aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/include/llvm/Analysis/SparsePropagation.h
blob: 6f35675503ff8d56fd3fd4282877459d9f666c62 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===- SparsePropagation.h - Sparse Conditional Property Propagation ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements an abstract sparse conditional propagation algorithm,
// modeled after SCCP, but with a customizable lattice function.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_SPARSEPROPAGATION_H
#define LLVM_ANALYSIS_SPARSEPROPAGATION_H

#include "llvm/IR/Instructions.h"
#include "llvm/Support/Debug.h"
#include <set>

#define DEBUG_TYPE "sparseprop"

namespace llvm {

/// A template for translating between LLVM Values and LatticeKeys. Clients must
/// provide a specialization of LatticeKeyInfo for their LatticeKey type.
template <class LatticeKey> struct LatticeKeyInfo {
  // static inline Value *getValueFromLatticeKey(LatticeKey Key);
  // static inline LatticeKey getLatticeKeyFromValue(Value *V);
};

template <class LatticeKey, class LatticeVal,
          class KeyInfo = LatticeKeyInfo<LatticeKey>>
class SparseSolver;

/// AbstractLatticeFunction - This class is implemented by the dataflow instance
/// to specify what the lattice values are and how they handle merges etc.  This
/// gives the client the power to compute lattice values from instructions,
/// constants, etc.  The current requirement is that lattice values must be
/// copyable.  At the moment, nothing tries to avoid copying.  Additionally,
/// lattice keys must be able to be used as keys of a mapping data structure.
/// Internally, the generic solver currently uses a DenseMap to map lattice keys
/// to lattice values.  If the lattice key is a non-standard type, a
/// specialization of DenseMapInfo must be provided.
template <class LatticeKey, class LatticeVal> class AbstractLatticeFunction {
private:
  LatticeVal UndefVal, OverdefinedVal, UntrackedVal;

public:
  AbstractLatticeFunction(LatticeVal undefVal, LatticeVal overdefinedVal,
                          LatticeVal untrackedVal) {
    UndefVal = undefVal;
    OverdefinedVal = overdefinedVal;
    UntrackedVal = untrackedVal;
  }

  virtual ~AbstractLatticeFunction() = default;

  LatticeVal getUndefVal()       const { return UndefVal; }
  LatticeVal getOverdefinedVal() const { return OverdefinedVal; }
  LatticeVal getUntrackedVal()   const { return UntrackedVal; }

  /// IsUntrackedValue - If the specified LatticeKey is obviously uninteresting
  /// to the analysis (i.e., it would always return UntrackedVal), this
  /// function can return true to avoid pointless work.
  virtual bool IsUntrackedValue(LatticeKey Key) { return false; }

  /// ComputeLatticeVal - Compute and return a LatticeVal corresponding to the
  /// given LatticeKey.
  virtual LatticeVal ComputeLatticeVal(LatticeKey Key) {
    return getOverdefinedVal();
  }

  /// IsSpecialCasedPHI - Given a PHI node, determine whether this PHI node is
  /// one that the we want to handle through ComputeInstructionState.
  virtual bool IsSpecialCasedPHI(PHINode *PN) { return false; }

  /// MergeValues - Compute and return the merge of the two specified lattice
  /// values.  Merging should only move one direction down the lattice to
  /// guarantee convergence (toward overdefined).
  virtual LatticeVal MergeValues(LatticeVal X, LatticeVal Y) {
    return getOverdefinedVal(); // always safe, never useful.
  }

  /// ComputeInstructionState - Compute the LatticeKeys that change as a result
  /// of executing instruction \p I. Their associated LatticeVals are store in
  /// \p ChangedValues.
  virtual void
  ComputeInstructionState(Instruction &I,
                          DenseMap<LatticeKey, LatticeVal> &ChangedValues,
                          SparseSolver<LatticeKey, LatticeVal> &SS) = 0;

  /// PrintLatticeVal - Render the given LatticeVal to the specified stream.
  virtual void PrintLatticeVal(LatticeVal LV, raw_ostream &OS);

  /// PrintLatticeKey - Render the given LatticeKey to the specified stream.
  virtual void PrintLatticeKey(LatticeKey Key, raw_ostream &OS);

  /// GetValueFromLatticeVal - If the given LatticeVal is representable as an
  /// LLVM value, return it; otherwise, return nullptr. If a type is given, the
  /// returned value must have the same type. This function is used by the
  /// generic solver in attempting to resolve branch and switch conditions.
  virtual Value *GetValueFromLatticeVal(LatticeVal LV, Type *Ty = nullptr) {
    return nullptr;
  }
};

/// SparseSolver - This class is a general purpose solver for Sparse Conditional
/// Propagation with a programmable lattice function.
template <class LatticeKey, class LatticeVal, class KeyInfo>
class SparseSolver {

  /// LatticeFunc - This is the object that knows the lattice and how to
  /// compute transfer functions.
  AbstractLatticeFunction<LatticeKey, LatticeVal> *LatticeFunc;

  /// ValueState - Holds the LatticeVals associated with LatticeKeys.
  DenseMap<LatticeKey, LatticeVal> ValueState;

  /// BBExecutable - Holds the basic blocks that are executable.
  SmallPtrSet<BasicBlock *, 16> BBExecutable;

  /// ValueWorkList - Holds values that should be processed.
  SmallVector<Value *, 64> ValueWorkList;

  /// BBWorkList - Holds basic blocks that should be processed.
  SmallVector<BasicBlock *, 64> BBWorkList;

  using Edge = std::pair<BasicBlock *, BasicBlock *>;

  /// KnownFeasibleEdges - Entries in this set are edges which have already had
  /// PHI nodes retriggered.
  std::set<Edge> KnownFeasibleEdges;

public:
  explicit SparseSolver(
      AbstractLatticeFunction<LatticeKey, LatticeVal> *Lattice)
      : LatticeFunc(Lattice) {}
  SparseSolver(const SparseSolver &) = delete;
  SparseSolver &operator=(const SparseSolver &) = delete;

  /// Solve - Solve for constants and executable blocks.
  void Solve();

  void Print(raw_ostream &OS) const;

  /// getExistingValueState - Return the LatticeVal object corresponding to the
  /// given value from the ValueState map. If the value is not in the map,
  /// UntrackedVal is returned, unlike the getValueState method.
  LatticeVal getExistingValueState(LatticeKey Key) const {
    auto I = ValueState.find(Key);
    return I != ValueState.end() ? I->second : LatticeFunc->getUntrackedVal();
  }

  /// getValueState - Return the LatticeVal object corresponding to the given
  /// value from the ValueState map. If the value is not in the map, its state
  /// is initialized.
  LatticeVal getValueState(LatticeKey Key);

  /// isEdgeFeasible - Return true if the control flow edge from the 'From'
  /// basic block to the 'To' basic block is currently feasible.  If
  /// AggressiveUndef is true, then this treats values with unknown lattice
  /// values as undefined.  This is generally only useful when solving the
  /// lattice, not when querying it.
  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To,
                      bool AggressiveUndef = false);

  /// isBlockExecutable - Return true if there are any known feasible
  /// edges into the basic block.  This is generally only useful when
  /// querying the lattice.
  bool isBlockExecutable(BasicBlock *BB) const {
    return BBExecutable.count(BB);
  }

  /// MarkBlockExecutable - This method can be used by clients to mark all of
  /// the blocks that are known to be intrinsically live in the processed unit.
  void MarkBlockExecutable(BasicBlock *BB);

private:
  /// UpdateState - When the state of some LatticeKey is potentially updated to
  /// the given LatticeVal, this function notices and adds the LLVM value
  /// corresponding the key to the work list, if needed.
  void UpdateState(LatticeKey Key, LatticeVal LV);

  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
  /// work list if it is not already executable.
  void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);

  /// getFeasibleSuccessors - Return a vector of booleans to indicate which
  /// successors are reachable from a given terminator instruction.
  void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs,
                             bool AggressiveUndef);

  void visitInst(Instruction &I);
  void visitPHINode(PHINode &I);
  void visitTerminator(Instruction &TI);
};

//===----------------------------------------------------------------------===//
//                  AbstractLatticeFunction Implementation
//===----------------------------------------------------------------------===//

template <class LatticeKey, class LatticeVal>
void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeVal(
    LatticeVal V, raw_ostream &OS) {
  if (V == UndefVal)
    OS << "undefined";
  else if (V == OverdefinedVal)
    OS << "overdefined";
  else if (V == UntrackedVal)
    OS << "untracked";
  else
    OS << "unknown lattice value";
}

template <class LatticeKey, class LatticeVal>
void AbstractLatticeFunction<LatticeKey, LatticeVal>::PrintLatticeKey(
    LatticeKey Key, raw_ostream &OS) {
  OS << "unknown lattice key";
}

//===----------------------------------------------------------------------===//
//                          SparseSolver Implementation
//===----------------------------------------------------------------------===//

template <class LatticeKey, class LatticeVal, class KeyInfo>
LatticeVal
SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getValueState(LatticeKey Key) {
  auto I = ValueState.find(Key);
  if (I != ValueState.end())
    return I->second; // Common case, in the map

  if (LatticeFunc->IsUntrackedValue(Key))
    return LatticeFunc->getUntrackedVal();
  LatticeVal LV = LatticeFunc->ComputeLatticeVal(Key);

  // If this value is untracked, don't add it to the map.
  if (LV == LatticeFunc->getUntrackedVal())
    return LV;
  return ValueState[Key] = std::move(LV);
}

template <class LatticeKey, class LatticeVal, class KeyInfo>
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::UpdateState(LatticeKey Key,
                                                                LatticeVal LV) {
  auto I = ValueState.find(Key);
  if (I != ValueState.end() && I->second == LV)
    return; // No change.

  // Update the state of the given LatticeKey and add its corresponding LLVM
  // value to the work list.
  ValueState[Key] = std::move(LV);
  if (Value *V = KeyInfo::getValueFromLatticeKey(Key))
    ValueWorkList.push_back(V);
}

template <class LatticeKey, class LatticeVal, class KeyInfo>
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::MarkBlockExecutable(
    BasicBlock *BB) {
  if (!BBExecutable.insert(BB).second)
    return;
  LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n");
  BBWorkList.push_back(BB); // Add the block to the work list!
}

template <class LatticeKey, class LatticeVal, class KeyInfo>
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::markEdgeExecutable(
    BasicBlock *Source, BasicBlock *Dest) {
  if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
    return; // This edge is already known to be executable!

  LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
                    << " -> " << Dest->getName() << "\n");

  if (BBExecutable.count(Dest)) {
    // The destination is already executable, but we just made an edge
    // feasible that wasn't before.  Revisit the PHI nodes in the block
    // because they have potentially new operands.
    for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
      visitPHINode(*cast<PHINode>(I));
  } else {
    MarkBlockExecutable(Dest);
  }
}

template <class LatticeKey, class LatticeVal, class KeyInfo>
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::getFeasibleSuccessors(
    Instruction &TI, SmallVectorImpl<bool> &Succs, bool AggressiveUndef) {
  Succs.resize(TI.getNumSuccessors());
  if (TI.getNumSuccessors() == 0)
    return;

  if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
    if (BI->isUnconditional()) {
      Succs[0] = true;
      return;
    }

    LatticeVal BCValue;
    if (AggressiveUndef)
      BCValue =
          getValueState(KeyInfo::getLatticeKeyFromValue(BI->getCondition()));
    else
      BCValue = getExistingValueState(
          KeyInfo::getLatticeKeyFromValue(BI->getCondition()));

    if (BCValue == LatticeFunc->getOverdefinedVal() ||
        BCValue == LatticeFunc->getUntrackedVal()) {
      // Overdefined condition variables can branch either way.
      Succs[0] = Succs[1] = true;
      return;
    }

    // If undefined, neither is feasible yet.
    if (BCValue == LatticeFunc->getUndefVal())
      return;

    Constant *C =
        dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
            std::move(BCValue), BI->getCondition()->getType()));
    if (!C || !isa<ConstantInt>(C)) {
      // Non-constant values can go either way.
      Succs[0] = Succs[1] = true;
      return;
    }

    // Constant condition variables mean the branch can only go a single way
    Succs[C->isNullValue()] = true;
    return;
  }

  if (TI.isExceptionalTerminator() ||
      TI.isIndirectTerminator()) {
    Succs.assign(Succs.size(), true);
    return;
  }

  SwitchInst &SI = cast<SwitchInst>(TI);
  LatticeVal SCValue;
  if (AggressiveUndef)
    SCValue = getValueState(KeyInfo::getLatticeKeyFromValue(SI.getCondition()));
  else
    SCValue = getExistingValueState(
        KeyInfo::getLatticeKeyFromValue(SI.getCondition()));

  if (SCValue == LatticeFunc->getOverdefinedVal() ||
      SCValue == LatticeFunc->getUntrackedVal()) {
    // All destinations are executable!
    Succs.assign(TI.getNumSuccessors(), true);
    return;
  }

  // If undefined, neither is feasible yet.
  if (SCValue == LatticeFunc->getUndefVal())
    return;

  Constant *C = dyn_cast_or_null<Constant>(LatticeFunc->GetValueFromLatticeVal(
      std::move(SCValue), SI.getCondition()->getType()));
  if (!C || !isa<ConstantInt>(C)) {
    // All destinations are executable!
    Succs.assign(TI.getNumSuccessors(), true);
    return;
  }
  SwitchInst::CaseHandle Case = *SI.findCaseValue(cast<ConstantInt>(C));
  Succs[Case.getSuccessorIndex()] = true;
}

template <class LatticeKey, class LatticeVal, class KeyInfo>
bool SparseSolver<LatticeKey, LatticeVal, KeyInfo>::isEdgeFeasible(
    BasicBlock *From, BasicBlock *To, bool AggressiveUndef) {
  SmallVector<bool, 16> SuccFeasible;
  Instruction *TI = From->getTerminator();
  getFeasibleSuccessors(*TI, SuccFeasible, AggressiveUndef);

  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    if (TI->getSuccessor(i) == To && SuccFeasible[i])
      return true;

  return false;
}

template <class LatticeKey, class LatticeVal, class KeyInfo>
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitTerminator(
    Instruction &TI) {
  SmallVector<bool, 16> SuccFeasible;
  getFeasibleSuccessors(TI, SuccFeasible, true);

  BasicBlock *BB = TI.getParent();

  // Mark all feasible successors executable...
  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
    if (SuccFeasible[i])
      markEdgeExecutable(BB, TI.getSuccessor(i));
}

template <class LatticeKey, class LatticeVal, class KeyInfo>
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitPHINode(PHINode &PN) {
  // The lattice function may store more information on a PHINode than could be
  // computed from its incoming values.  For example, SSI form stores its sigma
  // functions as PHINodes with a single incoming value.
  if (LatticeFunc->IsSpecialCasedPHI(&PN)) {
    DenseMap<LatticeKey, LatticeVal> ChangedValues;
    LatticeFunc->ComputeInstructionState(PN, ChangedValues, *this);
    for (auto &ChangedValue : ChangedValues)
      if (ChangedValue.second != LatticeFunc->getUntrackedVal())
        UpdateState(std::move(ChangedValue.first),
                    std::move(ChangedValue.second));
    return;
  }

  LatticeKey Key = KeyInfo::getLatticeKeyFromValue(&PN);
  LatticeVal PNIV = getValueState(Key);
  LatticeVal Overdefined = LatticeFunc->getOverdefinedVal();

  // If this value is already overdefined (common) just return.
  if (PNIV == Overdefined || PNIV == LatticeFunc->getUntrackedVal())
    return; // Quick exit

  // Super-extra-high-degree PHI nodes are unlikely to ever be interesting,
  // and slow us down a lot.  Just mark them overdefined.
  if (PN.getNumIncomingValues() > 64) {
    UpdateState(Key, Overdefined);
    return;
  }

  // Look at all of the executable operands of the PHI node.  If any of them
  // are overdefined, the PHI becomes overdefined as well.  Otherwise, ask the
  // transfer function to give us the merge of the incoming values.
  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
    // If the edge is not yet known to be feasible, it doesn't impact the PHI.
    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent(), true))
      continue;

    // Merge in this value.
    LatticeVal OpVal =
        getValueState(KeyInfo::getLatticeKeyFromValue(PN.getIncomingValue(i)));
    if (OpVal != PNIV)
      PNIV = LatticeFunc->MergeValues(PNIV, OpVal);

    if (PNIV == Overdefined)
      break; // Rest of input values don't matter.
  }

  // Update the PHI with the compute value, which is the merge of the inputs.
  UpdateState(Key, PNIV);
}

template <class LatticeKey, class LatticeVal, class KeyInfo>
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::visitInst(Instruction &I) {
  // PHIs are handled by the propagation logic, they are never passed into the
  // transfer functions.
  if (PHINode *PN = dyn_cast<PHINode>(&I))
    return visitPHINode(*PN);

  // Otherwise, ask the transfer function what the result is.  If this is
  // something that we care about, remember it.
  DenseMap<LatticeKey, LatticeVal> ChangedValues;
  LatticeFunc->ComputeInstructionState(I, ChangedValues, *this);
  for (auto &ChangedValue : ChangedValues)
    if (ChangedValue.second != LatticeFunc->getUntrackedVal())
      UpdateState(ChangedValue.first, ChangedValue.second);

  if (I.isTerminator())
    visitTerminator(I);
}

template <class LatticeKey, class LatticeVal, class KeyInfo>
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Solve() {
  // Process the work lists until they are empty!
  while (!BBWorkList.empty() || !ValueWorkList.empty()) {
    // Process the value work list.
    while (!ValueWorkList.empty()) {
      Value *V = ValueWorkList.back();
      ValueWorkList.pop_back();

      LLVM_DEBUG(dbgs() << "\nPopped off V-WL: " << *V << "\n");

      // "V" got into the work list because it made a transition. See if any
      // users are both live and in need of updating.
      for (User *U : V->users())
        if (Instruction *Inst = dyn_cast<Instruction>(U))
          if (BBExecutable.count(Inst->getParent())) // Inst is executable?
            visitInst(*Inst);
    }

    // Process the basic block work list.
    while (!BBWorkList.empty()) {
      BasicBlock *BB = BBWorkList.pop_back_val();

      LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB);

      // Notify all instructions in this basic block that they are newly
      // executable.
      for (Instruction &I : *BB)
        visitInst(I);
    }
  }
}

template <class LatticeKey, class LatticeVal, class KeyInfo>
void SparseSolver<LatticeKey, LatticeVal, KeyInfo>::Print(
    raw_ostream &OS) const {
  if (ValueState.empty())
    return;

  LatticeKey Key;
  LatticeVal LV;

  OS << "ValueState:\n";
  for (auto &Entry : ValueState) {
    std::tie(Key, LV) = Entry;
    if (LV == LatticeFunc->getUntrackedVal())
      continue;
    OS << "\t";
    LatticeFunc->PrintLatticeVal(LV, OS);
    OS << ": ";
    LatticeFunc->PrintLatticeKey(Key, OS);
    OS << "\n";
  }
}
} // end namespace llvm

#undef DEBUG_TYPE

#endif // LLVM_ANALYSIS_SPARSEPROPAGATION_H

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif