be
    // used (those corresponding to elements [0:1] and [8:9] of the unlegalized
    // type). The other loads are unused.
    //
    // We only scale the cost of loads since interleaved store groups aren't
    // allowed to have gaps.
    if (Opcode == Instruction::Load && VecTySize > VecTyLTSize) {
      // The number of loads of a legal type it will take to represent a load
      // of the unlegalized vector type.
      unsigned NumLegalInsts = ceil(VecTySize, VecTyLTSize);

      // The number of elements of the unlegalized type that correspond to a
      // single legal instruction.
      unsigned NumEltsPerLegalInst = ceil(NumElts, NumLegalInsts);

      // Determine which legal instructions will be used.
      BitVector UsedInsts(NumLegalInsts, false);
      for (unsigned Index : Indices)
        for (unsigned Elt = 0; Elt < NumSubElts; ++Elt)
          UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst);

      // Scale the cost of the load by the fraction of legal instructions that
      // will be used.
      Cost *= UsedInsts.count() / NumLegalInsts;
    }

    // Then plus the cost of interleave operation.
    if (Opcode == Instruction::Load) {
      // The interleave cost is similar to extract sub vectors' elements
      // from the wide vector, and insert them into sub vectors.
      //
      // E.g. An interleaved load of factor 2 (with one member of index 0):
      //      %vec = load <8 x i32>, <8 x i32>* %ptr
      //      %v0 = shuffle %vec, undef, <0, 2, 4, 6>         ; Index 0
      // The cost is estimated as extract elements at 0, 2, 4, 6 from the
      // <8 x i32> vector and insert them into a <4 x i32> vector.

      assert(Indices.size() <= Factor &&
             "Interleaved memory op has too many members");

      for (unsigned Index : Indices) {
        assert(Index < Factor && "Invalid index for interleaved memory op");

        // Extract elements from loaded vector for each sub vector.
        for (unsigned i = 0; i < NumSubElts; i++)
          Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VT,
                                              Index + i * Factor);
      }

      unsigned InsSubCost = 0;
      for (unsigned i = 0; i < NumSubElts; i++)
        InsSubCost +=
            thisT()->getVectorInstrCost(Instruction::InsertElement, SubVT, i);

      Cost += Indices.size() * InsSubCost;
    } else {
      // The interleave cost is extract all elements from sub vectors, and
      // insert them into the wide vector.
      //
      // E.g. An interleaved store of factor 2:
      //      %v0_v1 = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7>
      //      store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
      // The cost is estimated as extract all elements from both <4 x i32>
      // vectors and insert into the <8 x i32> vector.

      unsigned ExtSubCost = 0;
      for (unsigned i = 0; i < NumSubElts; i++)
        ExtSubCost +=
            thisT()->getVectorInstrCost(Instruction::ExtractElement, SubVT, i);
      Cost += ExtSubCost * Factor;

      for (unsigned i = 0; i < NumElts; i++)
        Cost += static_cast<T *>(this)
                    ->getVectorInstrCost(Instruction::InsertElement, VT, i);
    }

    if (!UseMaskForCond)
      return Cost;

    Type *I8Type = Type::getInt8Ty(VT->getContext());
    auto *MaskVT = FixedVectorType::get(I8Type, NumElts);
    SubVT = FixedVectorType::get(I8Type, NumSubElts);

    // The Mask shuffling cost is extract all the elements of the Mask
    // and insert each of them Factor times into the wide vector:
    //
    // E.g. an interleaved group with factor 3:
    //    %mask = icmp ult <8 x i32> %vec1, %vec2
    //    %interleaved.mask = shufflevector <8 x i1> %mask, <8 x i1> undef,
    //        <24 x i32> <0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7>
    // The cost is estimated as extract all mask elements from the <8xi1> mask
    // vector and insert them factor times into the <24xi1> shuffled mask
    // vector.
    for (unsigned i = 0; i < NumSubElts; i++)
      Cost +=
          thisT()->getVectorInstrCost(Instruction::ExtractElement, SubVT, i);

    for (unsigned i = 0; i < NumElts; i++)
      Cost +=
          thisT()->getVectorInstrCost(Instruction::InsertElement, MaskVT, i);

    // The Gaps mask is invariant and created outside the loop, therefore the
    // cost of creating it is not accounted for here. However if we have both
    // a MaskForGaps and some other mask that guards the execution of the
    // memory access, we need to account for the cost of And-ing the two masks
    // inside the loop.
    if (UseMaskForGaps)
      Cost += thisT()->getArithmeticInstrCost(BinaryOperator::And, MaskVT,
                                              CostKind);

    return Cost;
  }

  /// Get intrinsic cost based on arguments.
  unsigned getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
                                 TTI::TargetCostKind CostKind) {
    // Check for generically free intrinsics. 
    if (BaseT::getIntrinsicInstrCost(ICA, CostKind) == 0)
      return 0;

    // Assume that target intrinsics are cheap. 
    Intrinsic::ID IID = ICA.getID(); 
    if (Function::isTargetIntrinsic(IID)) 
      return TargetTransformInfo::TCC_Basic; 
 
    if (ICA.isTypeBasedOnly())
      return getTypeBasedIntrinsicInstrCost(ICA, CostKind);

    Type *RetTy = ICA.getReturnType();
 
    ElementCount VF = ICA.getVectorFactor(); 
    ElementCount RetVF = 
        (RetTy->isVectorTy() ? cast<VectorType>(RetTy)->getElementCount() 
                             : ElementCount::getFixed(1)); 
    assert((RetVF.isScalar() || VF.isScalar()) && 
           "VF > 1 and RetVF is a vector type"); 
    const IntrinsicInst *I = ICA.getInst();
    const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
    FastMathFlags FMF = ICA.getFlags();
    switch (IID) {
    default: 
      break; 

    case Intrinsic::cttz: 
      // FIXME: If necessary, this should go in target-specific overrides. 
      if (VF.isScalar() && RetVF.isScalar() && 
          getTLI()->isCheapToSpeculateCttz()) 
        return TargetTransformInfo::TCC_Basic; 
      break; 

    case Intrinsic::ctlz: 
      // FIXME: If necessary, this should go in target-specific overrides. 
      if (VF.isScalar() && RetVF.isScalar() && 
          getTLI()->isCheapToSpeculateCtlz()) 
        return TargetTransformInfo::TCC_Basic; 
      break; 

    case Intrinsic::memcpy: 
      return thisT()->getMemcpyCost(ICA.getInst()); 
 
    case Intrinsic::masked_scatter: {
      assert(VF.isScalar() && "Can't vectorize types here."); 
      const Value *Mask = Args[3];
      bool VarMask = !isa<Constant>(Mask);
      Align Alignment = cast<ConstantInt>(Args[2])->getAlignValue();
      return thisT()->getGatherScatterOpCost(Instruction::Store,
                                             Args[0]->getType(), Args[1],
                                             VarMask, Alignment, CostKind, I);
    }
    case Intrinsic::masked_gather: {
      assert(VF.isScalar() && "Can't vectorize types here."); 
      const Value *Mask = Args[2];
      bool VarMask = !isa<Constant>(Mask);
      Align Alignment = cast<ConstantInt>(Args[1])->getAlignValue();
      return thisT()->getGatherScatterOpCost(Instruction::Load, RetTy, Args[0],
                                             VarMask, Alignment, CostKind, I);
    }
    case Intrinsic::experimental_vector_extract: { 
      // FIXME: Handle case where a scalable vector is extracted from a scalable 
      // vector 
      if (isa<ScalableVectorType>(RetTy)) 
        return BaseT::getIntrinsicInstrCost(ICA, CostKind); 
      unsigned Index = cast<ConstantInt>(Args[1])->getZExtValue(); 
      return thisT()->getShuffleCost(TTI::SK_ExtractSubvector, 
                                     cast<VectorType>(Args[0]->getType()), 
                                     Index, cast<VectorType>(RetTy)); 
    } 
    case Intrinsic::experimental_vector_insert: { 
      // FIXME: Handle case where a scalable vector is inserted into a scalable 
      // vector 
      if (isa<ScalableVectorType>(Args[1]->getType())) 
        return BaseT::getIntrinsicInstrCost(ICA, CostKind); 
      unsigned Index = cast<ConstantInt>(Args[2])->getZExtValue(); 
      return thisT()->getShuffleCost( 
          TTI::SK_InsertSubvector, cast<VectorType>(Args[0]->getType()), Index, 
          cast<VectorType>(Args[1]->getType())); 
    } 
    case Intrinsic::vector_reduce_add: 
    case Intrinsic::vector_reduce_mul: 
    case Intrinsic::vector_reduce_and: 
    case Intrinsic::vector_reduce_or: 
    case Intrinsic::vector_reduce_xor: 
    case Intrinsic::vector_reduce_smax: 
    case Intrinsic::vector_reduce_smin: 
    case Intrinsic::vector_reduce_fmax: 
    case Intrinsic::vector_reduce_fmin: 
    case Intrinsic::vector_reduce_umax: 
    case Intrinsic::vector_reduce_umin: { 
      IntrinsicCostAttributes Attrs(IID, RetTy, Args[0]->getType(), FMF, 1, I);
      return getTypeBasedIntrinsicInstrCost(Attrs, CostKind); 
    }
    case Intrinsic::vector_reduce_fadd: 
    case Intrinsic::vector_reduce_fmul: { 
      IntrinsicCostAttributes Attrs( 
          IID, RetTy, {Args[0]->getType(), Args[1]->getType()}, FMF, 1, I); 
      return getTypeBasedIntrinsicInstrCost(Attrs, CostKind); 
    } 
    case Intrinsic::fshl:
    case Intrinsic::fshr: {
      if (isa<ScalableVectorType>(RetTy)) 
        return BaseT::getIntrinsicInstrCost(ICA, CostKind); 
      const Value *X = Args[0];
      const Value *Y = Args[1];
      const Value *Z = Args[2];
      TTI::OperandValueProperties OpPropsX, OpPropsY, OpPropsZ, OpPropsBW;
      TTI::OperandValueKind OpKindX = TTI::getOperandInfo(X, OpPropsX);
      TTI::OperandValueKind OpKindY = TTI::getOperandInfo(Y, OpPropsY);
      TTI::OperandValueKind OpKindZ = TTI::getOperandInfo(Z, OpPropsZ);
      TTI::OperandValueKind OpKindBW = TTI::OK_UniformConstantValue;
      OpPropsBW = isPowerOf2_32(RetTy->getScalarSizeInBits()) ? TTI::OP_PowerOf2
                                                              : TTI::OP_None;
      // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
      // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
      unsigned Cost = 0;
      Cost +=
          thisT()->getArithmeticInstrCost(BinaryOperator::Or, RetTy, CostKind);
      Cost +=
          thisT()->getArithmeticInstrCost(BinaryOperator::Sub, RetTy, CostKind);
      Cost += thisT()->getArithmeticInstrCost(
          BinaryOperator::Shl, RetTy, CostKind, OpKindX, OpKindZ, OpPropsX);
      Cost += thisT()->getArithmeticInstrCost(
          BinaryOperator::LShr, RetTy, CostKind, OpKindY, OpKindZ, OpPropsY);
      // Non-constant shift amounts requires a modulo.
      if (OpKindZ != TTI::OK_UniformConstantValue &&
          OpKindZ != TTI::OK_NonUniformConstantValue)
        Cost += thisT()->getArithmeticInstrCost(BinaryOperator::URem, RetTy,
                                                CostKind, OpKindZ, OpKindBW,
                                                OpPropsZ, OpPropsBW);
      // For non-rotates (X != Y) we must add shift-by-zero handling costs.
      if (X != Y) {
        Type *CondTy = RetTy->getWithNewBitWidth(1);
        Cost += 
            thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy, 
                                        CmpInst::BAD_ICMP_PREDICATE, CostKind); 
        Cost += 
            thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy, 
                                        CmpInst::BAD_ICMP_PREDICATE, CostKind); 
      }
      return Cost;
    }
    }
    // TODO: Handle the remaining intrinsic with scalable vector type 
    if (isa<ScalableVectorType>(RetTy)) 
      return BaseT::getIntrinsicInstrCost(ICA, CostKind); 
 
    // Assume that we need to scalarize this intrinsic. 
    SmallVector<Type *, 4> Types; 
    for (const Value *Op : Args) { 
      Type *OpTy = Op->getType(); 
      assert(VF.isScalar() || !OpTy->isVectorTy()); 
      Types.push_back(VF.isScalar() 
                          ? OpTy 
                          : FixedVectorType::get(OpTy, VF.getKnownMinValue())); 
    } 
 
    if (VF.isVector() && !RetTy->isVoidTy()) 
      RetTy = FixedVectorType::get(RetTy, VF.getKnownMinValue()); 
 
    // Compute the scalarization overhead based on Args for a vector 
    // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while 
    // CostModel will pass a vector RetTy and VF is 1. 
    unsigned ScalarizationCost = std::numeric_limits<unsigned>::max(); 
    if (RetVF.isVector() || VF.isVector()) { 
      ScalarizationCost = 0; 
      if (!RetTy->isVoidTy()) 
        ScalarizationCost += 
            getScalarizationOverhead(cast<VectorType>(RetTy), true, false); 
      ScalarizationCost += 
          getOperandsScalarizationOverhead(Args, VF.getKnownMinValue()); 
    } 
 
    IntrinsicCostAttributes Attrs(IID, RetTy, Types, FMF, ScalarizationCost, I); 
    return thisT()->getTypeBasedIntrinsicInstrCost(Attrs, CostKind); 
  }

  /// Get intrinsic cost based on argument types.
  /// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the
  /// cost of scalarizing the arguments and the return value will be computed
  /// based on types.
  unsigned getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
                                          TTI::TargetCostKind CostKind) {
    Intrinsic::ID IID = ICA.getID();
    Type *RetTy = ICA.getReturnType();
    const SmallVectorImpl<Type *> &Tys = ICA.getArgTypes();
    FastMathFlags FMF = ICA.getFlags();
    unsigned ScalarizationCostPassed = ICA.getScalarizationCost();
    bool SkipScalarizationCost = ICA.skipScalarizationCost();

    VectorType *VecOpTy = nullptr; 
    if (!Tys.empty()) { 
      // The vector reduction operand is operand 0 except for fadd/fmul. 
      // Their operand 0 is a scalar start value, so the vector op is operand 1. 
      unsigned VecTyIndex = 0; 
      if (IID == Intrinsic::vector_reduce_fadd || 
          IID == Intrinsic::vector_reduce_fmul) 
        VecTyIndex = 1; 
      assert(Tys.size() > VecTyIndex && "Unexpected IntrinsicCostAttributes"); 
      VecOpTy = dyn_cast<VectorType>(Tys[VecTyIndex]); 
    } 

    // Library call cost - other than size, make it expensive. 
    unsigned SingleCallCost = CostKind == TTI::TCK_CodeSize ? 1 : 10; 
    SmallVector<unsigned, 2> ISDs;
    switch (IID) {
    default: {
      // Assume that we need to scalarize this intrinsic.
      unsigned ScalarizationCost = ScalarizationCostPassed;
      unsigned ScalarCalls = 1;
      Type *ScalarRetTy = RetTy;
      if (auto *RetVTy = dyn_cast<VectorType>(RetTy)) {
        if (!SkipScalarizationCost)
          ScalarizationCost = getScalarizationOverhead(RetVTy, true, false);
        ScalarCalls = std::max(ScalarCalls,
                               cast<FixedVectorType>(RetVTy)->getNumElements());
        ScalarRetTy = RetTy->getScalarType();
      }
      SmallVector<Type *, 4> ScalarTys;
      for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
        Type *Ty = Tys[i];
        if (auto *VTy = dyn_cast<VectorType>(Ty)) {
          if (!SkipScalarizationCost)
            ScalarizationCost += getScalarizationOverhead(VTy, false, true);
          ScalarCalls = std::max(ScalarCalls,
                                 cast<FixedVectorType>(VTy)->getNumElements());
          Ty = Ty->getScalarType();
        }
        ScalarTys.push_back(Ty);
      }
      if (ScalarCalls == 1)
        return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.

      IntrinsicCostAttributes ScalarAttrs(IID, ScalarRetTy, ScalarTys, FMF);
      unsigned ScalarCost =
          thisT()->getIntrinsicInstrCost(ScalarAttrs, CostKind);

      return ScalarCalls * ScalarCost + ScalarizationCost;
    }
    // Look for intrinsics that can be lowered directly or turned into a scalar
    // intrinsic call.
    case Intrinsic::sqrt:
      ISDs.push_back(ISD::FSQRT);
      break;
    case Intrinsic::sin:
      ISDs.push_back(ISD::FSIN);
      break;
    case Intrinsic::cos:
      ISDs.push_back(ISD::FCOS);
      break;
    case Intrinsic::exp:
      ISDs.push_back(ISD::FEXP);
      break;
    case Intrinsic::exp2:
      ISDs.push_back(ISD::FEXP2);
      break;
    case Intrinsic::log:
      ISDs.push_back(ISD::FLOG);
      break;
    case Intrinsic::log10:
      ISDs.push_back(ISD::FLOG10);
      break;
    case Intrinsic::log2:
      ISDs.push_back(ISD::FLOG2);
      break;
    case Intrinsic::fabs:
      ISDs.push_back(ISD::FABS);
      break;
    case Intrinsic::canonicalize:
      ISDs.push_back(ISD::FCANONICALIZE);
      break;
    case Intrinsic::minnum:
      ISDs.push_back(ISD::FMINNUM);
      break;
    case Intrinsic::maxnum:
      ISDs.push_back(ISD::FMAXNUM);
      break;
    case Intrinsic::minimum: 
      ISDs.push_back(ISD::FMINIMUM); 
      break; 
    case Intrinsic::maximum: 
      ISDs.push_back(ISD::FMAXIMUM); 
      break; 
    case Intrinsic::copysign:
      ISDs.push_back(ISD::FCOPYSIGN);
      break;
    case Intrinsic::floor:
      ISDs.push_back(ISD::FFLOOR);
      break;
    case Intrinsic::ceil:
      ISDs.push_back(ISD::FCEIL);
      break;
    case Intrinsic::trunc:
      ISDs.push_back(ISD::FTRUNC);
      break;
    case Intrinsic::nearbyint:
      ISDs.push_back(ISD::FNEARBYINT);
      break;
    case Intrinsic::rint:
      ISDs.push_back(ISD::FRINT);
      break;
    case Intrinsic::round:
      ISDs.push_back(ISD::FROUND);
      break;
    case Intrinsic::roundeven:
      ISDs.push_back(ISD::FROUNDEVEN);
      break;
    case Intrinsic::pow:
      ISDs.push_back(ISD::FPOW);
      break;
    case Intrinsic::fma:
      ISDs.push_back(ISD::FMA);
      break;
    case Intrinsic::fmuladd:
      ISDs.push_back(ISD::FMA);
      break;
    case Intrinsic::experimental_constrained_fmuladd:
      ISDs.push_back(ISD::STRICT_FMA);
      break;
    // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
    case Intrinsic::lifetime_start:
    case Intrinsic::lifetime_end:
    case Intrinsic::sideeffect:
    case Intrinsic::pseudoprobe: 
      return 0;
    case Intrinsic::masked_store: {
      Type *Ty = Tys[0];
      Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
      return thisT()->getMaskedMemoryOpCost(Instruction::Store, Ty, TyAlign, 0,
                                            CostKind);
    }
    case Intrinsic::masked_load: {
      Type *Ty = RetTy;
      Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
      return thisT()->getMaskedMemoryOpCost(Instruction::Load, Ty, TyAlign, 0,
                                            CostKind);
    }
    case Intrinsic::vector_reduce_add: 
      return thisT()->getArithmeticReductionCost(Instruction::Add, VecOpTy,
                                                 /*IsPairwiseForm=*/false,
                                                 CostKind);
    case Intrinsic::vector_reduce_mul: 
      return thisT()->getArithmeticReductionCost(Instruction::Mul, VecOpTy,
                                                 /*IsPairwiseForm=*/false,
                                                 CostKind);
    case Intrinsic::vector_reduce_and: 
      return thisT()->getArithmeticReductionCost(Instruction::And, VecOpTy,
                                                 /*IsPairwiseForm=*/false,
                                                 CostKind);
    case Intrinsic::vector_reduce_or: 
      return thisT()->getArithmeticReductionCost(Instruction::Or, VecOpTy,
                                                 /*IsPairwiseForm=*/false,
                                                 CostKind);
    case Intrinsic::vector_reduce_xor: 
      return thisT()->getArithmeticReductionCost(Instruction::Xor, VecOpTy,
                                                 /*IsPairwiseForm=*/false,
                                                 CostKind);
    case Intrinsic::vector_reduce_fadd: 
      // FIXME: Add new flag for cost of strict reductions.
      return thisT()->getArithmeticReductionCost(Instruction::FAdd, VecOpTy,
                                                 /*IsPairwiseForm=*/false,
                                                 CostKind);
    case Intrinsic::vector_reduce_fmul: 
      // FIXME: Add new flag for cost of strict reductions.
      return thisT()->getArithmeticReductionCost(Instruction::FMul, VecOpTy,
                                                 /*IsPairwiseForm=*/false,
                                                 CostKind);
    case Intrinsic::vector_reduce_smax: 
    case Intrinsic::vector_reduce_smin: 
    case Intrinsic::vector_reduce_fmax: 
    case Intrinsic::vector_reduce_fmin: 
      return thisT()->getMinMaxReductionCost(
          VecOpTy, cast<VectorType>(CmpInst::makeCmpResultType(VecOpTy)),
          /*IsPairwiseForm=*/false,
          /*IsUnsigned=*/false, CostKind);
    case Intrinsic::vector_reduce_umax: 
    case Intrinsic::vector_reduce_umin: 
      return thisT()->getMinMaxReductionCost(
          VecOpTy, cast<VectorType>(CmpInst::makeCmpResultType(VecOpTy)),
          /*IsPairwiseForm=*/false,
          /*IsUnsigned=*/true, CostKind);
    case Intrinsic::abs: 
    case Intrinsic::smax: 
    case Intrinsic::smin: 
    case Intrinsic::umax: 
    case Intrinsic::umin: { 
      // abs(X) = select(icmp(X,0),X,sub(0,X)) 
      // minmax(X,Y) = select(icmp(X,Y),X,Y) 
      Type *CondTy = RetTy->getWithNewBitWidth(1); 
      unsigned Cost = 0; 
      // TODO: Ideally getCmpSelInstrCost would accept an icmp condition code. 
      Cost += 
          thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy, 
                                      CmpInst::BAD_ICMP_PREDICATE, CostKind); 
      Cost += 
          thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy, 
                                      CmpInst::BAD_ICMP_PREDICATE, CostKind); 
      // TODO: Should we add an OperandValueProperties::OP_Zero property? 
      if (IID == Intrinsic::abs) 
        Cost += thisT()->getArithmeticInstrCost( 
            BinaryOperator::Sub, RetTy, CostKind, TTI::OK_UniformConstantValue); 
      return Cost; 
    } 
    case Intrinsic::sadd_sat:
    case Intrinsic::ssub_sat: {
      Type *CondTy = RetTy->getWithNewBitWidth(1);

      Type *OpTy = StructType::create({RetTy, CondTy});
      Intrinsic::ID OverflowOp = IID == Intrinsic::sadd_sat
                                     ? Intrinsic::sadd_with_overflow
                                     : Intrinsic::ssub_with_overflow;

      // SatMax -> Overflow && SumDiff < 0
      // SatMin -> Overflow && SumDiff >= 0
      unsigned Cost = 0;
      IntrinsicCostAttributes Attrs(OverflowOp, OpTy, {RetTy, RetTy}, FMF,
                                    ScalarizationCostPassed);
      Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind);
      Cost += 
          thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy, 
                                      CmpInst::BAD_ICMP_PREDICATE, CostKind); 
      Cost += 2 * thisT()->getCmpSelInstrCost( 
                      BinaryOperator::Select, RetTy, CondTy, 
                      CmpInst::BAD_ICMP_PREDICATE, CostKind); 
      return Cost;
    }
    case Intrinsic::uadd_sat:
    case Intrinsic::usub_sat: {
      Type *CondTy = RetTy->getWithNewBitWidth(1);

      Type *OpTy = StructType::create({RetTy, CondTy});
      Intrinsic::ID OverflowOp = IID == Intrinsic::uadd_sat
                                     ? Intrinsic::uadd_with_overflow
                                     : Intrinsic::usub_with_overflow;

      unsigned Cost = 0;
      IntrinsicCostAttributes Attrs(OverflowOp, OpTy, {RetTy, RetTy}, FMF,
                                    ScalarizationCostPassed);
      Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind);
      Cost += 
          thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy, 
                                      CmpInst::BAD_ICMP_PREDICATE, CostKind); 
      return Cost;
    }
    case Intrinsic::smul_fix:
    case Intrinsic::umul_fix: {
      unsigned ExtSize = RetTy->getScalarSizeInBits() * 2;
      Type *ExtTy = RetTy->getWithNewBitWidth(ExtSize);

      unsigned ExtOp =
          IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
      TTI::CastContextHint CCH = TTI::CastContextHint::None; 

      unsigned Cost = 0;
      Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, RetTy, CCH, CostKind); 
      Cost +=
          thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
      Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, RetTy, ExtTy,
                                            CCH, CostKind); 
      Cost += thisT()->getArithmeticInstrCost(Instruction::LShr, RetTy,
                                              CostKind, TTI::OK_AnyValue,
                                              TTI::OK_UniformConstantValue);
      Cost += thisT()->getArithmeticInstrCost(Instruction::Shl, RetTy, CostKind,
                                              TTI::OK_AnyValue,
                                              TTI::OK_UniformConstantValue);
      Cost += thisT()->getArithmeticInstrCost(Instruction::Or, RetTy, CostKind);
      return Cost;
    }
    case Intrinsic::sadd_with_overflow:
    case Intrinsic::ssub_with_overflow: {
      Type *SumTy = RetTy->getContainedType(0);
      Type *OverflowTy = RetTy->getContainedType(1);
      unsigned Opcode = IID == Intrinsic::sadd_with_overflow
                            ? BinaryOperator::Add
                            : BinaryOperator::Sub;

      //   LHSSign -> LHS >= 0
      //   RHSSign -> RHS >= 0
      //   SumSign -> Sum >= 0
      //
      //   Add:
      //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
      //   Sub:
      //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
      unsigned Cost = 0;
      Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind);
      Cost += 3 * thisT()->getCmpSelInstrCost( 
                      Instruction::ICmp, SumTy, OverflowTy, 
                      CmpInst::BAD_ICMP_PREDICATE, CostKind); 
      Cost += 2 * thisT()->getCmpSelInstrCost( 
                      Instruction::Select, OverflowTy, OverflowTy, 
                      CmpInst::BAD_ICMP_PREDICATE, CostKind); 
      Cost += thisT()->getArithmeticInstrCost(BinaryOperator::And, OverflowTy,
                                              CostKind);
      return Cost;
    }
    case Intrinsic::uadd_with_overflow:
    case Intrinsic::usub_with_overflow: {
      Type *SumTy = RetTy->getContainedType(0);
      Type *OverflowTy = RetTy->getContainedType(1);
      unsigned Opcode = IID == Intrinsic::uadd_with_overflow
                            ? BinaryOperator::Add
                            : BinaryOperator::Sub;

      unsigned Cost = 0;
      Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind);
      Cost += 
          thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy, OverflowTy, 
                                      CmpInst::BAD_ICMP_PREDICATE, CostKind); 
      return Cost;
    }
    case Intrinsic::smul_with_overflow:
    case Intrinsic::umul_with_overflow: {
      Type *MulTy = RetTy->getContainedType(0);
      Type *OverflowTy = RetTy->getContainedType(1);
      unsigned ExtSize = MulTy->getScalarSizeInBits() * 2;
      Type *ExtTy = MulTy->getWithNewBitWidth(ExtSize);

      unsigned ExtOp =
          IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
      TTI::CastContextHint CCH = TTI::CastContextHint::None; 

      unsigned Cost = 0;
      Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, MulTy, CCH, CostKind); 
      Cost +=
          thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
      Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, MulTy, ExtTy,
                                            CCH, CostKind); 
      Cost += thisT()->getArithmeticInstrCost(Instruction::LShr, MulTy,
                                              CostKind, TTI::OK_AnyValue,
                                              TTI::OK_UniformConstantValue);

      if (IID == Intrinsic::smul_with_overflow)
        Cost += thisT()->getArithmeticInstrCost(Instruction::AShr, MulTy,
                                                CostKind, TTI::OK_AnyValue,
                                                TTI::OK_UniformConstantValue);

      Cost += 
          thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, MulTy, OverflowTy, 
                                      CmpInst::BAD_ICMP_PREDICATE, CostKind); 
      return Cost;
    }
    case Intrinsic::ctpop:
      ISDs.push_back(ISD::CTPOP);
      // In case of legalization use TCC_Expensive. This is cheaper than a
      // library call but still not a cheap instruction.
      SingleCallCost = TargetTransformInfo::TCC_Expensive;
      break;
    case Intrinsic::ctlz: 
      ISDs.push_back(ISD::CTLZ); 
      break; 
    case Intrinsic::cttz: 
      ISDs.push_back(ISD::CTTZ); 
      break; 
    case Intrinsic::bswap:
      ISDs.push_back(ISD::BSWAP);
      break;
    case Intrinsic::bitreverse:
      ISDs.push_back(ISD::BITREVERSE);
      break;
    }

    const TargetLoweringBase *TLI = getTLI();
    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);

    SmallVector<unsigned, 2> LegalCost;
    SmallVector<unsigned, 2> CustomCost;
    for (unsigned ISD : ISDs) {
      if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
        if (IID == Intrinsic::fabs && LT.second.isFloatingPoint() &&
            TLI->isFAbsFree(LT.second)) {
          return 0;
        }

        // The operation is legal. Assume it costs 1.
        // If the type is split to multiple registers, assume that there is some
        // overhead to this.
        // TODO: Once we have extract/insert subvector cost we need to use them.
        if (LT.first > 1)
          LegalCost.push_back(LT.first * 2);
        else
          LegalCost.push_back(LT.first * 1);
      } else if (!TLI->isOperationExpand(ISD, LT.second)) {
        // If the operation is custom lowered then assume
        // that the code is twice as expensive.
        CustomCost.push_back(LT.first * 2);
      }
    }

    auto *MinLegalCostI = std::min_element(LegalCost.begin(), LegalCost.end()); 
    if (MinLegalCostI != LegalCost.end())
      return *MinLegalCostI;

    auto MinCustomCostI =
        std::min_element(CustomCost.begin(), CustomCost.end());
    if (MinCustomCostI != CustomCost.end())
      return *MinCustomCostI;

    // If we can't lower fmuladd into an FMA estimate the cost as a floating
    // point mul followed by an add.
    if (IID == Intrinsic::fmuladd)
      return thisT()->getArithmeticInstrCost(BinaryOperator::FMul, RetTy,
                                             CostKind) +
             thisT()->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy,
                                             CostKind);
    if (IID == Intrinsic::experimental_constrained_fmuladd) {
      IntrinsicCostAttributes FMulAttrs(
        Intrinsic::experimental_constrained_fmul, RetTy, Tys);
      IntrinsicCostAttributes FAddAttrs(
        Intrinsic::experimental_constrained_fadd, RetTy, Tys);
      return thisT()->getIntrinsicInstrCost(FMulAttrs, CostKind) +
             thisT()->getIntrinsicInstrCost(FAddAttrs, CostKind);
    }

    // Else, assume that we need to scalarize this intrinsic. For math builtins
    // this will emit a costly libcall, adding call overhead and spills. Make it
    // very expensive.
    if (auto *RetVTy = dyn_cast<VectorType>(RetTy)) {
      unsigned ScalarizationCost = SkipScalarizationCost ?
        ScalarizationCostPassed : getScalarizationOverhead(RetVTy, true, false);

      unsigned ScalarCalls = cast<FixedVectorType>(RetVTy)->getNumElements();
      SmallVector<Type *, 4> ScalarTys;
      for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
        Type *Ty = Tys[i];
        if (Ty->isVectorTy())
          Ty = Ty->getScalarType();
        ScalarTys.push_back(Ty);
      }
      IntrinsicCostAttributes Attrs(IID, RetTy->getScalarType(), ScalarTys, FMF);
      unsigned ScalarCost = thisT()->getIntrinsicInstrCost(Attrs, CostKind);
      for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
        if (auto *VTy = dyn_cast<VectorType>(Tys[i])) {
          if (!ICA.skipScalarizationCost())
            ScalarizationCost += getScalarizationOverhead(VTy, false, true);
          ScalarCalls = std::max(ScalarCalls,
                                 cast<FixedVectorType>(VTy)->getNumElements());
        }
      }
      return ScalarCalls * ScalarCost + ScalarizationCost;
    }

    // This is going to be turned into a library call, make it expensive.
    return SingleCallCost;
  }

  /// Compute a cost of the given call instruction.
  ///
  /// Compute the cost of calling function F with return type RetTy and
  /// argument types Tys. F might be nullptr, in this case the cost of an
  /// arbitrary call with the specified signature will be returned.
  /// This is used, for instance,  when we estimate call of a vector
  /// counterpart of the given function.
  /// \param F Called function, might be nullptr.
  /// \param RetTy Return value types.
  /// \param Tys Argument types.
  /// \returns The cost of Call instruction.
  unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys,
                     TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) {
    return 10;
  }

  unsigned getNumberOfParts(Type *Tp) {
    std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Tp);
    return LT.first;
  }

  unsigned getAddressComputationCost(Type *Ty, ScalarEvolution *,
                                     const SCEV *) {
    return 0;
  }

  /// Try to calculate arithmetic and shuffle op costs for reduction operations.
  /// We're assuming that reduction operation are performing the following way:
  /// 1. Non-pairwise reduction
  /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
  /// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef>
  ///            \----------------v-------------/  \----------v------------/
  ///                            n/2 elements               n/2 elements
  /// %red1 = op <n x t> %val, <n x t> val1
  /// After this operation we have a vector %red1 where only the first n/2
  /// elements are meaningful, the second n/2 elements are undefined and can be
  /// dropped. All other operations are actually working with the vector of
  /// length n/2, not n, though the real vector length is still n.
  /// %val2 = shufflevector<n x t> %red1, <n x t> %undef,
  /// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef>
  ///            \----------------v-------------/  \----------v------------/
  ///                            n/4 elements               3*n/4 elements
  /// %red2 = op <n x t> %red1, <n x t> val2  - working with the vector of
  /// length n/2, the resulting vector has length n/4 etc.
  /// 2. Pairwise reduction:
  /// Everything is the same except for an additional shuffle operation which
  /// is used to produce operands for pairwise kind of reductions.
  /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
  /// <n x i32> <i32 0, i32 2, ..., i32 n-2, i32 undef, ..., i32 undef>
  ///            \-------------v----------/  \----------v------------/
  ///                   n/2 elements               n/2 elements
  /// %val2 = shufflevector<n x t> %val, <n x t> %undef,
  /// <n x i32> <i32 1, i32 3, ..., i32 n-1, i32 undef, ..., i32 undef>
  ///            \-------------v----------/  \----------v------------/
  ///                   n/2 elements               n/2 elements
  /// %red1 = op <n x t> %val1, <n x t> val2
  /// Again, the operation is performed on <n x t> vector, but the resulting
  /// vector %red1 is <n/2 x t> vector.
  ///
  /// The cost model should take into account that the actual length of the
  /// vector is reduced on each iteration.
  unsigned getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
                                      bool IsPairwise,
                                      TTI::TargetCostKind CostKind) {
    Type *ScalarTy = Ty->getElementType();
    unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements();
    unsigned NumReduxLevels = Log2_32(NumVecElts);
    unsigned ArithCost = 0;
    unsigned ShuffleCost = 0;
    std::pair<unsigned, MVT> LT =
        thisT()->getTLI()->getTypeLegalizationCost(DL, Ty);
    unsigned LongVectorCount = 0;
    unsigned MVTLen =
        LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
    while (NumVecElts > MVTLen) {
      NumVecElts /= 2;
      VectorType *SubTy = FixedVectorType::get(ScalarTy, NumVecElts);
      // Assume the pairwise shuffles add a cost.
      ShuffleCost +=
          (IsPairwise + 1) * thisT()->getShuffleCost(TTI::SK_ExtractSubvector,
                                                     Ty, NumVecElts, SubTy);
      ArithCost += thisT()->getArithmeticInstrCost(Opcode, SubTy, CostKind);
      Ty = SubTy;
      ++LongVectorCount;
    }

    NumReduxLevels -= LongVectorCount;

    // The minimal length of the vector is limited by the real length of vector
    // operations performed on the current platform. That's why several final
    // reduction operations are performed on the vectors with the same
    // architecture-dependent length.

    // Non pairwise reductions need one shuffle per reduction level. Pairwise
    // reductions need two shuffles on every level, but the last one. On that
    // level one of the shuffles is <0, u, u, ...> which is identity.
    unsigned NumShuffles = NumReduxLevels;
    if (IsPairwise && NumReduxLevels >= 1)
      NumShuffles += NumReduxLevels - 1;
    ShuffleCost += NumShuffles *
                   thisT()->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, 0, Ty);
    ArithCost += NumReduxLevels * thisT()->getArithmeticInstrCost(Opcode, Ty);
    return ShuffleCost + ArithCost +
           thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
  }

  /// Try to calculate op costs for min/max reduction operations.
  /// \param CondTy Conditional type for the Select instruction.
  unsigned getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
                                  bool IsPairwise, bool IsUnsigned,
                                  TTI::TargetCostKind CostKind) {
    Type *ScalarTy = Ty->getElementType();
    Type *ScalarCondTy = CondTy->getElementType();
    unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements();
    unsigned NumReduxLevels = Log2_32(NumVecElts);
    unsigned CmpOpcode;
    if (Ty->isFPOrFPVectorTy()) {
      CmpOpcode = Instruction::FCmp;
    } else {
      assert(Ty->isIntOrIntVectorTy() &&
             "expecting floating point or integer type for min/max reduction");
      CmpOpcode = Instruction::ICmp;
    }
    unsigned MinMaxCost = 0;
    unsigned ShuffleCost = 0;
    std::pair<unsigned, MVT> LT =
        thisT()->getTLI()->getTypeLegalizationCost(DL, Ty);
    unsigned LongVectorCount = 0;
    unsigned MVTLen =
        LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
    while (NumVecElts > MVTLen) {
      NumVecElts /= 2;
      auto *SubTy = FixedVectorType::get(ScalarTy, NumVecElts);
      CondTy = FixedVectorType::get(ScalarCondTy, NumVecElts);

      // Assume the pairwise shuffles add a cost.
      ShuffleCost +=
          (IsPairwise + 1) * thisT()->getShuffleCost(TTI::SK_ExtractSubvector,
                                                     Ty, NumVecElts, SubTy);
      MinMaxCost +=
          thisT()->getCmpSelInstrCost(CmpOpcode, SubTy, CondTy, 
                                      CmpInst::BAD_ICMP_PREDICATE, CostKind) + 
          thisT()->getCmpSelInstrCost(Instruction::Select, SubTy, CondTy,
                                      CmpInst::BAD_ICMP_PREDICATE, CostKind); 
      Ty = SubTy;
      ++LongVectorCount;
    }

    NumReduxLevels -= LongVectorCount;

    // The minimal length of the vector is limited by the real length of vector
    // operations performed on the current platform. That's why several final
    // reduction opertions are perfomed on the vectors with the same
    // architecture-dependent length.

    // Non pairwise reductions need one shuffle per reduction level. Pairwise
    // reductions need two shuffles on every level, but the last one. On that
    // level one of the shuffles is <0, u, u, ...> which is identity.
    unsigned NumShuffles = NumReduxLevels;
    if (IsPairwise && NumReduxLevels >= 1)
      NumShuffles += NumReduxLevels - 1;
    ShuffleCost += NumShuffles *
                   thisT()->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, 0, Ty);
    MinMaxCost +=
        NumReduxLevels *
        (thisT()->getCmpSelInstrCost(CmpOpcode, Ty, CondTy, 
                                     CmpInst::BAD_ICMP_PREDICATE, CostKind) + 
         thisT()->getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
                                     CmpInst::BAD_ICMP_PREDICATE, CostKind)); 
    // The last min/max should be in vector registers and we counted it above.
    // So just need a single extractelement.
    return ShuffleCost + MinMaxCost +
           thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
  }

  InstructionCost getExtendedAddReductionCost(bool IsMLA, bool IsUnsigned, 
                                              Type *ResTy, VectorType *Ty, 
                                              TTI::TargetCostKind CostKind) { 
    // Without any native support, this is equivalent to the cost of 
    // vecreduce.add(ext) or if IsMLA vecreduce.add(mul(ext, ext)) 
    VectorType *ExtTy = VectorType::get(ResTy, Ty); 
    unsigned RedCost = thisT()->getArithmeticReductionCost( 
        Instruction::Add, ExtTy, false, CostKind); 
    unsigned MulCost = 0; 
    unsigned ExtCost = thisT()->getCastInstrCost( 
        IsUnsigned ? Instruction::ZExt : Instruction::SExt, ExtTy, Ty, 
        TTI::CastContextHint::None, CostKind); 
    if (IsMLA) { 
      MulCost = 
          thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind); 
      ExtCost *= 2; 
    } 
 
    return RedCost + MulCost + ExtCost; 
  } 
 
  unsigned getVectorSplitCost() { return 1; }

  /// @}
};

/// Concrete BasicTTIImpl that can be used if no further customization
/// is needed.
class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> {
  using BaseT = BasicTTIImplBase<BasicTTIImpl>;

  friend class BasicTTIImplBase<BasicTTIImpl>;

  const TargetSubtargetInfo *ST;
  const TargetLoweringBase *TLI;

  const TargetSubtargetInfo *getST() const { return ST; }
  const TargetLoweringBase *getTLI() const { return TLI; }

public:
  explicit BasicTTIImpl(const TargetMachine *TM, const Function &F);
};

} // end namespace llvm

#endif // LLVM_CODEGEN_BASICTTIIMPL_H

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif