aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/include/llvm/Analysis/RegionInfo.h
blob: b426e948f3987149a20788aa4e38be55234f9e0c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Calculate a program structure tree built out of single entry single exit
// regions.
// The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
// David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
// Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
// Koehler - 2009".
// The algorithm to calculate these data structures however is completely
// different, as it takes advantage of existing information already available
// in (Post)dominace tree and dominance frontier passes. This leads to a simpler
// and in practice hopefully better performing algorithm. The runtime of the
// algorithms described in the papers above are both linear in graph size,
// O(V+E), whereas this algorithm is not, as the dominance frontier information
// itself is not, but in practice runtime seems to be in the order of magnitude
// of dominance tree calculation.
//
// WARNING: LLVM is generally very concerned about compile time such that
//          the use of additional analysis passes in the default
//          optimization sequence is avoided as much as possible.
//          Specifically, if you do not need the RegionInfo, but dominance
//          information could be sufficient please base your work only on
//          the dominator tree. Most passes maintain it, such that using
//          it has often near zero cost. In contrast RegionInfo is by
//          default not available, is not maintained by existing
//          transformations and there is no intention to do so.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_REGIONINFO_H
#define LLVM_ANALYSIS_REGIONINFO_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <type_traits>
#include <vector>

namespace llvm {

class DominanceFrontier;
class Loop;
class LoopInfo;
class PostDominatorTree;
class Region;
template <class RegionTr> class RegionBase;
class RegionInfo;
template <class RegionTr> class RegionInfoBase;
class RegionNode;

// Class to be specialized for different users of RegionInfo
// (i.e. BasicBlocks or MachineBasicBlocks). This is only to avoid needing to
// pass around an unreasonable number of template parameters.
template <class FuncT_>
struct RegionTraits {
  // FuncT
  // BlockT
  // RegionT
  // RegionNodeT
  // RegionInfoT
  using BrokenT = typename FuncT_::UnknownRegionTypeError;
};

template <>
struct RegionTraits<Function> {
  using FuncT = Function;
  using BlockT = BasicBlock;
  using RegionT = Region;
  using RegionNodeT = RegionNode;
  using RegionInfoT = RegionInfo;
  using DomTreeT = DominatorTree;
  using DomTreeNodeT = DomTreeNode;
  using DomFrontierT = DominanceFrontier;
  using PostDomTreeT = PostDominatorTree;
  using InstT = Instruction;
  using LoopT = Loop;
  using LoopInfoT = LoopInfo;

  static unsigned getNumSuccessors(BasicBlock *BB) {
    return BB->getTerminator()->getNumSuccessors();
  }
};

/// Marker class to iterate over the elements of a Region in flat mode.
///
/// The class is used to either iterate in Flat mode or by not using it to not
/// iterate in Flat mode.  During a Flat mode iteration all Regions are entered
/// and the iteration returns every BasicBlock.  If the Flat mode is not
/// selected for SubRegions just one RegionNode containing the subregion is
/// returned.
template <class GraphType>
class FlatIt {};

/// A RegionNode represents a subregion or a BasicBlock that is part of a
/// Region.
template <class Tr>
class RegionNodeBase {
  friend class RegionBase<Tr>;

public:
  using BlockT = typename Tr::BlockT;
  using RegionT = typename Tr::RegionT;

private:
  /// This is the entry basic block that starts this region node.  If this is a
  /// BasicBlock RegionNode, then entry is just the basic block, that this
  /// RegionNode represents.  Otherwise it is the entry of this (Sub)RegionNode.
  ///
  /// In the BBtoRegionNode map of the parent of this node, BB will always map
  /// to this node no matter which kind of node this one is.
  ///
  /// The node can hold either a Region or a BasicBlock.
  /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
  /// RegionNode.
  PointerIntPair<BlockT *, 1, bool> entry;

  /// The parent Region of this RegionNode.
  /// @see getParent()
  RegionT *parent;

protected:
  /// Create a RegionNode.
  ///
  /// @param Parent      The parent of this RegionNode.
  /// @param Entry       The entry BasicBlock of the RegionNode.  If this
  ///                    RegionNode represents a BasicBlock, this is the
  ///                    BasicBlock itself.  If it represents a subregion, this
  ///                    is the entry BasicBlock of the subregion.
  /// @param isSubRegion If this RegionNode represents a SubRegion.
  inline RegionNodeBase(RegionT *Parent, BlockT *Entry,
                        bool isSubRegion = false)
      : entry(Entry, isSubRegion), parent(Parent) {}

public:
  RegionNodeBase(const RegionNodeBase &) = delete;
  RegionNodeBase &operator=(const RegionNodeBase &) = delete;

  /// Get the parent Region of this RegionNode.
  ///
  /// The parent Region is the Region this RegionNode belongs to. If for
  /// example a BasicBlock is element of two Regions, there exist two
  /// RegionNodes for this BasicBlock. Each with the getParent() function
  /// pointing to the Region this RegionNode belongs to.
  ///
  /// @return Get the parent Region of this RegionNode.
  inline RegionT *getParent() const { return parent; }

  /// Get the entry BasicBlock of this RegionNode.
  ///
  /// If this RegionNode represents a BasicBlock this is just the BasicBlock
  /// itself, otherwise we return the entry BasicBlock of the Subregion
  ///
  /// @return The entry BasicBlock of this RegionNode.
  inline BlockT *getEntry() const { return entry.getPointer(); }

  /// Get the content of this RegionNode.
  ///
  /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
  /// check the type of the content with the isSubRegion() function call.
  ///
  /// @return The content of this RegionNode.
  template <class T> inline T *getNodeAs() const;

  /// Is this RegionNode a subregion?
  ///
  /// @return True if it contains a subregion. False if it contains a
  ///         BasicBlock.
  inline bool isSubRegion() const { return entry.getInt(); }
};

//===----------------------------------------------------------------------===//
/// A single entry single exit Region.
///
/// A Region is a connected subgraph of a control flow graph that has exactly
/// two connections to the remaining graph. It can be used to analyze or
/// optimize parts of the control flow graph.
///
/// A <em> simple Region </em> is connected to the remaining graph by just two
/// edges. One edge entering the Region and another one leaving the Region.
///
/// An <em> extended Region </em> (or just Region) is a subgraph that can be
/// transform into a simple Region. The transformation is done by adding
/// BasicBlocks that merge several entry or exit edges so that after the merge
/// just one entry and one exit edge exists.
///
/// The \e Entry of a Region is the first BasicBlock that is passed after
/// entering the Region. It is an element of the Region. The entry BasicBlock
/// dominates all BasicBlocks in the Region.
///
/// The \e Exit of a Region is the first BasicBlock that is passed after
/// leaving the Region. It is not an element of the Region. The exit BasicBlock,
/// postdominates all BasicBlocks in the Region.
///
/// A <em> canonical Region </em> cannot be constructed by combining smaller
/// Regions.
///
/// Region A is the \e parent of Region B, if B is completely contained in A.
///
/// Two canonical Regions either do not intersect at all or one is
/// the parent of the other.
///
/// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
/// Regions in the control flow graph and E is the \e parent relation of these
/// Regions.
///
/// Example:
///
/// \verbatim
/// A simple control flow graph, that contains two regions.
///
///        1
///       / |
///      2   |
///     / \   3
///    4   5  |
///    |   |  |
///    6   7  8
///     \  | /
///      \ |/       Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
///        9        Region B: 2 -> 9 {2,4,5,6,7}
/// \endverbatim
///
/// You can obtain more examples by either calling
///
/// <tt> "opt -regions -analyze anyprogram.ll" </tt>
/// or
/// <tt> "opt -view-regions-only anyprogram.ll" </tt>
///
/// on any LLVM file you are interested in.
///
/// The first call returns a textual representation of the program structure
/// tree, the second one creates a graphical representation using graphviz.
template <class Tr>
class RegionBase : public RegionNodeBase<Tr> {
  friend class RegionInfoBase<Tr>;

  using FuncT = typename Tr::FuncT;
  using BlockT = typename Tr::BlockT;
  using RegionInfoT = typename Tr::RegionInfoT;
  using RegionT = typename Tr::RegionT;
  using RegionNodeT = typename Tr::RegionNodeT;
  using DomTreeT = typename Tr::DomTreeT;
  using LoopT = typename Tr::LoopT;
  using LoopInfoT = typename Tr::LoopInfoT;
  using InstT = typename Tr::InstT;

  using BlockTraits = GraphTraits<BlockT *>;
  using InvBlockTraits = GraphTraits<Inverse<BlockT *>>;
  using SuccIterTy = typename BlockTraits::ChildIteratorType;
  using PredIterTy = typename InvBlockTraits::ChildIteratorType;

  // Information necessary to manage this Region.
  RegionInfoT *RI;
  DomTreeT *DT;

  // The exit BasicBlock of this region.
  // (The entry BasicBlock is part of RegionNode)
  BlockT *exit;

  using RegionSet = std::vector<std::unique_ptr<RegionT>>;

  // The subregions of this region.
  RegionSet children;

  using BBNodeMapT = std::map<BlockT *, std::unique_ptr<RegionNodeT>>;

  // Save the BasicBlock RegionNodes that are element of this Region.
  mutable BBNodeMapT BBNodeMap;

  /// Check if a BB is in this Region. This check also works
  /// if the region is incorrectly built. (EXPENSIVE!)
  void verifyBBInRegion(BlockT *BB) const;

  /// Walk over all the BBs of the region starting from BB and
  /// verify that all reachable basic blocks are elements of the region.
  /// (EXPENSIVE!)
  void verifyWalk(BlockT *BB, std::set<BlockT *> *visitedBB) const;

  /// Verify if the region and its children are valid regions (EXPENSIVE!)
  void verifyRegionNest() const;

public:
  /// Create a new region.
  ///
  /// @param Entry  The entry basic block of the region.
  /// @param Exit   The exit basic block of the region.
  /// @param RI     The region info object that is managing this region.
  /// @param DT     The dominator tree of the current function.
  /// @param Parent The surrounding region or NULL if this is a top level
  ///               region.
  RegionBase(BlockT *Entry, BlockT *Exit, RegionInfoT *RI, DomTreeT *DT,
             RegionT *Parent = nullptr);

  RegionBase(const RegionBase &) = delete;
  RegionBase &operator=(const RegionBase &) = delete;

  /// Delete the Region and all its subregions.
  ~RegionBase();

  /// Get the entry BasicBlock of the Region.
  /// @return The entry BasicBlock of the region.
  BlockT *getEntry() const {
    return RegionNodeBase<Tr>::getEntry();
  }

  /// Replace the entry basic block of the region with the new basic
  ///        block.
  ///
  /// @param BB  The new entry basic block of the region.
  void replaceEntry(BlockT *BB);

  /// Replace the exit basic block of the region with the new basic
  ///        block.
  ///
  /// @param BB  The new exit basic block of the region.
  void replaceExit(BlockT *BB);

  /// Recursively replace the entry basic block of the region.
  ///
  /// This function replaces the entry basic block with a new basic block. It
  /// also updates all child regions that have the same entry basic block as
  /// this region.
  ///
  /// @param NewEntry The new entry basic block.
  void replaceEntryRecursive(BlockT *NewEntry);

  /// Recursively replace the exit basic block of the region.
  ///
  /// This function replaces the exit basic block with a new basic block. It
  /// also updates all child regions that have the same exit basic block as
  /// this region.
  ///
  /// @param NewExit The new exit basic block.
  void replaceExitRecursive(BlockT *NewExit);

  /// Get the exit BasicBlock of the Region.
  /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
  ///         Region.
  BlockT *getExit() const { return exit; }

  /// Get the parent of the Region.
  /// @return The parent of the Region or NULL if this is a top level
  ///         Region.
  RegionT *getParent() const {
    return RegionNodeBase<Tr>::getParent();
  }

  /// Get the RegionNode representing the current Region.
  /// @return The RegionNode representing the current Region.
  RegionNodeT *getNode() const {
    return const_cast<RegionNodeT *>(
        reinterpret_cast<const RegionNodeT *>(this));
  }

  /// Get the nesting level of this Region.
  ///
  /// An toplevel Region has depth 0.
  ///
  /// @return The depth of the region.
  unsigned getDepth() const;

  /// Check if a Region is the TopLevel region.
  ///
  /// The toplevel region represents the whole function.
  bool isTopLevelRegion() const { return exit == nullptr; }

  /// Return a new (non-canonical) region, that is obtained by joining
  ///        this region with its predecessors.
  ///
  /// @return A region also starting at getEntry(), but reaching to the next
  ///         basic block that forms with getEntry() a (non-canonical) region.
  ///         NULL if such a basic block does not exist.
  RegionT *getExpandedRegion() const;

  /// Return the first block of this region's single entry edge,
  ///        if existing.
  ///
  /// @return The BasicBlock starting this region's single entry edge,
  ///         else NULL.
  BlockT *getEnteringBlock() const;

  /// Return the first block of this region's single exit edge,
  ///        if existing.
  ///
  /// @return The BasicBlock starting this region's single exit edge,
  ///         else NULL.
  BlockT *getExitingBlock() const;

  /// Collect all blocks of this region's single exit edge, if existing.
  ///
  /// @return True if this region contains all the predecessors of the exit.
  bool getExitingBlocks(SmallVectorImpl<BlockT *> &Exitings) const;

  /// Is this a simple region?
  ///
  /// A region is simple if it has exactly one exit and one entry edge.
  ///
  /// @return True if the Region is simple.
  bool isSimple() const;

  /// Returns the name of the Region.
  /// @return The Name of the Region.
  std::string getNameStr() const;

  /// Return the RegionInfo object, that belongs to this Region.
  RegionInfoT *getRegionInfo() const { return RI; }

  /// PrintStyle - Print region in difference ways.
  enum PrintStyle { PrintNone, PrintBB, PrintRN };

  /// Print the region.
  ///
  /// @param OS The output stream the Region is printed to.
  /// @param printTree Print also the tree of subregions.
  /// @param level The indentation level used for printing.
  void print(raw_ostream &OS, bool printTree = true, unsigned level = 0,
             PrintStyle Style = PrintNone) const;

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  /// Print the region to stderr.
  void dump() const;
#endif

  /// Check if the region contains a BasicBlock.
  ///
  /// @param BB The BasicBlock that might be contained in this Region.
  /// @return True if the block is contained in the region otherwise false.
  bool contains(const BlockT *BB) const;

  /// Check if the region contains another region.
  ///
  /// @param SubRegion The region that might be contained in this Region.
  /// @return True if SubRegion is contained in the region otherwise false.
  bool contains(const RegionT *SubRegion) const {
    // Toplevel Region.
    if (!getExit())
      return true;

    return contains(SubRegion->getEntry()) &&
           (contains(SubRegion->getExit()) ||
            SubRegion->getExit() == getExit());
  }

  /// Check if the region contains an Instruction.
  ///
  /// @param Inst The Instruction that might be contained in this region.
  /// @return True if the Instruction is contained in the region otherwise
  /// false.
  bool contains(const InstT *Inst) const { return contains(Inst->getParent()); }

  /// Check if the region contains a loop.
  ///
  /// @param L The loop that might be contained in this region.
  /// @return True if the loop is contained in the region otherwise false.
  ///         In case a NULL pointer is passed to this function the result
  ///         is false, except for the region that describes the whole function.
  ///         In that case true is returned.
  bool contains(const LoopT *L) const;

  /// Get the outermost loop in the region that contains a loop.
  ///
  /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
  /// and is itself contained in the region.
  ///
  /// @param L The loop the lookup is started.
  /// @return The outermost loop in the region, NULL if such a loop does not
  ///         exist or if the region describes the whole function.
  LoopT *outermostLoopInRegion(LoopT *L) const;

  /// Get the outermost loop in the region that contains a basic block.
  ///
  /// Find for a basic block BB the outermost loop L that contains BB and is
  /// itself contained in the region.
  ///
  /// @param LI A pointer to a LoopInfo analysis.
  /// @param BB The basic block surrounded by the loop.
  /// @return The outermost loop in the region, NULL if such a loop does not
  ///         exist or if the region describes the whole function.
  LoopT *outermostLoopInRegion(LoopInfoT *LI, BlockT *BB) const;

  /// Get the subregion that starts at a BasicBlock
  ///
  /// @param BB The BasicBlock the subregion should start.
  /// @return The Subregion if available, otherwise NULL.
  RegionT *getSubRegionNode(BlockT *BB) const;

  /// Get the RegionNode for a BasicBlock
  ///
  /// @param BB The BasicBlock at which the RegionNode should start.
  /// @return If available, the RegionNode that represents the subregion
  ///         starting at BB. If no subregion starts at BB, the RegionNode
  ///         representing BB.
  RegionNodeT *getNode(BlockT *BB) const;

  /// Get the BasicBlock RegionNode for a BasicBlock
  ///
  /// @param BB The BasicBlock for which the RegionNode is requested.
  /// @return The RegionNode representing the BB.
  RegionNodeT *getBBNode(BlockT *BB) const;

  /// Add a new subregion to this Region.
  ///
  /// @param SubRegion The new subregion that will be added.
  /// @param moveChildren Move the children of this region, that are also
  ///                     contained in SubRegion into SubRegion.
  void addSubRegion(RegionT *SubRegion, bool moveChildren = false);

  /// Remove a subregion from this Region.
  ///
  /// The subregion is not deleted, as it will probably be inserted into another
  /// region.
  /// @param SubRegion The SubRegion that will be removed.
  RegionT *removeSubRegion(RegionT *SubRegion);

  /// Move all direct child nodes of this Region to another Region.
  ///
  /// @param To The Region the child nodes will be transferred to.
  void transferChildrenTo(RegionT *To);

  /// Verify if the region is a correct region.
  ///
  /// Check if this is a correctly build Region. This is an expensive check, as
  /// the complete CFG of the Region will be walked.
  void verifyRegion() const;

  /// Clear the cache for BB RegionNodes.
  ///
  /// After calling this function the BasicBlock RegionNodes will be stored at
  /// different memory locations. RegionNodes obtained before this function is
  /// called are therefore not comparable to RegionNodes abtained afterwords.
  void clearNodeCache();

  /// @name Subregion Iterators
  ///
  /// These iterators iterator over all subregions of this Region.
  //@{
  using iterator = typename RegionSet::iterator;
  using const_iterator = typename RegionSet::const_iterator;

  iterator begin() { return children.begin(); }
  iterator end() { return children.end(); }

  const_iterator begin() const { return children.begin(); }
  const_iterator end() const { return children.end(); }
  //@}

  /// @name BasicBlock Iterators
  ///
  /// These iterators iterate over all BasicBlocks that are contained in this
  /// Region. The iterator also iterates over BasicBlocks that are elements of
  /// a subregion of this Region. It is therefore called a flat iterator.
  //@{
  template <bool IsConst>
  class block_iterator_wrapper
      : public df_iterator<
            std::conditional_t<IsConst, const BlockT, BlockT> *> {
    using super =
        df_iterator<std::conditional_t<IsConst, const BlockT, BlockT> *>;

  public:
    using Self = block_iterator_wrapper<IsConst>;
    using value_type = typename super::value_type;

    // Construct the begin iterator.
    block_iterator_wrapper(value_type Entry, value_type Exit)
        : super(df_begin(Entry)) {
      // Mark the exit of the region as visited, so that the children of the
      // exit and the exit itself, i.e. the block outside the region will never
      // be visited.
      super::Visited.insert(Exit);
    }

    // Construct the end iterator.
    block_iterator_wrapper() : super(df_end<value_type>((BlockT *)nullptr)) {}

    /*implicit*/ block_iterator_wrapper(super I) : super(I) {}

    // FIXME: Even a const_iterator returns a non-const BasicBlock pointer.
    //        This was introduced for backwards compatibility, but should
    //        be removed as soon as all users are fixed.
    BlockT *operator*() const {
      return const_cast<BlockT *>(super::operator*());
    }
  };

  using block_iterator = block_iterator_wrapper<false>;
  using const_block_iterator = block_iterator_wrapper<true>;

  block_iterator block_begin() { return block_iterator(getEntry(), getExit()); }

  block_iterator block_end() { return block_iterator(); }

  const_block_iterator block_begin() const {
    return const_block_iterator(getEntry(), getExit());
  }
  const_block_iterator block_end() const { return const_block_iterator(); }

  using block_range = iterator_range<block_iterator>;
  using const_block_range = iterator_range<const_block_iterator>;

  /// Returns a range view of the basic blocks in the region.
  inline block_range blocks() {
    return block_range(block_begin(), block_end());
  }

  /// Returns a range view of the basic blocks in the region.
  ///
  /// This is the 'const' version of the range view.
  inline const_block_range blocks() const {
    return const_block_range(block_begin(), block_end());
  }
  //@}

  /// @name Element Iterators
  ///
  /// These iterators iterate over all BasicBlock and subregion RegionNodes that
  /// are direct children of this Region. It does not iterate over any
  /// RegionNodes that are also element of a subregion of this Region.
  //@{
  using element_iterator =
      df_iterator<RegionNodeT *, df_iterator_default_set<RegionNodeT *>, false,
                  GraphTraits<RegionNodeT *>>;

  using const_element_iterator =
      df_iterator<const RegionNodeT *,
                  df_iterator_default_set<const RegionNodeT *>, false,
                  GraphTraits<const RegionNodeT *>>;

  element_iterator element_begin();
  element_iterator element_end();
  iterator_range<element_iterator> elements() {
    return make_range(element_begin(), element_end());
  }

  const_element_iterator element_begin() const;
  const_element_iterator element_end() const;
  iterator_range<const_element_iterator> elements() const {
    return make_range(element_begin(), element_end());
  }
  //@}
};

/// Print a RegionNode.
template <class Tr>
inline raw_ostream &operator<<(raw_ostream &OS, const RegionNodeBase<Tr> &Node);

//===----------------------------------------------------------------------===//
/// Analysis that detects all canonical Regions.
///
/// The RegionInfo pass detects all canonical regions in a function. The Regions
/// are connected using the parent relation. This builds a Program Structure
/// Tree.
template <class Tr>
class RegionInfoBase {
  friend class RegionInfo;
  friend class MachineRegionInfo;

  using BlockT = typename Tr::BlockT;
  using FuncT = typename Tr::FuncT;
  using RegionT = typename Tr::RegionT;
  using RegionInfoT = typename Tr::RegionInfoT;
  using DomTreeT = typename Tr::DomTreeT;
  using DomTreeNodeT = typename Tr::DomTreeNodeT;
  using PostDomTreeT = typename Tr::PostDomTreeT;
  using DomFrontierT = typename Tr::DomFrontierT;
  using BlockTraits = GraphTraits<BlockT *>;
  using InvBlockTraits = GraphTraits<Inverse<BlockT *>>;
  using SuccIterTy = typename BlockTraits::ChildIteratorType;
  using PredIterTy = typename InvBlockTraits::ChildIteratorType;

  using BBtoBBMap = DenseMap<BlockT *, BlockT *>;
  using BBtoRegionMap = DenseMap<BlockT *, RegionT *>;

  RegionInfoBase();

  RegionInfoBase(RegionInfoBase &&Arg)
    : DT(std::move(Arg.DT)), PDT(std::move(Arg.PDT)), DF(std::move(Arg.DF)),
      TopLevelRegion(std::move(Arg.TopLevelRegion)),
      BBtoRegion(std::move(Arg.BBtoRegion)) {
    Arg.wipe();
  }

  RegionInfoBase &operator=(RegionInfoBase &&RHS) {
    DT = std::move(RHS.DT);
    PDT = std::move(RHS.PDT);
    DF = std::move(RHS.DF);
    TopLevelRegion = std::move(RHS.TopLevelRegion);
    BBtoRegion = std::move(RHS.BBtoRegion);
    RHS.wipe();
    return *this;
  }

  virtual ~RegionInfoBase();

  DomTreeT *DT;
  PostDomTreeT *PDT;
  DomFrontierT *DF;

  /// The top level region.
  RegionT *TopLevelRegion = nullptr;

  /// Map every BB to the smallest region, that contains BB.
  BBtoRegionMap BBtoRegion;

protected:
  /// Update refences to a RegionInfoT held by the RegionT managed here
  ///
  /// This is a post-move helper. Regions hold references to the owning
  /// RegionInfo object. After a move these need to be fixed.
  template<typename TheRegionT>
  void updateRegionTree(RegionInfoT &RI, TheRegionT *R) {
    if (!R)
      return;
    R->RI = &RI;
    for (auto &SubR : *R)
      updateRegionTree(RI, SubR.get());
  }

private:
  /// Wipe this region tree's state without releasing any resources.
  ///
  /// This is essentially a post-move helper only. It leaves the object in an
  /// assignable and destroyable state, but otherwise invalid.
  void wipe() {
    DT = nullptr;
    PDT = nullptr;
    DF = nullptr;
    TopLevelRegion = nullptr;
    BBtoRegion.clear();
  }

  // Check whether the entries of BBtoRegion for the BBs of region
  // SR are correct. Triggers an assertion if not. Calls itself recursively for
  // subregions.
  void verifyBBMap(const RegionT *SR) const;

  // Returns true if BB is in the dominance frontier of
  // entry, because it was inherited from exit. In the other case there is an
  // edge going from entry to BB without passing exit.
  bool isCommonDomFrontier(BlockT *BB, BlockT *entry, BlockT *exit) const;

  // Check if entry and exit surround a valid region, based on
  // dominance tree and dominance frontier.
  bool isRegion(BlockT *entry, BlockT *exit) const;

  // Saves a shortcut pointing from entry to exit.
  // This function may extend this shortcut if possible.
  void insertShortCut(BlockT *entry, BlockT *exit, BBtoBBMap *ShortCut) const;

  // Returns the next BB that postdominates N, while skipping
  // all post dominators that cannot finish a canonical region.
  DomTreeNodeT *getNextPostDom(DomTreeNodeT *N, BBtoBBMap *ShortCut) const;

  // A region is trivial, if it contains only one BB.
  bool isTrivialRegion(BlockT *entry, BlockT *exit) const;

  // Creates a single entry single exit region.
  RegionT *createRegion(BlockT *entry, BlockT *exit);

  // Detect all regions starting with bb 'entry'.
  void findRegionsWithEntry(BlockT *entry, BBtoBBMap *ShortCut);

  // Detects regions in F.
  void scanForRegions(FuncT &F, BBtoBBMap *ShortCut);

  // Get the top most parent with the same entry block.
  RegionT *getTopMostParent(RegionT *region);

  // Build the region hierarchy after all region detected.
  void buildRegionsTree(DomTreeNodeT *N, RegionT *region);

  // Update statistic about created regions.
  virtual void updateStatistics(RegionT *R) = 0;

  // Detect all regions in function and build the region tree.
  void calculate(FuncT &F);

public:
  RegionInfoBase(const RegionInfoBase &) = delete;
  RegionInfoBase &operator=(const RegionInfoBase &) = delete;

  static bool VerifyRegionInfo;
  static typename RegionT::PrintStyle printStyle;

  void print(raw_ostream &OS) const;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  void dump() const;
#endif

  void releaseMemory();

  /// Get the smallest region that contains a BasicBlock.
  ///
  /// @param BB The basic block.
  /// @return The smallest region, that contains BB or NULL, if there is no
  /// region containing BB.
  RegionT *getRegionFor(BlockT *BB) const;

  ///  Set the smallest region that surrounds a basic block.
  ///
  /// @param BB The basic block surrounded by a region.
  /// @param R The smallest region that surrounds BB.
  void setRegionFor(BlockT *BB, RegionT *R);

  /// A shortcut for getRegionFor().
  ///
  /// @param BB The basic block.
  /// @return The smallest region, that contains BB or NULL, if there is no
  /// region containing BB.
  RegionT *operator[](BlockT *BB) const;

  /// Return the exit of the maximal refined region, that starts at a
  /// BasicBlock.
  ///
  /// @param BB The BasicBlock the refined region starts.
  BlockT *getMaxRegionExit(BlockT *BB) const;

  /// Find the smallest region that contains two regions.
  ///
  /// @param A The first region.
  /// @param B The second region.
  /// @return The smallest region containing A and B.
  RegionT *getCommonRegion(RegionT *A, RegionT *B) const;

  /// Find the smallest region that contains two basic blocks.
  ///
  /// @param A The first basic block.
  /// @param B The second basic block.
  /// @return The smallest region that contains A and B.
  RegionT *getCommonRegion(BlockT *A, BlockT *B) const {
    return getCommonRegion(getRegionFor(A), getRegionFor(B));
  }

  /// Find the smallest region that contains a set of regions.
  ///
  /// @param Regions A vector of regions.
  /// @return The smallest region that contains all regions in Regions.
  RegionT *getCommonRegion(SmallVectorImpl<RegionT *> &Regions) const;

  /// Find the smallest region that contains a set of basic blocks.
  ///
  /// @param BBs A vector of basic blocks.
  /// @return The smallest region that contains all basic blocks in BBS.
  RegionT *getCommonRegion(SmallVectorImpl<BlockT *> &BBs) const;

  RegionT *getTopLevelRegion() const { return TopLevelRegion; }

  /// Clear the Node Cache for all Regions.
  ///
  /// @see Region::clearNodeCache()
  void clearNodeCache() {
    if (TopLevelRegion)
      TopLevelRegion->clearNodeCache();
  }

  void verifyAnalysis() const;
};

class RegionNode : public RegionNodeBase<RegionTraits<Function>> {
public:
  inline RegionNode(Region *Parent, BasicBlock *Entry, bool isSubRegion = false)
      : RegionNodeBase<RegionTraits<Function>>(Parent, Entry, isSubRegion) {}

  bool operator==(const Region &RN) const {
    return this == reinterpret_cast<const RegionNode *>(&RN);
  }
};

class Region : public RegionBase<RegionTraits<Function>> {
public:
  Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo *RI, DominatorTree *DT,
         Region *Parent = nullptr);
  ~Region();

  bool operator==(const RegionNode &RN) const {
    return &RN == reinterpret_cast<const RegionNode *>(this);
  }
};

class RegionInfo : public RegionInfoBase<RegionTraits<Function>> {
public:
  using Base = RegionInfoBase<RegionTraits<Function>>;

  explicit RegionInfo();

  RegionInfo(RegionInfo &&Arg) : Base(std::move(static_cast<Base &>(Arg))) {
    updateRegionTree(*this, TopLevelRegion);
  }

  RegionInfo &operator=(RegionInfo &&RHS) {
    Base::operator=(std::move(static_cast<Base &>(RHS)));
    updateRegionTree(*this, TopLevelRegion);
    return *this;
  }

  ~RegionInfo() override;

  /// Handle invalidation explicitly.
  bool invalidate(Function &F, const PreservedAnalyses &PA,
                  FunctionAnalysisManager::Invalidator &);

  // updateStatistics - Update statistic about created regions.
  void updateStatistics(Region *R) final;

  void recalculate(Function &F, DominatorTree *DT, PostDominatorTree *PDT,
                   DominanceFrontier *DF);

#ifndef NDEBUG
  /// Opens a viewer to show the GraphViz visualization of the regions.
  ///
  /// Useful during debugging as an alternative to dump().
  void view();

  /// Opens a viewer to show the GraphViz visualization of this region
  /// without instructions in the BasicBlocks.
  ///
  /// Useful during debugging as an alternative to dump().
  void viewOnly();
#endif
};

class RegionInfoPass : public FunctionPass {
  RegionInfo RI;

public:
  static char ID;

  explicit RegionInfoPass();
  ~RegionInfoPass() override;

  RegionInfo &getRegionInfo() { return RI; }

  const RegionInfo &getRegionInfo() const { return RI; }

  /// @name FunctionPass interface
  //@{
  bool runOnFunction(Function &F) override;
  void releaseMemory() override;
  void verifyAnalysis() const override;
  void getAnalysisUsage(AnalysisUsage &AU) const override;
  void print(raw_ostream &OS, const Module *) const override;
  void dump() const;
  //@}
};

/// Analysis pass that exposes the \c RegionInfo for a function.
class RegionInfoAnalysis : public AnalysisInfoMixin<RegionInfoAnalysis> {
  friend AnalysisInfoMixin<RegionInfoAnalysis>;

  static AnalysisKey Key;

public:
  using Result = RegionInfo;

  RegionInfo run(Function &F, FunctionAnalysisManager &AM);
};

/// Printer pass for the \c RegionInfo.
class RegionInfoPrinterPass : public PassInfoMixin<RegionInfoPrinterPass> {
  raw_ostream &OS;

public:
  explicit RegionInfoPrinterPass(raw_ostream &OS);

  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};

/// Verifier pass for the \c RegionInfo.
struct RegionInfoVerifierPass : PassInfoMixin<RegionInfoVerifierPass> {
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};

template <>
template <>
inline BasicBlock *
RegionNodeBase<RegionTraits<Function>>::getNodeAs<BasicBlock>() const {
  assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
  return getEntry();
}

template <>
template <>
inline Region *
RegionNodeBase<RegionTraits<Function>>::getNodeAs<Region>() const {
  assert(isSubRegion() && "This is not a subregion RegionNode!");
  auto Unconst = const_cast<RegionNodeBase<RegionTraits<Function>> *>(this);
  return reinterpret_cast<Region *>(Unconst);
}

template <class Tr>
inline raw_ostream &operator<<(raw_ostream &OS,
                               const RegionNodeBase<Tr> &Node) {
  using BlockT = typename Tr::BlockT;
  using RegionT = typename Tr::RegionT;

  if (Node.isSubRegion())
    return OS << Node.template getNodeAs<RegionT>()->getNameStr();
  else
    return OS << Node.template getNodeAs<BlockT>()->getName();
}

extern template class RegionBase<RegionTraits<Function>>;
extern template class RegionNodeBase<RegionTraits<Function>>;
extern template class RegionInfoBase<RegionTraits<Function>>;

} // end namespace llvm

#endif // LLVM_ANALYSIS_REGIONINFO_H

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif