aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/include/llvm/Analysis/MustExecute.h
blob: d6998f6de457cca167cc7d1a1922396cd87b2e5b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===- MustExecute.h - Is an instruction known to execute--------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// Contains a collection of routines for determining if a given instruction is
/// guaranteed to execute if a given point in control flow is reached. The most
/// common example is an instruction within a loop being provably executed if we
/// branch to the header of it's containing loop.
///
/// There are two interfaces available to determine if an instruction is
/// executed once a given point in the control flow is reached:
/// 1) A loop-centric one derived from LoopSafetyInfo.
/// 2) A "must be executed context"-based one implemented in the
///    MustBeExecutedContextExplorer.
/// Please refer to the class comments for more information.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_MUSTEXECUTE_H
#define LLVM_ANALYSIS_MUSTEXECUTE_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/InstructionPrecedenceTracking.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/raw_ostream.h"

namespace llvm {

namespace {
template <typename T> using GetterTy = std::function<T *(const Function &F)>;
}

class BasicBlock;
class DominatorTree;
class Instruction;
class Loop;
class LoopInfo;
class PostDominatorTree;

/// Captures loop safety information.
/// It keep information for loop blocks may throw exception or otherwise
/// exit abnormally on any iteration of the loop which might actually execute
/// at runtime.  The primary way to consume this information is via
/// isGuaranteedToExecute below, but some callers bailout or fallback to
/// alternate reasoning if a loop contains any implicit control flow.
/// NOTE: LoopSafetyInfo contains cached information regarding loops and their
/// particular blocks. This information is only dropped on invocation of
/// computeLoopSafetyInfo. If the loop or any of its block is deleted, or if
/// any thrower instructions have been added or removed from them, or if the
/// control flow has changed, or in case of other meaningful modifications, the
/// LoopSafetyInfo needs to be recomputed. If a meaningful modifications to the
/// loop were made and the info wasn't recomputed properly, the behavior of all
/// methods except for computeLoopSafetyInfo is undefined.
class LoopSafetyInfo {
  // Used to update funclet bundle operands.
  DenseMap<BasicBlock *, ColorVector> BlockColors;

protected:
  /// Computes block colors.
  void computeBlockColors(const Loop *CurLoop);

public:
  /// Returns block colors map that is used to update funclet operand bundles.
  const DenseMap<BasicBlock *, ColorVector> &getBlockColors() const;

  /// Copy colors of block \p Old into the block \p New.
  void copyColors(BasicBlock *New, BasicBlock *Old);

  /// Returns true iff the block \p BB potentially may throw exception. It can
  /// be false-positive in cases when we want to avoid complex analysis.
  virtual bool blockMayThrow(const BasicBlock *BB) const = 0;

  /// Returns true iff any block of the loop for which this info is contains an
  /// instruction that may throw or otherwise exit abnormally.
  virtual bool anyBlockMayThrow() const = 0;

  /// Return true if we must reach the block \p BB under assumption that the
  /// loop \p CurLoop is entered.
  bool allLoopPathsLeadToBlock(const Loop *CurLoop, const BasicBlock *BB,
                               const DominatorTree *DT) const;

  /// Computes safety information for a loop checks loop body & header for
  /// the possibility of may throw exception, it takes LoopSafetyInfo and loop
  /// as argument. Updates safety information in LoopSafetyInfo argument.
  /// Note: This is defined to clear and reinitialize an already initialized
  /// LoopSafetyInfo.  Some callers rely on this fact.
  virtual void computeLoopSafetyInfo(const Loop *CurLoop) = 0;

  /// Returns true if the instruction in a loop is guaranteed to execute at
  /// least once (under the assumption that the loop is entered).
  virtual bool isGuaranteedToExecute(const Instruction &Inst,
                                     const DominatorTree *DT,
                                     const Loop *CurLoop) const = 0;

  LoopSafetyInfo() = default;

  virtual ~LoopSafetyInfo() = default;
};


/// Simple and conservative implementation of LoopSafetyInfo that can give
/// false-positive answers to its queries in order to avoid complicated
/// analysis.
class SimpleLoopSafetyInfo: public LoopSafetyInfo {
  bool MayThrow = false;       // The current loop contains an instruction which
                               // may throw.
  bool HeaderMayThrow = false; // Same as previous, but specific to loop header

public:
  bool blockMayThrow(const BasicBlock *BB) const override;

  bool anyBlockMayThrow() const override;

  void computeLoopSafetyInfo(const Loop *CurLoop) override;

  bool isGuaranteedToExecute(const Instruction &Inst,
                             const DominatorTree *DT,
                             const Loop *CurLoop) const override;
};

/// This implementation of LoopSafetyInfo use ImplicitControlFlowTracking to
/// give precise answers on "may throw" queries. This implementation uses cache
/// that should be invalidated by calling the methods insertInstructionTo and
/// removeInstruction whenever we modify a basic block's contents by adding or
/// removing instructions.
class ICFLoopSafetyInfo: public LoopSafetyInfo {
  bool MayThrow = false;       // The current loop contains an instruction which
                               // may throw.
  // Contains information about implicit control flow in this loop's blocks.
  mutable ImplicitControlFlowTracking ICF;
  // Contains information about instruction that may possibly write memory.
  mutable MemoryWriteTracking MW;

public:
  bool blockMayThrow(const BasicBlock *BB) const override;

  bool anyBlockMayThrow() const override;

  void computeLoopSafetyInfo(const Loop *CurLoop) override;

  bool isGuaranteedToExecute(const Instruction &Inst,
                             const DominatorTree *DT,
                             const Loop *CurLoop) const override;

  /// Returns true if we could not execute a memory-modifying instruction before
  /// we enter \p BB under assumption that \p CurLoop is entered.
  bool doesNotWriteMemoryBefore(const BasicBlock *BB, const Loop *CurLoop)
      const;

  /// Returns true if we could not execute a memory-modifying instruction before
  /// we execute \p I under assumption that \p CurLoop is entered.
  bool doesNotWriteMemoryBefore(const Instruction &I, const Loop *CurLoop)
      const;

  /// Inform the safety info that we are planning to insert a new instruction
  /// \p Inst into the basic block \p BB. It will make all cache updates to keep
  /// it correct after this insertion.
  void insertInstructionTo(const Instruction *Inst, const BasicBlock *BB);

  /// Inform safety info that we are planning to remove the instruction \p Inst
  /// from its block. It will make all cache updates to keep it correct after
  /// this removal.
  void removeInstruction(const Instruction *Inst);
};

bool mayContainIrreducibleControl(const Function &F, const LoopInfo *LI);

struct MustBeExecutedContextExplorer;

/// Enum that allows us to spell out the direction.
enum class ExplorationDirection {
  BACKWARD = 0,
  FORWARD = 1,
};

/// Must be executed iterators visit stretches of instructions that are
/// guaranteed to be executed together, potentially with other instruction
/// executed in-between.
///
/// Given the following code, and assuming all statements are single
/// instructions which transfer execution to the successor (see
/// isGuaranteedToTransferExecutionToSuccessor), there are two possible
/// outcomes. If we start the iterator at A, B, or E, we will visit only A, B,
/// and E. If we start at C or D, we will visit all instructions A-E.
///
/// \code
///   A;
///   B;
///   if (...) {
///     C;
///     D;
///   }
///   E;
/// \endcode
///
///
/// Below is the example extneded with instructions F and G. Now we assume F
/// might not transfer execution to it's successor G. As a result we get the
/// following visit sets:
///
/// Start Instruction   | Visit Set
/// A                   | A, B,       E, F
///    B                | A, B,       E, F
///       C             | A, B, C, D, E, F
///          D          | A, B, C, D, E, F
///             E       | A, B,       E, F
///                F    | A, B,       E, F
///                   G | A, B,       E, F, G
///
///
/// \code
///   A;
///   B;
///   if (...) {
///     C;
///     D;
///   }
///   E;
///   F;  // Might not transfer execution to its successor G.
///   G;
/// \endcode
///
///
/// A more complex example involving conditionals, loops, break, and continue
/// is shown below. We again assume all instructions will transmit control to
/// the successor and we assume we can prove the inner loop to be finite. We
/// omit non-trivial branch conditions as the exploration is oblivious to them.
/// Constant branches are assumed to be unconditional in the CFG. The resulting
/// visist sets are shown in the table below.
///
/// \code
///   A;
///   while (true) {
///     B;
///     if (...)
///       C;
///     if (...)
///       continue;
///     D;
///     if (...)
///       break;
///     do {
///       if (...)
///         continue;
///       E;
///     } while (...);
///     F;
///   }
///   G;
/// \endcode
///
/// Start Instruction    | Visit Set
/// A                    | A, B
///    B                 | A, B
///       C              | A, B, C
///          D           | A, B,    D
///             E        | A, B,    D, E, F
///                F     | A, B,    D,    F
///                   G  | A, B,    D,       G
///
///
/// Note that the examples show optimal visist sets but not necessarily the ones
/// derived by the explorer depending on the available CFG analyses (see
/// MustBeExecutedContextExplorer). Also note that we, depending on the options,
/// the visit set can contain instructions from other functions.
struct MustBeExecutedIterator {
  /// Type declarations that make his class an input iterator.
  ///{
  typedef const Instruction *value_type;
  typedef std::ptrdiff_t difference_type;
  typedef const Instruction **pointer;
  typedef const Instruction *&reference;
  typedef std::input_iterator_tag iterator_category;
  ///}

  using ExplorerTy = MustBeExecutedContextExplorer;

  MustBeExecutedIterator(const MustBeExecutedIterator &Other)
      : Visited(Other.Visited), Explorer(Other.Explorer),
        CurInst(Other.CurInst), Head(Other.Head), Tail(Other.Tail) {}

  MustBeExecutedIterator(MustBeExecutedIterator &&Other)
      : Visited(std::move(Other.Visited)), Explorer(Other.Explorer),
        CurInst(Other.CurInst), Head(Other.Head), Tail(Other.Tail) {}

  MustBeExecutedIterator &operator=(MustBeExecutedIterator &&Other) {
    if (this != &Other) {
      std::swap(Visited, Other.Visited);
      std::swap(CurInst, Other.CurInst);
      std::swap(Head, Other.Head);
      std::swap(Tail, Other.Tail);
    }
    return *this;
  }

  ~MustBeExecutedIterator() {}

  /// Pre- and post-increment operators.
  ///{
  MustBeExecutedIterator &operator++() {
    CurInst = advance();
    return *this;
  }

  MustBeExecutedIterator operator++(int) {
    MustBeExecutedIterator tmp(*this);
    operator++();
    return tmp;
  }
  ///}

  /// Equality and inequality operators. Note that we ignore the history here.
  ///{
  bool operator==(const MustBeExecutedIterator &Other) const {
    return CurInst == Other.CurInst && Head == Other.Head && Tail == Other.Tail;
  }

  bool operator!=(const MustBeExecutedIterator &Other) const {
    return !(*this == Other);
  }
  ///}

  /// Return the underlying instruction.
  const Instruction *&operator*() { return CurInst; }
  const Instruction *getCurrentInst() const { return CurInst; }

  /// Return true if \p I was encountered by this iterator already.
  bool count(const Instruction *I) const {
    return Visited.count({I, ExplorationDirection::FORWARD}) ||
           Visited.count({I, ExplorationDirection::BACKWARD});
  }

private:
  using VisitedSetTy =
      DenseSet<PointerIntPair<const Instruction *, 1, ExplorationDirection>>;

  /// Private constructors.
  MustBeExecutedIterator(ExplorerTy &Explorer, const Instruction *I);

  /// Reset the iterator to its initial state pointing at \p I.
  void reset(const Instruction *I);

  /// Reset the iterator to point at \p I, keep cached state.
  void resetInstruction(const Instruction *I);

  /// Try to advance one of the underlying positions (Head or Tail).
  ///
  /// \return The next instruction in the must be executed context, or nullptr
  ///         if none was found.
  const Instruction *advance();

  /// A set to track the visited instructions in order to deal with endless
  /// loops and recursion.
  VisitedSetTy Visited;

  /// A reference to the explorer that created this iterator.
  ExplorerTy &Explorer;

  /// The instruction we are currently exposing to the user. There is always an
  /// instruction that we know is executed with the given program point,
  /// initially the program point itself.
  const Instruction *CurInst;

  /// Two positions that mark the program points where this iterator will look
  /// for the next instruction. Note that the current instruction is either the
  /// one pointed to by Head, Tail, or both.
  const Instruction *Head, *Tail;

  friend struct MustBeExecutedContextExplorer;
};

/// A "must be executed context" for a given program point PP is the set of
/// instructions, potentially before and after PP, that are executed always when
/// PP is reached. The MustBeExecutedContextExplorer an interface to explore
/// "must be executed contexts" in a module through the use of
/// MustBeExecutedIterator.
///
/// The explorer exposes "must be executed iterators" that traverse the must be
/// executed context. There is little information sharing between iterators as
/// the expected use case involves few iterators for "far apart" instructions.
/// If that changes, we should consider caching more intermediate results.
struct MustBeExecutedContextExplorer {

  /// In the description of the parameters we use PP to denote a program point
  /// for which the must be executed context is explored, or put differently,
  /// for which the MustBeExecutedIterator is created.
  ///
  /// \param ExploreInterBlock    Flag to indicate if instructions in blocks
  ///                             other than the parent of PP should be
  ///                             explored.
  /// \param ExploreCFGForward    Flag to indicate if instructions located after
  ///                             PP in the CFG, e.g., post-dominating PP,
  ///                             should be explored.
  /// \param ExploreCFGBackward   Flag to indicate if instructions located
  ///                             before PP in the CFG, e.g., dominating PP,
  ///                             should be explored.
  MustBeExecutedContextExplorer(
      bool ExploreInterBlock, bool ExploreCFGForward, bool ExploreCFGBackward,
      GetterTy<const LoopInfo> LIGetter =
          [](const Function &) { return nullptr; },
      GetterTy<const DominatorTree> DTGetter =
          [](const Function &) { return nullptr; },
      GetterTy<const PostDominatorTree> PDTGetter =
          [](const Function &) { return nullptr; })
      : ExploreInterBlock(ExploreInterBlock),
        ExploreCFGForward(ExploreCFGForward),
        ExploreCFGBackward(ExploreCFGBackward), LIGetter(LIGetter),
        DTGetter(DTGetter), PDTGetter(PDTGetter), EndIterator(*this, nullptr) {}

  /// Iterator-based interface. \see MustBeExecutedIterator.
  ///{
  using iterator = MustBeExecutedIterator;
  using const_iterator = const MustBeExecutedIterator;

  /// Return an iterator to explore the context around \p PP.
  iterator &begin(const Instruction *PP) {
    auto &It = InstructionIteratorMap[PP];
    if (!It)
      It.reset(new iterator(*this, PP));
    return *It;
  }

  /// Return an iterator to explore the cached context around \p PP.
  const_iterator &begin(const Instruction *PP) const {
    return *InstructionIteratorMap.find(PP)->second;
  }

  /// Return an universal end iterator.
  ///{
  iterator &end() { return EndIterator; }
  iterator &end(const Instruction *) { return EndIterator; }

  const_iterator &end() const { return EndIterator; }
  const_iterator &end(const Instruction *) const { return EndIterator; }
  ///}

  /// Return an iterator range to explore the context around \p PP.
  llvm::iterator_range<iterator> range(const Instruction *PP) {
    return llvm::make_range(begin(PP), end(PP));
  }

  /// Return an iterator range to explore the cached context around \p PP.
  llvm::iterator_range<const_iterator> range(const Instruction *PP) const {
    return llvm::make_range(begin(PP), end(PP));
  }
  ///}

  /// Check \p Pred on all instructions in the context.
  ///
  /// This method will evaluate \p Pred and return
  /// true if \p Pred holds in every instruction.
  bool checkForAllContext(const Instruction *PP,
                          function_ref<bool(const Instruction *)> Pred) {
    for (auto EIt = begin(PP), EEnd = end(PP); EIt != EEnd; ++EIt)
      if (!Pred(*EIt))
        return false;
    return true;
  }

  /// Helper to look for \p I in the context of \p PP.
  ///
  /// The context is expanded until \p I was found or no more expansion is
  /// possible.
  ///
  /// \returns True, iff \p I was found.
  bool findInContextOf(const Instruction *I, const Instruction *PP) {
    auto EIt = begin(PP), EEnd = end(PP);
    return findInContextOf(I, EIt, EEnd);
  }

  /// Helper to look for \p I in the context defined by \p EIt and \p EEnd.
  ///
  /// The context is expanded until \p I was found or no more expansion is
  /// possible.
  ///
  /// \returns True, iff \p I was found.
  bool findInContextOf(const Instruction *I, iterator &EIt, iterator &EEnd) {
    bool Found = EIt.count(I);
    while (!Found && EIt != EEnd)
      Found = (++EIt).getCurrentInst() == I;
    return Found;
  }

  /// Return the next instruction that is guaranteed to be executed after \p PP.
  ///
  /// \param It              The iterator that is used to traverse the must be
  ///                        executed context.
  /// \param PP              The program point for which the next instruction
  ///                        that is guaranteed to execute is determined.
  const Instruction *
  getMustBeExecutedNextInstruction(MustBeExecutedIterator &It,
                                   const Instruction *PP);
  /// Return the previous instr. that is guaranteed to be executed before \p PP.
  ///
  /// \param It              The iterator that is used to traverse the must be
  ///                        executed context.
  /// \param PP              The program point for which the previous instr.
  ///                        that is guaranteed to execute is determined.
  const Instruction *
  getMustBeExecutedPrevInstruction(MustBeExecutedIterator &It,
                                   const Instruction *PP);

  /// Find the next join point from \p InitBB in forward direction.
  const BasicBlock *findForwardJoinPoint(const BasicBlock *InitBB);

  /// Find the next join point from \p InitBB in backward direction.
  const BasicBlock *findBackwardJoinPoint(const BasicBlock *InitBB);

  /// Parameter that limit the performed exploration. See the constructor for
  /// their meaning.
  ///{
  const bool ExploreInterBlock;
  const bool ExploreCFGForward;
  const bool ExploreCFGBackward;
  ///}

private:
  /// Getters for common CFG analyses: LoopInfo, DominatorTree, and
  /// PostDominatorTree.
  ///{
  GetterTy<const LoopInfo> LIGetter;
  GetterTy<const DominatorTree> DTGetter;
  GetterTy<const PostDominatorTree> PDTGetter;
  ///}

  /// Map to cache isGuaranteedToTransferExecutionToSuccessor results.
  DenseMap<const BasicBlock *, Optional<bool>> BlockTransferMap;

  /// Map to cache containsIrreducibleCFG results.
  DenseMap<const Function*, Optional<bool>> IrreducibleControlMap;

  /// Map from instructions to associated must be executed iterators.
  DenseMap<const Instruction *, std::unique_ptr<MustBeExecutedIterator>>
      InstructionIteratorMap;

  /// A unique end iterator.
  MustBeExecutedIterator EndIterator;
};

class MustExecutePrinterPass : public PassInfoMixin<MustExecutePrinterPass> {
  raw_ostream &OS;

public:
  MustExecutePrinterPass(raw_ostream &OS) : OS(OS) {}
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};

class MustBeExecutedContextPrinterPass
    : public PassInfoMixin<MustBeExecutedContextPrinterPass> {
  raw_ostream &OS;

public:
  MustBeExecutedContextPrinterPass(raw_ostream &OS) : OS(OS) {}
  PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
};

} // namespace llvm

#endif

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif