aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/include/llvm/Analysis/VectorUtils.h
blob: 82047c3aec3824e0e4196477188f2723013a50b8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===- llvm/Analysis/VectorUtils.h - Vector utilities -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines some vectorizer utilities.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_VECTORUTILS_H
#define LLVM_ANALYSIS_VECTORUTILS_H

#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallVector.h" 
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Support/CheckedArithmetic.h"

namespace llvm {
class TargetLibraryInfo; 

/// Describes the type of Parameters
enum class VFParamKind {
  Vector,            // No semantic information.
  OMP_Linear,        // declare simd linear(i)
  OMP_LinearRef,     // declare simd linear(ref(i))
  OMP_LinearVal,     // declare simd linear(val(i))
  OMP_LinearUVal,    // declare simd linear(uval(i))
  OMP_LinearPos,     // declare simd linear(i:c) uniform(c)
  OMP_LinearValPos,  // declare simd linear(val(i:c)) uniform(c)
  OMP_LinearRefPos,  // declare simd linear(ref(i:c)) uniform(c)
  OMP_LinearUValPos, // declare simd linear(uval(i:c)) uniform(c
  OMP_Uniform,       // declare simd uniform(i)
  GlobalPredicate,   // Global logical predicate that acts on all lanes
                     // of the input and output mask concurrently. For
                     // example, it is implied by the `M` token in the
                     // Vector Function ABI mangled name.
  Unknown
};

/// Describes the type of Instruction Set Architecture
enum class VFISAKind {
  AdvancedSIMD, // AArch64 Advanced SIMD (NEON)
  SVE,          // AArch64 Scalable Vector Extension
  SSE,          // x86 SSE
  AVX,          // x86 AVX
  AVX2,         // x86 AVX2
  AVX512,       // x86 AVX512
  LLVM,         // LLVM internal ISA for functions that are not
  // attached to an existing ABI via name mangling.
  Unknown // Unknown ISA
};

/// Encapsulates information needed to describe a parameter.
///
/// The description of the parameter is not linked directly to
/// OpenMP or any other vector function description. This structure
/// is extendible to handle other paradigms that describe vector
/// functions and their parameters.
struct VFParameter {
  unsigned ParamPos;         // Parameter Position in Scalar Function.
  VFParamKind ParamKind;     // Kind of Parameter.
  int LinearStepOrPos = 0;   // Step or Position of the Parameter.
  Align Alignment = Align(); // Optional alignment in bytes, defaulted to 1.

  // Comparison operator.
  bool operator==(const VFParameter &Other) const {
    return std::tie(ParamPos, ParamKind, LinearStepOrPos, Alignment) ==
           std::tie(Other.ParamPos, Other.ParamKind, Other.LinearStepOrPos,
                    Other.Alignment);
  }
};

/// Contains the information about the kind of vectorization
/// available.
///
/// This object in independent on the paradigm used to
/// represent vector functions. in particular, it is not attached to
/// any target-specific ABI.
struct VFShape {
  unsigned VF;     // Vectorization factor.
  bool IsScalable; // True if the function is a scalable function.
  SmallVector<VFParameter, 8> Parameters; // List of parameter information.
  // Comparison operator.
  bool operator==(const VFShape &Other) const {
    return std::tie(VF, IsScalable, Parameters) ==
           std::tie(Other.VF, Other.IsScalable, Other.Parameters);
  }

  /// Update the parameter in position P.ParamPos to P.
  void updateParam(VFParameter P) {
    assert(P.ParamPos < Parameters.size() && "Invalid parameter position.");
    Parameters[P.ParamPos] = P;
    assert(hasValidParameterList() && "Invalid parameter list");
  }

  // Retrieve the VFShape that can be used to map a (scalar) function to itself,
  // with VF = 1.
  static VFShape getScalarShape(const CallInst &CI) {
    return VFShape::get(CI, ElementCount::getFixed(1), 
                        /*HasGlobalPredicate*/ false); 
  }

  // Retrieve the basic vectorization shape of the function, where all
  // parameters are mapped to VFParamKind::Vector with \p EC
  // lanes. Specifies whether the function has a Global Predicate
  // argument via \p HasGlobalPred.
  static VFShape get(const CallInst &CI, ElementCount EC, bool HasGlobalPred) {
    SmallVector<VFParameter, 8> Parameters;
    for (unsigned I = 0; I < CI.arg_size(); ++I)
      Parameters.push_back(VFParameter({I, VFParamKind::Vector}));
    if (HasGlobalPred)
      Parameters.push_back(
          VFParameter({CI.arg_size(), VFParamKind::GlobalPredicate}));

    return {EC.getKnownMinValue(), EC.isScalable(), Parameters}; 
  }
  /// Sanity check on the Parameters in the VFShape.
  bool hasValidParameterList() const;
};

/// Holds the VFShape for a specific scalar to vector function mapping.
struct VFInfo {
  VFShape Shape;          /// Classification of the vector function.
  std::string ScalarName; /// Scalar Function Name.
  std::string VectorName; /// Vector Function Name associated to this VFInfo.
  VFISAKind ISA;          /// Instruction Set Architecture.

  // Comparison operator.
  bool operator==(const VFInfo &Other) const {
    return std::tie(Shape, ScalarName, VectorName, ISA) ==
           std::tie(Shape, Other.ScalarName, Other.VectorName, Other.ISA);
  }
};

namespace VFABI {
/// LLVM Internal VFABI ISA token for vector functions.
static constexpr char const *_LLVM_ = "_LLVM_";
/// Prefix for internal name redirection for vector function that
/// tells the compiler to scalarize the call using the scalar name
/// of the function. For example, a mangled name like
/// `_ZGV_LLVM_N2v_foo(_LLVM_Scalarize_foo)` would tell the
/// vectorizer to vectorize the scalar call `foo`, and to scalarize
/// it once vectorization is done.
static constexpr char const *_LLVM_Scalarize_ = "_LLVM_Scalarize_";

/// Function to construct a VFInfo out of a mangled names in the
/// following format:
///
/// <VFABI_name>{(<redirection>)}
///
/// where <VFABI_name> is the name of the vector function, mangled according
/// to the rules described in the Vector Function ABI of the target vector
/// extension (or <isa> from now on). The <VFABI_name> is in the following
/// format:
///
/// _ZGV<isa><mask><vlen><parameters>_<scalarname>[(<redirection>)]
///
/// This methods support demangling rules for the following <isa>:
///
/// * AArch64: https://developer.arm.com/docs/101129/latest
///
/// * x86 (libmvec): https://sourceware.org/glibc/wiki/libmvec and
///  https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt
///
/// \param MangledName -> input string in the format
/// _ZGV<isa><mask><vlen><parameters>_<scalarname>[(<redirection>)].
/// \param M -> Module used to retrieve informations about the vector
/// function that are not possible to retrieve from the mangled
/// name. At the moment, this parameter is needed only to retrieve the
/// Vectorization Factor of scalable vector functions from their
/// respective IR declarations.
Optional<VFInfo> tryDemangleForVFABI(StringRef MangledName, const Module &M);

/// This routine mangles the given VectorName according to the LangRef
/// specification for vector-function-abi-variant attribute and is specific to
/// the TLI mappings. It is the responsibility of the caller to make sure that
/// this is only used if all parameters in the vector function are vector type.
/// This returned string holds scalar-to-vector mapping:
///    _ZGV<isa><mask><vlen><vparams>_<scalarname>(<vectorname>)
///
/// where:
///
/// <isa> = "_LLVM_"
/// <mask> = "N". Note: TLI does not support masked interfaces.
/// <vlen> = Number of concurrent lanes, stored in the `VectorizationFactor`
///          field of the `VecDesc` struct.
/// <vparams> = "v", as many as are the numArgs.
/// <scalarname> = the name of the scalar function.
/// <vectorname> = the name of the vector function.
std::string mangleTLIVectorName(StringRef VectorName, StringRef ScalarName,
                                unsigned numArgs, unsigned VF);

/// Retrieve the `VFParamKind` from a string token.
VFParamKind getVFParamKindFromString(const StringRef Token);

// Name of the attribute where the variant mappings are stored.
static constexpr char const *MappingsAttrName = "vector-function-abi-variant";

/// Populates a set of strings representing the Vector Function ABI variants
/// associated to the CallInst CI. If the CI does not contain the
/// vector-function-abi-variant attribute, we return without populating
/// VariantMappings, i.e. callers of getVectorVariantNames need not check for
/// the presence of the attribute (see InjectTLIMappings).
void getVectorVariantNames(const CallInst &CI,
                           SmallVectorImpl<std::string> &VariantMappings);
} // end namespace VFABI

/// The Vector Function Database.
///
/// Helper class used to find the vector functions associated to a
/// scalar CallInst.
class VFDatabase {
  /// The Module of the CallInst CI.
  const Module *M;
  /// The CallInst instance being queried for scalar to vector mappings.
  const CallInst &CI;
  /// List of vector functions descriptors associated to the call
  /// instruction.
  const SmallVector<VFInfo, 8> ScalarToVectorMappings;

  /// Retrieve the scalar-to-vector mappings associated to the rule of
  /// a vector Function ABI.
  static void getVFABIMappings(const CallInst &CI,
                               SmallVectorImpl<VFInfo> &Mappings) {
    if (!CI.getCalledFunction())
      return;

    const StringRef ScalarName = CI.getCalledFunction()->getName();

    SmallVector<std::string, 8> ListOfStrings;
    // The check for the vector-function-abi-variant attribute is done when
    // retrieving the vector variant names here.
    VFABI::getVectorVariantNames(CI, ListOfStrings);
    if (ListOfStrings.empty())
      return;
    for (const auto &MangledName : ListOfStrings) {
      const Optional<VFInfo> Shape =
          VFABI::tryDemangleForVFABI(MangledName, *(CI.getModule()));
      // A match is found via scalar and vector names, and also by
      // ensuring that the variant described in the attribute has a
      // corresponding definition or declaration of the vector
      // function in the Module M.
      if (Shape.hasValue() && (Shape.getValue().ScalarName == ScalarName)) {
        assert(CI.getModule()->getFunction(Shape.getValue().VectorName) &&
               "Vector function is missing.");
        Mappings.push_back(Shape.getValue());
      }
    }
  }

public:
  /// Retrieve all the VFInfo instances associated to the CallInst CI.
  static SmallVector<VFInfo, 8> getMappings(const CallInst &CI) {
    SmallVector<VFInfo, 8> Ret;

    // Get mappings from the Vector Function ABI variants.
    getVFABIMappings(CI, Ret);

    // Other non-VFABI variants should be retrieved here.

    return Ret;
  }

  /// Constructor, requires a CallInst instance.
  VFDatabase(CallInst &CI)
      : M(CI.getModule()), CI(CI),
        ScalarToVectorMappings(VFDatabase::getMappings(CI)) {}
  /// \defgroup VFDatabase query interface.
  ///
  /// @{
  /// Retrieve the Function with VFShape \p Shape.
  Function *getVectorizedFunction(const VFShape &Shape) const {
    if (Shape == VFShape::getScalarShape(CI))
      return CI.getCalledFunction();

    for (const auto &Info : ScalarToVectorMappings)
      if (Info.Shape == Shape)
        return M->getFunction(Info.VectorName);

    return nullptr;
  }
  /// @}
};

template <typename T> class ArrayRef;
class DemandedBits;
class GetElementPtrInst;
template <typename InstTy> class InterleaveGroup;
class IRBuilderBase;
class Loop;
class ScalarEvolution;
class TargetTransformInfo;
class Type;
class Value;

namespace Intrinsic {
typedef unsigned ID;
}

/// A helper function for converting Scalar types to vector types. If 
/// the incoming type is void, we return void. If the EC represents a 
/// scalar, we return the scalar type. 
inline Type *ToVectorTy(Type *Scalar, ElementCount EC) { 
  if (Scalar->isVoidTy() || Scalar->isMetadataTy() || EC.isScalar()) 
    return Scalar;
  return VectorType::get(Scalar, EC); 
}

inline Type *ToVectorTy(Type *Scalar, unsigned VF) { 
  return ToVectorTy(Scalar, ElementCount::getFixed(VF)); 
} 
 
/// Identify if the intrinsic is trivially vectorizable.
/// This method returns true if the intrinsic's argument types are all scalars
/// for the scalar form of the intrinsic and all vectors (or scalars handled by
/// hasVectorInstrinsicScalarOpd) for the vector form of the intrinsic.
bool isTriviallyVectorizable(Intrinsic::ID ID);

/// Identifies if the vector form of the intrinsic has a scalar operand.
bool hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, unsigned ScalarOpdIdx);

/// Returns intrinsic ID for call.
/// For the input call instruction it finds mapping intrinsic and returns
/// its intrinsic ID, in case it does not found it return not_intrinsic.
Intrinsic::ID getVectorIntrinsicIDForCall(const CallInst *CI,
                                          const TargetLibraryInfo *TLI);

/// Find the operand of the GEP that should be checked for consecutive
/// stores. This ignores trailing indices that have no effect on the final
/// pointer.
unsigned getGEPInductionOperand(const GetElementPtrInst *Gep);

/// If the argument is a GEP, then returns the operand identified by
/// getGEPInductionOperand. However, if there is some other non-loop-invariant
/// operand, it returns that instead.
Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp);

/// If a value has only one user that is a CastInst, return it.
Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty);

/// Get the stride of a pointer access in a loop. Looks for symbolic
/// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp);

/// Given a vector and an element number, see if the scalar value is
/// already around as a register, for example if it were inserted then extracted
/// from the vector.
Value *findScalarElement(Value *V, unsigned EltNo);

/// If all non-negative \p Mask elements are the same value, return that value.
/// If all elements are negative (undefined) or \p Mask contains different
/// non-negative values, return -1.
int getSplatIndex(ArrayRef<int> Mask);

/// Get splat value if the input is a splat vector or return nullptr.
/// The value may be extracted from a splat constants vector or from
/// a sequence of instructions that broadcast a single value into a vector.
Value *getSplatValue(const Value *V); 

/// Return true if each element of the vector value \p V is poisoned or equal to
/// every other non-poisoned element. If an index element is specified, either
/// every element of the vector is poisoned or the element at that index is not
/// poisoned and equal to every other non-poisoned element.
/// This may be more powerful than the related getSplatValue() because it is
/// not limited by finding a scalar source value to a splatted vector.
bool isSplatValue(const Value *V, int Index = -1, unsigned Depth = 0);

/// Replace each shuffle mask index with the scaled sequential indices for an
/// equivalent mask of narrowed elements. Mask elements that are less than 0
/// (sentinel values) are repeated in the output mask.
///
/// Example with Scale = 4:
///   <4 x i32> <3, 2, 0, -1> -->
///   <16 x i8> <12, 13, 14, 15, 8, 9, 10, 11, 0, 1, 2, 3, -1, -1, -1, -1>
///
/// This is the reverse process of widening shuffle mask elements, but it always
/// succeeds because the indexes can always be multiplied (scaled up) to map to
/// narrower vector elements.
void narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
                           SmallVectorImpl<int> &ScaledMask);

/// Try to transform a shuffle mask by replacing elements with the scaled index
/// for an equivalent mask of widened elements. If all mask elements that would
/// map to a wider element of the new mask are the same negative number
/// (sentinel value), that element of the new mask is the same value. If any
/// element in a given slice is negative and some other element in that slice is
/// not the same value, return false (partial matches with sentinel values are
/// not allowed).
///
/// Example with Scale = 4:
///   <16 x i8> <12, 13, 14, 15, 8, 9, 10, 11, 0, 1, 2, 3, -1, -1, -1, -1> -->
///   <4 x i32> <3, 2, 0, -1>
///
/// This is the reverse process of narrowing shuffle mask elements if it
/// succeeds. This transform is not always possible because indexes may not
/// divide evenly (scale down) to map to wider vector elements.
bool widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
                          SmallVectorImpl<int> &ScaledMask);

/// Compute a map of integer instructions to their minimum legal type
/// size.
///
/// C semantics force sub-int-sized values (e.g. i8, i16) to be promoted to int
/// type (e.g. i32) whenever arithmetic is performed on them.
///
/// For targets with native i8 or i16 operations, usually InstCombine can shrink
/// the arithmetic type down again. However InstCombine refuses to create
/// illegal types, so for targets without i8 or i16 registers, the lengthening
/// and shrinking remains.
///
/// Most SIMD ISAs (e.g. NEON) however support vectors of i8 or i16 even when
/// their scalar equivalents do not, so during vectorization it is important to
/// remove these lengthens and truncates when deciding the profitability of
/// vectorization.
///
/// This function analyzes the given range of instructions and determines the
/// minimum type size each can be converted to. It attempts to remove or
/// minimize type size changes across each def-use chain, so for example in the
/// following code:
///
///   %1 = load i8, i8*
///   %2 = add i8 %1, 2
///   %3 = load i16, i16*
///   %4 = zext i8 %2 to i32
///   %5 = zext i16 %3 to i32
///   %6 = add i32 %4, %5
///   %7 = trunc i32 %6 to i16
///
/// Instruction %6 must be done at least in i16, so computeMinimumValueSizes
/// will return: {%1: 16, %2: 16, %3: 16, %4: 16, %5: 16, %6: 16, %7: 16}.
///
/// If the optional TargetTransformInfo is provided, this function tries harder
/// to do less work by only looking at illegal types.
MapVector<Instruction*, uint64_t>
computeMinimumValueSizes(ArrayRef<BasicBlock*> Blocks,
                         DemandedBits &DB,
                         const TargetTransformInfo *TTI=nullptr);

/// Compute the union of two access-group lists.
///
/// If the list contains just one access group, it is returned directly. If the
/// list is empty, returns nullptr.
MDNode *uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2);

/// Compute the access-group list of access groups that @p Inst1 and @p Inst2
/// are both in. If either instruction does not access memory at all, it is
/// considered to be in every list.
///
/// If the list contains just one access group, it is returned directly. If the
/// list is empty, returns nullptr.
MDNode *intersectAccessGroups(const Instruction *Inst1,
                              const Instruction *Inst2);

/// Specifically, let Kinds = [MD_tbaa, MD_alias_scope, MD_noalias, MD_fpmath,
/// MD_nontemporal, MD_access_group].
/// For K in Kinds, we get the MDNode for K from each of the
/// elements of VL, compute their "intersection" (i.e., the most generic
/// metadata value that covers all of the individual values), and set I's
/// metadata for M equal to the intersection value.
///
/// This function always sets a (possibly null) value for each K in Kinds.
Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL);

/// Create a mask that filters the members of an interleave group where there
/// are gaps.
///
/// For example, the mask for \p Group with interleave-factor 3
/// and \p VF 4, that has only its first member present is:
///
///   <1,0,0,1,0,0,1,0,0,1,0,0>
///
/// Note: The result is a mask of 0's and 1's, as opposed to the other
/// create[*]Mask() utilities which create a shuffle mask (mask that
/// consists of indices).
Constant *createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
                               const InterleaveGroup<Instruction> &Group);

/// Create a mask with replicated elements.
///
/// This function creates a shuffle mask for replicating each of the \p VF
/// elements in a vector \p ReplicationFactor times. It can be used to
/// transform a mask of \p VF elements into a mask of
/// \p VF * \p ReplicationFactor elements used by a predicated
/// interleaved-group of loads/stores whose Interleaved-factor ==
/// \p ReplicationFactor.
///
/// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is:
///
///   <0,0,0,1,1,1,2,2,2,3,3,3>
llvm::SmallVector<int, 16> createReplicatedMask(unsigned ReplicationFactor,
                                                unsigned VF);

/// Create an interleave shuffle mask.
///
/// This function creates a shuffle mask for interleaving \p NumVecs vectors of
/// vectorization factor \p VF into a single wide vector. The mask is of the
/// form:
///
///   <0, VF, VF * 2, ..., VF * (NumVecs - 1), 1, VF + 1, VF * 2 + 1, ...>
///
/// For example, the mask for VF = 4 and NumVecs = 2 is:
///
///   <0, 4, 1, 5, 2, 6, 3, 7>.
llvm::SmallVector<int, 16> createInterleaveMask(unsigned VF, unsigned NumVecs);

/// Create a stride shuffle mask.
///
/// This function creates a shuffle mask whose elements begin at \p Start and
/// are incremented by \p Stride. The mask can be used to deinterleave an
/// interleaved vector into separate vectors of vectorization factor \p VF. The
/// mask is of the form:
///
///   <Start, Start + Stride, ..., Start + Stride * (VF - 1)>
///
/// For example, the mask for Start = 0, Stride = 2, and VF = 4 is:
///
///   <0, 2, 4, 6>
llvm::SmallVector<int, 16> createStrideMask(unsigned Start, unsigned Stride,
                                            unsigned VF);

/// Create a sequential shuffle mask.
///
/// This function creates shuffle mask whose elements are sequential and begin
/// at \p Start.  The mask contains \p NumInts integers and is padded with \p
/// NumUndefs undef values. The mask is of the form:
///
///   <Start, Start + 1, ... Start + NumInts - 1, undef_1, ... undef_NumUndefs>
///
/// For example, the mask for Start = 0, NumInsts = 4, and NumUndefs = 4 is:
///
///   <0, 1, 2, 3, undef, undef, undef, undef>
llvm::SmallVector<int, 16>
createSequentialMask(unsigned Start, unsigned NumInts, unsigned NumUndefs);

/// Concatenate a list of vectors.
///
/// This function generates code that concatenate the vectors in \p Vecs into a
/// single large vector. The number of vectors should be greater than one, and
/// their element types should be the same. The number of elements in the
/// vectors should also be the same; however, if the last vector has fewer
/// elements, it will be padded with undefs.
Value *concatenateVectors(IRBuilderBase &Builder, ArrayRef<Value *> Vecs);

/// Given a mask vector of i1, Return true if all of the elements of this 
/// predicate mask are known to be false or undef.  That is, return true if all 
/// lanes can be assumed inactive. 
bool maskIsAllZeroOrUndef(Value *Mask);

/// Given a mask vector of i1, Return true if all of the elements of this 
/// predicate mask are known to be true or undef.  That is, return true if all 
/// lanes can be assumed active. 
bool maskIsAllOneOrUndef(Value *Mask);

/// Given a mask vector of the form <Y x i1>, return an APInt (of bitwidth Y)
/// for each lane which may be active.
APInt possiblyDemandedEltsInMask(Value *Mask);
 
/// The group of interleaved loads/stores sharing the same stride and
/// close to each other.
///
/// Each member in this group has an index starting from 0, and the largest
/// index should be less than interleaved factor, which is equal to the absolute
/// value of the access's stride.
///
/// E.g. An interleaved load group of factor 4:
///        for (unsigned i = 0; i < 1024; i+=4) {
///          a = A[i];                           // Member of index 0
///          b = A[i+1];                         // Member of index 1
///          d = A[i+3];                         // Member of index 3
///          ...
///        }
///
///      An interleaved store group of factor 4:
///        for (unsigned i = 0; i < 1024; i+=4) {
///          ...
///          A[i]   = a;                         // Member of index 0
///          A[i+1] = b;                         // Member of index 1
///          A[i+2] = c;                         // Member of index 2
///          A[i+3] = d;                         // Member of index 3
///        }
///
/// Note: the interleaved load group could have gaps (missing members), but
/// the interleaved store group doesn't allow gaps.
template <typename InstTy> class InterleaveGroup {
public:
  InterleaveGroup(uint32_t Factor, bool Reverse, Align Alignment)
      : Factor(Factor), Reverse(Reverse), Alignment(Alignment),
        InsertPos(nullptr) {}

  InterleaveGroup(InstTy *Instr, int32_t Stride, Align Alignment)
      : Alignment(Alignment), InsertPos(Instr) {
    Factor = std::abs(Stride);
    assert(Factor > 1 && "Invalid interleave factor");

    Reverse = Stride < 0;
    Members[0] = Instr;
  }

  bool isReverse() const { return Reverse; }
  uint32_t getFactor() const { return Factor; }
  LLVM_ATTRIBUTE_DEPRECATED(uint32_t getAlignment() const,
                            "Use getAlign instead.") {
    return Alignment.value();
  }
  Align getAlign() const { return Alignment; }
  uint32_t getNumMembers() const { return Members.size(); }

  /// Try to insert a new member \p Instr with index \p Index and
  /// alignment \p NewAlign. The index is related to the leader and it could be
  /// negative if it is the new leader.
  ///
  /// \returns false if the instruction doesn't belong to the group.
  bool insertMember(InstTy *Instr, int32_t Index, Align NewAlign) {
    // Make sure the key fits in an int32_t.
    Optional<int32_t> MaybeKey = checkedAdd(Index, SmallestKey);
    if (!MaybeKey)
      return false;
    int32_t Key = *MaybeKey;

    // Skip if the key is used for either the tombstone or empty special values. 
    if (DenseMapInfo<int32_t>::getTombstoneKey() == Key || 
        DenseMapInfo<int32_t>::getEmptyKey() == Key) 
      return false; 
 
    // Skip if there is already a member with the same index.
    if (Members.find(Key) != Members.end())
      return false;

    if (Key > LargestKey) {
      // The largest index is always less than the interleave factor.
      if (Index >= static_cast<int32_t>(Factor))
        return false;

      LargestKey = Key;
    } else if (Key < SmallestKey) {

      // Make sure the largest index fits in an int32_t.
      Optional<int32_t> MaybeLargestIndex = checkedSub(LargestKey, Key);
      if (!MaybeLargestIndex)
        return false;

      // The largest index is always less than the interleave factor.
      if (*MaybeLargestIndex >= static_cast<int64_t>(Factor))
        return false;

      SmallestKey = Key;
    }

    // It's always safe to select the minimum alignment.
    Alignment = std::min(Alignment, NewAlign);
    Members[Key] = Instr;
    return true;
  }

  /// Get the member with the given index \p Index
  ///
  /// \returns nullptr if contains no such member.
  InstTy *getMember(uint32_t Index) const {
    int32_t Key = SmallestKey + Index;
    return Members.lookup(Key); 
  }

  /// Get the index for the given member. Unlike the key in the member
  /// map, the index starts from 0.
  uint32_t getIndex(const InstTy *Instr) const {
    for (auto I : Members) {
      if (I.second == Instr)
        return I.first - SmallestKey;
    }

    llvm_unreachable("InterleaveGroup contains no such member");
  }

  InstTy *getInsertPos() const { return InsertPos; }
  void setInsertPos(InstTy *Inst) { InsertPos = Inst; }

  /// Add metadata (e.g. alias info) from the instructions in this group to \p
  /// NewInst.
  ///
  /// FIXME: this function currently does not add noalias metadata a'la
  /// addNewMedata.  To do that we need to compute the intersection of the
  /// noalias info from all members.
  void addMetadata(InstTy *NewInst) const;

  /// Returns true if this Group requires a scalar iteration to handle gaps.
  bool requiresScalarEpilogue() const {
    // If the last member of the Group exists, then a scalar epilog is not
    // needed for this group.
    if (getMember(getFactor() - 1))
      return false;

    // We have a group with gaps. It therefore cannot be a group of stores,
    // and it can't be a reversed access, because such groups get invalidated.
    assert(!getMember(0)->mayWriteToMemory() &&
           "Group should have been invalidated");
    assert(!isReverse() && "Group should have been invalidated");

    // This is a group of loads, with gaps, and without a last-member
    return true;
  }

private:
  uint32_t Factor; // Interleave Factor.
  bool Reverse;
  Align Alignment;
  DenseMap<int32_t, InstTy *> Members;
  int32_t SmallestKey = 0;
  int32_t LargestKey = 0;

  // To avoid breaking dependences, vectorized instructions of an interleave
  // group should be inserted at either the first load or the last store in
  // program order.
  //
  // E.g. %even = load i32             // Insert Position
  //      %add = add i32 %even         // Use of %even
  //      %odd = load i32
  //
  //      store i32 %even
  //      %odd = add i32               // Def of %odd
  //      store i32 %odd               // Insert Position
  InstTy *InsertPos;
};

/// Drive the analysis of interleaved memory accesses in the loop.
///
/// Use this class to analyze interleaved accesses only when we can vectorize
/// a loop. Otherwise it's meaningless to do analysis as the vectorization
/// on interleaved accesses is unsafe.
///
/// The analysis collects interleave groups and records the relationships
/// between the member and the group in a map.
class InterleavedAccessInfo {
public:
  InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L,
                        DominatorTree *DT, LoopInfo *LI,
                        const LoopAccessInfo *LAI)
      : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(LAI) {}

  ~InterleavedAccessInfo() { invalidateGroups(); }

  /// Analyze the interleaved accesses and collect them in interleave
  /// groups. Substitute symbolic strides using \p Strides.
  /// Consider also predicated loads/stores in the analysis if
  /// \p EnableMaskedInterleavedGroup is true.
  void analyzeInterleaving(bool EnableMaskedInterleavedGroup);

  /// Invalidate groups, e.g., in case all blocks in loop will be predicated
  /// contrary to original assumption. Although we currently prevent group
  /// formation for predicated accesses, we may be able to relax this limitation
  /// in the future once we handle more complicated blocks. Returns true if any
  /// groups were invalidated.
  bool invalidateGroups() {
    if (InterleaveGroups.empty()) {
      assert(
          !RequiresScalarEpilogue &&
          "RequiresScalarEpilog should not be set without interleave groups");
      return false;
    }

    InterleaveGroupMap.clear();
    for (auto *Ptr : InterleaveGroups)
      delete Ptr;
    InterleaveGroups.clear();
    RequiresScalarEpilogue = false;
    return true;
  }

  /// Check if \p Instr belongs to any interleave group.
  bool isInterleaved(Instruction *Instr) const {
    return InterleaveGroupMap.find(Instr) != InterleaveGroupMap.end();
  }

  /// Get the interleave group that \p Instr belongs to.
  ///
  /// \returns nullptr if doesn't have such group.
  InterleaveGroup<Instruction> *
  getInterleaveGroup(const Instruction *Instr) const {
    return InterleaveGroupMap.lookup(Instr); 
  }

  iterator_range<SmallPtrSetIterator<llvm::InterleaveGroup<Instruction> *>>
  getInterleaveGroups() {
    return make_range(InterleaveGroups.begin(), InterleaveGroups.end());
  }

  /// Returns true if an interleaved group that may access memory
  /// out-of-bounds requires a scalar epilogue iteration for correctness.
  bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; }

  /// Invalidate groups that require a scalar epilogue (due to gaps). This can
  /// happen when optimizing for size forbids a scalar epilogue, and the gap
  /// cannot be filtered by masking the load/store.
  void invalidateGroupsRequiringScalarEpilogue();

private:
  /// A wrapper around ScalarEvolution, used to add runtime SCEV checks.
  /// Simplifies SCEV expressions in the context of existing SCEV assumptions.
  /// The interleaved access analysis can also add new predicates (for example
  /// by versioning strides of pointers).
  PredicatedScalarEvolution &PSE;

  Loop *TheLoop;
  DominatorTree *DT;
  LoopInfo *LI;
  const LoopAccessInfo *LAI;

  /// True if the loop may contain non-reversed interleaved groups with
  /// out-of-bounds accesses. We ensure we don't speculatively access memory
  /// out-of-bounds by executing at least one scalar epilogue iteration.
  bool RequiresScalarEpilogue = false;

  /// Holds the relationships between the members and the interleave group.
  DenseMap<Instruction *, InterleaveGroup<Instruction> *> InterleaveGroupMap;

  SmallPtrSet<InterleaveGroup<Instruction> *, 4> InterleaveGroups;

  /// Holds dependences among the memory accesses in the loop. It maps a source
  /// access to a set of dependent sink accesses.
  DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences;

  /// The descriptor for a strided memory access.
  struct StrideDescriptor {
    StrideDescriptor() = default;
    StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size,
                     Align Alignment)
        : Stride(Stride), Scev(Scev), Size(Size), Alignment(Alignment) {}

    // The access's stride. It is negative for a reverse access.
    int64_t Stride = 0;

    // The scalar expression of this access.
    const SCEV *Scev = nullptr;

    // The size of the memory object.
    uint64_t Size = 0;

    // The alignment of this access.
    Align Alignment;
  };

  /// A type for holding instructions and their stride descriptors.
  using StrideEntry = std::pair<Instruction *, StrideDescriptor>;

  /// Create a new interleave group with the given instruction \p Instr,
  /// stride \p Stride and alignment \p Align.
  ///
  /// \returns the newly created interleave group.
  InterleaveGroup<Instruction> *
  createInterleaveGroup(Instruction *Instr, int Stride, Align Alignment) {
    assert(!InterleaveGroupMap.count(Instr) &&
           "Already in an interleaved access group");
    InterleaveGroupMap[Instr] =
        new InterleaveGroup<Instruction>(Instr, Stride, Alignment);
    InterleaveGroups.insert(InterleaveGroupMap[Instr]);
    return InterleaveGroupMap[Instr];
  }

  /// Release the group and remove all the relationships.
  void releaseGroup(InterleaveGroup<Instruction> *Group) {
    for (unsigned i = 0; i < Group->getFactor(); i++)
      if (Instruction *Member = Group->getMember(i))
        InterleaveGroupMap.erase(Member);

    InterleaveGroups.erase(Group);
    delete Group;
  }

  /// Collect all the accesses with a constant stride in program order.
  void collectConstStrideAccesses(
      MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
      const ValueToValueMap &Strides);

  /// Returns true if \p Stride is allowed in an interleaved group.
  static bool isStrided(int Stride);

  /// Returns true if \p BB is a predicated block.
  bool isPredicated(BasicBlock *BB) const {
    return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
  }

  /// Returns true if LoopAccessInfo can be used for dependence queries.
  bool areDependencesValid() const {
    return LAI && LAI->getDepChecker().getDependences();
  }

  /// Returns true if memory accesses \p A and \p B can be reordered, if
  /// necessary, when constructing interleaved groups.
  ///
  /// \p A must precede \p B in program order. We return false if reordering is
  /// not necessary or is prevented because \p A and \p B may be dependent.
  bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A,
                                                 StrideEntry *B) const {
    // Code motion for interleaved accesses can potentially hoist strided loads
    // and sink strided stores. The code below checks the legality of the
    // following two conditions:
    //
    // 1. Potentially moving a strided load (B) before any store (A) that
    //    precedes B, or
    //
    // 2. Potentially moving a strided store (A) after any load or store (B)
    //    that A precedes.
    //
    // It's legal to reorder A and B if we know there isn't a dependence from A
    // to B. Note that this determination is conservative since some
    // dependences could potentially be reordered safely.

    // A is potentially the source of a dependence.
    auto *Src = A->first;
    auto SrcDes = A->second;

    // B is potentially the sink of a dependence.
    auto *Sink = B->first;
    auto SinkDes = B->second;

    // Code motion for interleaved accesses can't violate WAR dependences.
    // Thus, reordering is legal if the source isn't a write.
    if (!Src->mayWriteToMemory())
      return true;

    // At least one of the accesses must be strided.
    if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride))
      return true;

    // If dependence information is not available from LoopAccessInfo,
    // conservatively assume the instructions can't be reordered.
    if (!areDependencesValid())
      return false;

    // If we know there is a dependence from source to sink, assume the
    // instructions can't be reordered. Otherwise, reordering is legal.
    return Dependences.find(Src) == Dependences.end() ||
           !Dependences.lookup(Src).count(Sink);
  }

  /// Collect the dependences from LoopAccessInfo.
  ///
  /// We process the dependences once during the interleaved access analysis to
  /// enable constant-time dependence queries.
  void collectDependences() {
    if (!areDependencesValid())
      return;
    auto *Deps = LAI->getDepChecker().getDependences();
    for (auto Dep : *Deps)
      Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI));
  }
};

} // llvm namespace

#endif

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif