1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
|
#pragma once
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif
//==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Shared implementation of BlockFrequency for IR and Machine Instructions.
// See the documentation below for BlockFrequencyInfoImpl for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
#define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DOTGraphTraits.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/ScaledNumber.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <deque>
#include <iterator>
#include <limits>
#include <list>
#include <string>
#include <utility>
#include <vector>
#define DEBUG_TYPE "block-freq"
extern llvm::cl::opt<bool> CheckBFIUnknownBlockQueries;
namespace llvm {
class BranchProbabilityInfo;
class Function;
class Loop;
class LoopInfo;
class MachineBasicBlock;
class MachineBranchProbabilityInfo;
class MachineFunction;
class MachineLoop;
class MachineLoopInfo;
namespace bfi_detail {
struct IrreducibleGraph;
// This is part of a workaround for a GCC 4.7 crash on lambdas.
template <class BT> struct BlockEdgesAdder;
/// Mass of a block.
///
/// This class implements a sort of fixed-point fraction always between 0.0 and
/// 1.0. getMass() == std::numeric_limits<uint64_t>::max() indicates a value of
/// 1.0.
///
/// Masses can be added and subtracted. Simple saturation arithmetic is used,
/// so arithmetic operations never overflow or underflow.
///
/// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses
/// an inexpensive floating-point algorithm that's off-by-one (almost, but not
/// quite, maximum precision).
///
/// Masses can be scaled by \a BranchProbability at maximum precision.
class BlockMass {
uint64_t Mass = 0;
public:
BlockMass() = default;
explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
static BlockMass getEmpty() { return BlockMass(); }
static BlockMass getFull() {
return BlockMass(std::numeric_limits<uint64_t>::max());
}
uint64_t getMass() const { return Mass; }
bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); }
bool isEmpty() const { return !Mass; }
bool operator!() const { return isEmpty(); }
/// Add another mass.
///
/// Adds another mass, saturating at \a isFull() rather than overflowing.
BlockMass &operator+=(BlockMass X) {
uint64_t Sum = Mass + X.Mass;
Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum;
return *this;
}
/// Subtract another mass.
///
/// Subtracts another mass, saturating at \a isEmpty() rather than
/// undeflowing.
BlockMass &operator-=(BlockMass X) {
uint64_t Diff = Mass - X.Mass;
Mass = Diff > Mass ? 0 : Diff;
return *this;
}
BlockMass &operator*=(BranchProbability P) {
Mass = P.scale(Mass);
return *this;
}
bool operator==(BlockMass X) const { return Mass == X.Mass; }
bool operator!=(BlockMass X) const { return Mass != X.Mass; }
bool operator<=(BlockMass X) const { return Mass <= X.Mass; }
bool operator>=(BlockMass X) const { return Mass >= X.Mass; }
bool operator<(BlockMass X) const { return Mass < X.Mass; }
bool operator>(BlockMass X) const { return Mass > X.Mass; }
/// Convert to scaled number.
///
/// Convert to \a ScaledNumber. \a isFull() gives 1.0, while \a isEmpty()
/// gives slightly above 0.0.
ScaledNumber<uint64_t> toScaled() const;
void dump() const;
raw_ostream &print(raw_ostream &OS) const;
};
inline BlockMass operator+(BlockMass L, BlockMass R) {
return BlockMass(L) += R;
}
inline BlockMass operator-(BlockMass L, BlockMass R) {
return BlockMass(L) -= R;
}
inline BlockMass operator*(BlockMass L, BranchProbability R) {
return BlockMass(L) *= R;
}
inline BlockMass operator*(BranchProbability L, BlockMass R) {
return BlockMass(R) *= L;
}
inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) {
return X.print(OS);
}
} // end namespace bfi_detail
/// Base class for BlockFrequencyInfoImpl
///
/// BlockFrequencyInfoImplBase has supporting data structures and some
/// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on
/// the block type (or that call such algorithms) are skipped here.
///
/// Nevertheless, the majority of the overall algorithm documentation lives with
/// BlockFrequencyInfoImpl. See there for details.
class BlockFrequencyInfoImplBase {
public:
using Scaled64 = ScaledNumber<uint64_t>;
using BlockMass = bfi_detail::BlockMass;
/// Representative of a block.
///
/// This is a simple wrapper around an index into the reverse-post-order
/// traversal of the blocks.
///
/// Unlike a block pointer, its order has meaning (location in the
/// topological sort) and it's class is the same regardless of block type.
struct BlockNode {
using IndexType = uint32_t;
IndexType Index;
BlockNode() : Index(std::numeric_limits<uint32_t>::max()) {}
BlockNode(IndexType Index) : Index(Index) {}
bool operator==(const BlockNode &X) const { return Index == X.Index; }
bool operator!=(const BlockNode &X) const { return Index != X.Index; }
bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
bool operator<(const BlockNode &X) const { return Index < X.Index; }
bool operator>(const BlockNode &X) const { return Index > X.Index; }
bool isValid() const { return Index <= getMaxIndex(); }
static size_t getMaxIndex() {
return std::numeric_limits<uint32_t>::max() - 1;
}
};
/// Stats about a block itself.
struct FrequencyData {
Scaled64 Scaled;
uint64_t Integer;
};
/// Data about a loop.
///
/// Contains the data necessary to represent a loop as a pseudo-node once it's
/// packaged.
struct LoopData {
using ExitMap = SmallVector<std::pair<BlockNode, BlockMass>, 4>;
using NodeList = SmallVector<BlockNode, 4>;
using HeaderMassList = SmallVector<BlockMass, 1>;
LoopData *Parent; ///< The parent loop.
bool IsPackaged = false; ///< Whether this has been packaged.
uint32_t NumHeaders = 1; ///< Number of headers.
ExitMap Exits; ///< Successor edges (and weights).
NodeList Nodes; ///< Header and the members of the loop.
HeaderMassList BackedgeMass; ///< Mass returned to each loop header.
BlockMass Mass;
Scaled64 Scale;
LoopData(LoopData *Parent, const BlockNode &Header)
: Parent(Parent), Nodes(1, Header), BackedgeMass(1) {}
template <class It1, class It2>
LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
It2 LastOther)
: Parent(Parent), Nodes(FirstHeader, LastHeader) {
NumHeaders = Nodes.size();
Nodes.insert(Nodes.end(), FirstOther, LastOther);
BackedgeMass.resize(NumHeaders);
}
bool isHeader(const BlockNode &Node) const {
if (isIrreducible())
return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
Node);
return Node == Nodes[0];
}
BlockNode getHeader() const { return Nodes[0]; }
bool isIrreducible() const { return NumHeaders > 1; }
HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) {
assert(isHeader(B) && "this is only valid on loop header blocks");
if (isIrreducible())
return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) -
Nodes.begin();
return 0;
}
NodeList::const_iterator members_begin() const {
return Nodes.begin() + NumHeaders;
}
NodeList::const_iterator members_end() const { return Nodes.end(); }
iterator_range<NodeList::const_iterator> members() const {
return make_range(members_begin(), members_end());
}
};
/// Index of loop information.
struct WorkingData {
BlockNode Node; ///< This node.
LoopData *Loop = nullptr; ///< The loop this block is inside.
BlockMass Mass; ///< Mass distribution from the entry block.
WorkingData(const BlockNode &Node) : Node(Node) {}
bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
bool isDoubleLoopHeader() const {
return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
Loop->Parent->isHeader(Node);
}
LoopData *getContainingLoop() const {
if (!isLoopHeader())
return Loop;
if (!isDoubleLoopHeader())
return Loop->Parent;
return Loop->Parent->Parent;
}
/// Resolve a node to its representative.
///
/// Get the node currently representing Node, which could be a containing
/// loop.
///
/// This function should only be called when distributing mass. As long as
/// there are no irreducible edges to Node, then it will have complexity
/// O(1) in this context.
///
/// In general, the complexity is O(L), where L is the number of loop
/// headers Node has been packaged into. Since this method is called in
/// the context of distributing mass, L will be the number of loop headers
/// an early exit edge jumps out of.
BlockNode getResolvedNode() const {
auto L = getPackagedLoop();
return L ? L->getHeader() : Node;
}
LoopData *getPackagedLoop() const {
if (!Loop || !Loop->IsPackaged)
return nullptr;
auto L = Loop;
while (L->Parent && L->Parent->IsPackaged)
L = L->Parent;
return L;
}
/// Get the appropriate mass for a node.
///
/// Get appropriate mass for Node. If Node is a loop-header (whose loop
/// has been packaged), returns the mass of its pseudo-node. If it's a
/// node inside a packaged loop, it returns the loop's mass.
BlockMass &getMass() {
if (!isAPackage())
return Mass;
if (!isADoublePackage())
return Loop->Mass;
return Loop->Parent->Mass;
}
/// Has ContainingLoop been packaged up?
bool isPackaged() const { return getResolvedNode() != Node; }
/// Has Loop been packaged up?
bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
/// Has Loop been packaged up twice?
bool isADoublePackage() const {
return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
}
};
/// Unscaled probability weight.
///
/// Probability weight for an edge in the graph (including the
/// successor/target node).
///
/// All edges in the original function are 32-bit. However, exit edges from
/// loop packages are taken from 64-bit exit masses, so we need 64-bits of
/// space in general.
///
/// In addition to the raw weight amount, Weight stores the type of the edge
/// in the current context (i.e., the context of the loop being processed).
/// Is this a local edge within the loop, an exit from the loop, or a
/// backedge to the loop header?
struct Weight {
enum DistType { Local, Exit, Backedge };
DistType Type = Local;
BlockNode TargetNode;
uint64_t Amount = 0;
Weight() = default;
Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
: Type(Type), TargetNode(TargetNode), Amount(Amount) {}
};
/// Distribution of unscaled probability weight.
///
/// Distribution of unscaled probability weight to a set of successors.
///
/// This class collates the successor edge weights for later processing.
///
/// \a DidOverflow indicates whether \a Total did overflow while adding to
/// the distribution. It should never overflow twice.
struct Distribution {
using WeightList = SmallVector<Weight, 4>;
WeightList Weights; ///< Individual successor weights.
uint64_t Total = 0; ///< Sum of all weights.
bool DidOverflow = false; ///< Whether \a Total did overflow.
Distribution() = default;
void addLocal(const BlockNode &Node, uint64_t Amount) {
add(Node, Amount, Weight::Local);
}
void addExit(const BlockNode &Node, uint64_t Amount) {
add(Node, Amount, Weight::Exit);
}
void addBackedge(const BlockNode &Node, uint64_t Amount) {
add(Node, Amount, Weight::Backedge);
}
/// Normalize the distribution.
///
/// Combines multiple edges to the same \a Weight::TargetNode and scales
/// down so that \a Total fits into 32-bits.
///
/// This is linear in the size of \a Weights. For the vast majority of
/// cases, adjacent edge weights are combined by sorting WeightList and
/// combining adjacent weights. However, for very large edge lists an
/// auxiliary hash table is used.
void normalize();
private:
void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
};
/// Data about each block. This is used downstream.
std::vector<FrequencyData> Freqs;
/// Whether each block is an irreducible loop header.
/// This is used downstream.
SparseBitVector<> IsIrrLoopHeader;
/// Loop data: see initializeLoops().
std::vector<WorkingData> Working;
/// Indexed information about loops.
std::list<LoopData> Loops;
/// Virtual destructor.
///
/// Need a virtual destructor to mask the compiler warning about
/// getBlockName().
virtual ~BlockFrequencyInfoImplBase() = default;
/// Add all edges out of a packaged loop to the distribution.
///
/// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each
/// successor edge.
///
/// \return \c true unless there's an irreducible backedge.
bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
Distribution &Dist);
/// Add an edge to the distribution.
///
/// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the
/// edge is local/exit/backedge is in the context of LoopHead. Otherwise,
/// every edge should be a local edge (since all the loops are packaged up).
///
/// \return \c true unless aborted due to an irreducible backedge.
bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
LoopData &getLoopPackage(const BlockNode &Head) {
assert(Head.Index < Working.size());
assert(Working[Head.Index].isLoopHeader());
return *Working[Head.Index].Loop;
}
/// Analyze irreducible SCCs.
///
/// Separate irreducible SCCs from \c G, which is an explicit graph of \c
/// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
/// Insert them into \a Loops before \c Insert.
///
/// \return the \c LoopData nodes representing the irreducible SCCs.
iterator_range<std::list<LoopData>::iterator>
analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
std::list<LoopData>::iterator Insert);
/// Update a loop after packaging irreducible SCCs inside of it.
///
/// Update \c OuterLoop. Before finding irreducible control flow, it was
/// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
/// LoopData::BackedgeMass need to be reset. Also, nodes that were packaged
/// up need to be removed from \a OuterLoop::Nodes.
void updateLoopWithIrreducible(LoopData &OuterLoop);
/// Distribute mass according to a distribution.
///
/// Distributes the mass in Source according to Dist. If LoopHead.isValid(),
/// backedges and exits are stored in its entry in Loops.
///
/// Mass is distributed in parallel from two copies of the source mass.
void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
Distribution &Dist);
/// Compute the loop scale for a loop.
void computeLoopScale(LoopData &Loop);
/// Adjust the mass of all headers in an irreducible loop.
///
/// Initially, irreducible loops are assumed to distribute their mass
/// equally among its headers. This can lead to wrong frequency estimates
/// since some headers may be executed more frequently than others.
///
/// This adjusts header mass distribution so it matches the weights of
/// the backedges going into each of the loop headers.
void adjustLoopHeaderMass(LoopData &Loop);
void distributeIrrLoopHeaderMass(Distribution &Dist);
/// Package up a loop.
void packageLoop(LoopData &Loop);
/// Unwrap loops.
void unwrapLoops();
/// Finalize frequency metrics.
///
/// Calculates final frequencies and cleans up no-longer-needed data
/// structures.
void finalizeMetrics();
/// Clear all memory.
void clear();
virtual std::string getBlockName(const BlockNode &Node) const;
std::string getLoopName(const LoopData &Loop) const;
virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
void dump() const { print(dbgs()); }
Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
BlockFrequency getBlockFreq(const BlockNode &Node) const;
Optional<uint64_t> getBlockProfileCount(const Function &F,
const BlockNode &Node,
bool AllowSynthetic = false) const;
Optional<uint64_t> getProfileCountFromFreq(const Function &F,
uint64_t Freq,
bool AllowSynthetic = false) const;
bool isIrrLoopHeader(const BlockNode &Node);
void setBlockFreq(const BlockNode &Node, uint64_t Freq);
raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const;
raw_ostream &printBlockFreq(raw_ostream &OS,
const BlockFrequency &Freq) const;
uint64_t getEntryFreq() const {
assert(!Freqs.empty());
return Freqs[0].Integer;
}
};
namespace bfi_detail {
template <class BlockT> struct TypeMap {};
template <> struct TypeMap<BasicBlock> {
using BlockT = BasicBlock;
using BlockKeyT = AssertingVH<const BasicBlock>;
using FunctionT = Function;
using BranchProbabilityInfoT = BranchProbabilityInfo;
using LoopT = Loop;
using LoopInfoT = LoopInfo;
};
template <> struct TypeMap<MachineBasicBlock> {
using BlockT = MachineBasicBlock;
using BlockKeyT = const MachineBasicBlock *;
using FunctionT = MachineFunction;
using BranchProbabilityInfoT = MachineBranchProbabilityInfo;
using LoopT = MachineLoop;
using LoopInfoT = MachineLoopInfo;
};
template <class BlockT, class BFIImplT>
class BFICallbackVH;
/// Get the name of a MachineBasicBlock.
///
/// Get the name of a MachineBasicBlock. It's templated so that including from
/// CodeGen is unnecessary (that would be a layering issue).
///
/// This is used mainly for debug output. The name is similar to
/// MachineBasicBlock::getFullName(), but skips the name of the function.
template <class BlockT> std::string getBlockName(const BlockT *BB) {
assert(BB && "Unexpected nullptr");
auto MachineName = "BB" + Twine(BB->getNumber());
if (BB->getBasicBlock())
return (MachineName + "[" + BB->getName() + "]").str();
return MachineName.str();
}
/// Get the name of a BasicBlock.
template <> inline std::string getBlockName(const BasicBlock *BB) {
assert(BB && "Unexpected nullptr");
return BB->getName().str();
}
/// Graph of irreducible control flow.
///
/// This graph is used for determining the SCCs in a loop (or top-level
/// function) that has irreducible control flow.
///
/// During the block frequency algorithm, the local graphs are defined in a
/// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
/// graphs for most edges, but getting others from \a LoopData::ExitMap. The
/// latter only has successor information.
///
/// \a IrreducibleGraph makes this graph explicit. It's in a form that can use
/// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
/// and it explicitly lists predecessors and successors. The initialization
/// that relies on \c MachineBasicBlock is defined in the header.
struct IrreducibleGraph {
using BFIBase = BlockFrequencyInfoImplBase;
BFIBase &BFI;
using BlockNode = BFIBase::BlockNode;
struct IrrNode {
BlockNode Node;
unsigned NumIn = 0;
std::deque<const IrrNode *> Edges;
IrrNode(const BlockNode &Node) : Node(Node) {}
using iterator = std::deque<const IrrNode *>::const_iterator;
iterator pred_begin() const { return Edges.begin(); }
iterator succ_begin() const { return Edges.begin() + NumIn; }
iterator pred_end() const { return succ_begin(); }
iterator succ_end() const { return Edges.end(); }
};
BlockNode Start;
const IrrNode *StartIrr = nullptr;
std::vector<IrrNode> Nodes;
SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
/// Construct an explicit graph containing irreducible control flow.
///
/// Construct an explicit graph of the control flow in \c OuterLoop (or the
/// top-level function, if \c OuterLoop is \c nullptr). Uses \c
/// addBlockEdges to add block successors that have not been packaged into
/// loops.
///
/// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
/// user of this.
template <class BlockEdgesAdder>
IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
BlockEdgesAdder addBlockEdges) : BFI(BFI) {
initialize(OuterLoop, addBlockEdges);
}
template <class BlockEdgesAdder>
void initialize(const BFIBase::LoopData *OuterLoop,
BlockEdgesAdder addBlockEdges);
void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
void addNodesInFunction();
void addNode(const BlockNode &Node) {
Nodes.emplace_back(Node);
BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
}
void indexNodes();
template <class BlockEdgesAdder>
void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
BlockEdgesAdder addBlockEdges);
void addEdge(IrrNode &Irr, const BlockNode &Succ,
const BFIBase::LoopData *OuterLoop);
};
template <class BlockEdgesAdder>
void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
BlockEdgesAdder addBlockEdges) {
if (OuterLoop) {
addNodesInLoop(*OuterLoop);
for (auto N : OuterLoop->Nodes)
addEdges(N, OuterLoop, addBlockEdges);
} else {
addNodesInFunction();
for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
addEdges(Index, OuterLoop, addBlockEdges);
}
StartIrr = Lookup[Start.Index];
}
template <class BlockEdgesAdder>
void IrreducibleGraph::addEdges(const BlockNode &Node,
const BFIBase::LoopData *OuterLoop,
BlockEdgesAdder addBlockEdges) {
auto L = Lookup.find(Node.Index);
if (L == Lookup.end())
return;
IrrNode &Irr = *L->second;
const auto &Working = BFI.Working[Node.Index];
if (Working.isAPackage())
for (const auto &I : Working.Loop->Exits)
addEdge(Irr, I.first, OuterLoop);
else
addBlockEdges(*this, Irr, OuterLoop);
}
} // end namespace bfi_detail
/// Shared implementation for block frequency analysis.
///
/// This is a shared implementation of BlockFrequencyInfo and
/// MachineBlockFrequencyInfo, and calculates the relative frequencies of
/// blocks.
///
/// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
/// which is called the header. A given loop, L, can have sub-loops, which are
/// loops within the subgraph of L that exclude its header. (A "trivial" SCC
/// consists of a single block that does not have a self-edge.)
///
/// In addition to loops, this algorithm has limited support for irreducible
/// SCCs, which are SCCs with multiple entry blocks. Irreducible SCCs are
/// discovered on the fly, and modelled as loops with multiple headers.
///
/// The headers of irreducible sub-SCCs consist of its entry blocks and all
/// nodes that are targets of a backedge within it (excluding backedges within
/// true sub-loops). Block frequency calculations act as if a block is
/// inserted that intercepts all the edges to the headers. All backedges and
/// entries point to this block. Its successors are the headers, which split
/// the frequency evenly.
///
/// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
/// separates mass distribution from loop scaling, and dithers to eliminate
/// probability mass loss.
///
/// The implementation is split between BlockFrequencyInfoImpl, which knows the
/// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
/// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a
/// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in
/// reverse-post order. This gives two advantages: it's easy to compare the
/// relative ordering of two nodes, and maps keyed on BlockT can be represented
/// by vectors.
///
/// This algorithm is O(V+E), unless there is irreducible control flow, in
/// which case it's O(V*E) in the worst case.
///
/// These are the main stages:
///
/// 0. Reverse post-order traversal (\a initializeRPOT()).
///
/// Run a single post-order traversal and save it (in reverse) in RPOT.
/// All other stages make use of this ordering. Save a lookup from BlockT
/// to BlockNode (the index into RPOT) in Nodes.
///
/// 1. Loop initialization (\a initializeLoops()).
///
/// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
/// the algorithm. In particular, store the immediate members of each loop
/// in reverse post-order.
///
/// 2. Calculate mass and scale in loops (\a computeMassInLoops()).
///
/// For each loop (bottom-up), distribute mass through the DAG resulting
/// from ignoring backedges and treating sub-loops as a single pseudo-node.
/// Track the backedge mass distributed to the loop header, and use it to
/// calculate the loop scale (number of loop iterations). Immediate
/// members that represent sub-loops will already have been visited and
/// packaged into a pseudo-node.
///
/// Distributing mass in a loop is a reverse-post-order traversal through
/// the loop. Start by assigning full mass to the Loop header. For each
/// node in the loop:
///
/// - Fetch and categorize the weight distribution for its successors.
/// If this is a packaged-subloop, the weight distribution is stored
/// in \a LoopData::Exits. Otherwise, fetch it from
/// BranchProbabilityInfo.
///
/// - Each successor is categorized as \a Weight::Local, a local edge
/// within the current loop, \a Weight::Backedge, a backedge to the
/// loop header, or \a Weight::Exit, any successor outside the loop.
/// The weight, the successor, and its category are stored in \a
/// Distribution. There can be multiple edges to each successor.
///
/// - If there's a backedge to a non-header, there's an irreducible SCC.
/// The usual flow is temporarily aborted. \a
/// computeIrreducibleMass() finds the irreducible SCCs within the
/// loop, packages them up, and restarts the flow.
///
/// - Normalize the distribution: scale weights down so that their sum
/// is 32-bits, and coalesce multiple edges to the same node.
///
/// - Distribute the mass accordingly, dithering to minimize mass loss,
/// as described in \a distributeMass().
///
/// In the case of irreducible loops, instead of a single loop header,
/// there will be several. The computation of backedge masses is similar
/// but instead of having a single backedge mass, there will be one
/// backedge per loop header. In these cases, each backedge will carry
/// a mass proportional to the edge weights along the corresponding
/// path.
///
/// At the end of propagation, the full mass assigned to the loop will be
/// distributed among the loop headers proportionally according to the
/// mass flowing through their backedges.
///
/// Finally, calculate the loop scale from the accumulated backedge mass.
///
/// 3. Distribute mass in the function (\a computeMassInFunction()).
///
/// Finally, distribute mass through the DAG resulting from packaging all
/// loops in the function. This uses the same algorithm as distributing
/// mass in a loop, except that there are no exit or backedge edges.
///
/// 4. Unpackage loops (\a unwrapLoops()).
///
/// Initialize each block's frequency to a floating point representation of
/// its mass.
///
/// Visit loops top-down, scaling the frequencies of its immediate members
/// by the loop's pseudo-node's frequency.
///
/// 5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
///
/// Using the min and max frequencies as a guide, translate floating point
/// frequencies to an appropriate range in uint64_t.
///
/// It has some known flaws.
///
/// - The model of irreducible control flow is a rough approximation.
///
/// Modelling irreducible control flow exactly involves setting up and
/// solving a group of infinite geometric series. Such precision is
/// unlikely to be worthwhile, since most of our algorithms give up on
/// irreducible control flow anyway.
///
/// Nevertheless, we might find that we need to get closer. Here's a sort
/// of TODO list for the model with diminishing returns, to be completed as
/// necessary.
///
/// - The headers for the \a LoopData representing an irreducible SCC
/// include non-entry blocks. When these extra blocks exist, they
/// indicate a self-contained irreducible sub-SCC. We could treat them
/// as sub-loops, rather than arbitrarily shoving the problematic
/// blocks into the headers of the main irreducible SCC.
///
/// - Entry frequencies are assumed to be evenly split between the
/// headers of a given irreducible SCC, which is the only option if we
/// need to compute mass in the SCC before its parent loop. Instead,
/// we could partially compute mass in the parent loop, and stop when
/// we get to the SCC. Here, we have the correct ratio of entry
/// masses, which we can use to adjust their relative frequencies.
/// Compute mass in the SCC, and then continue propagation in the
/// parent.
///
/// - We can propagate mass iteratively through the SCC, for some fixed
/// number of iterations. Each iteration starts by assigning the entry
/// blocks their backedge mass from the prior iteration. The final
/// mass for each block (and each exit, and the total backedge mass
/// used for computing loop scale) is the sum of all iterations.
/// (Running this until fixed point would "solve" the geometric
/// series by simulation.)
template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
// This is part of a workaround for a GCC 4.7 crash on lambdas.
friend struct bfi_detail::BlockEdgesAdder<BT>;
using BlockT = typename bfi_detail::TypeMap<BT>::BlockT;
using BlockKeyT = typename bfi_detail::TypeMap<BT>::BlockKeyT;
using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT;
using BranchProbabilityInfoT =
typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT;
using LoopT = typename bfi_detail::TypeMap<BT>::LoopT;
using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT;
using Successor = GraphTraits<const BlockT *>;
using Predecessor = GraphTraits<Inverse<const BlockT *>>;
using BFICallbackVH =
bfi_detail::BFICallbackVH<BlockT, BlockFrequencyInfoImpl>;
const BranchProbabilityInfoT *BPI = nullptr;
const LoopInfoT *LI = nullptr;
const FunctionT *F = nullptr;
// All blocks in reverse postorder.
std::vector<const BlockT *> RPOT;
DenseMap<BlockKeyT, std::pair<BlockNode, BFICallbackVH>> Nodes;
using rpot_iterator = typename std::vector<const BlockT *>::const_iterator;
rpot_iterator rpot_begin() const { return RPOT.begin(); }
rpot_iterator rpot_end() const { return RPOT.end(); }
size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
BlockNode getNode(const rpot_iterator &I) const {
return BlockNode(getIndex(I));
}
BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB).first; }
const BlockT *getBlock(const BlockNode &Node) const {
assert(Node.Index < RPOT.size());
return RPOT[Node.Index];
}
/// Run (and save) a post-order traversal.
///
/// Saves a reverse post-order traversal of all the nodes in \a F.
void initializeRPOT();
/// Initialize loop data.
///
/// Build up \a Loops using \a LoopInfo. \a LoopInfo gives us a mapping from
/// each block to the deepest loop it's in, but we need the inverse. For each
/// loop, we store in reverse post-order its "immediate" members, defined as
/// the header, the headers of immediate sub-loops, and all other blocks in
/// the loop that are not in sub-loops.
void initializeLoops();
/// Propagate to a block's successors.
///
/// In the context of distributing mass through \c OuterLoop, divide the mass
/// currently assigned to \c Node between its successors.
///
/// \return \c true unless there's an irreducible backedge.
bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
/// Compute mass in a particular loop.
///
/// Assign mass to \c Loop's header, and then for each block in \c Loop in
/// reverse post-order, distribute mass to its successors. Only visits nodes
/// that have not been packaged into sub-loops.
///
/// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
/// \return \c true unless there's an irreducible backedge.
bool computeMassInLoop(LoopData &Loop);
/// Try to compute mass in the top-level function.
///
/// Assign mass to the entry block, and then for each block in reverse
/// post-order, distribute mass to its successors. Skips nodes that have
/// been packaged into loops.
///
/// \pre \a computeMassInLoops() has been called.
/// \return \c true unless there's an irreducible backedge.
bool tryToComputeMassInFunction();
/// Compute mass in (and package up) irreducible SCCs.
///
/// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
/// of \c Insert), and call \a computeMassInLoop() on each of them.
///
/// If \c OuterLoop is \c nullptr, it refers to the top-level function.
///
/// \pre \a computeMassInLoop() has been called for each subloop of \c
/// OuterLoop.
/// \pre \c Insert points at the last loop successfully processed by \a
/// computeMassInLoop().
/// \pre \c OuterLoop has irreducible SCCs.
void computeIrreducibleMass(LoopData *OuterLoop,
std::list<LoopData>::iterator Insert);
/// Compute mass in all loops.
///
/// For each loop bottom-up, call \a computeMassInLoop().
///
/// \a computeMassInLoop() aborts (and returns \c false) on loops that
/// contain a irreducible sub-SCCs. Use \a computeIrreducibleMass() and then
/// re-enter \a computeMassInLoop().
///
/// \post \a computeMassInLoop() has returned \c true for every loop.
void computeMassInLoops();
/// Compute mass in the top-level function.
///
/// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
/// compute mass in the top-level function.
///
/// \post \a tryToComputeMassInFunction() has returned \c true.
void computeMassInFunction();
std::string getBlockName(const BlockNode &Node) const override {
return bfi_detail::getBlockName(getBlock(Node));
}
public:
BlockFrequencyInfoImpl() = default;
const FunctionT *getFunction() const { return F; }
void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI,
const LoopInfoT &LI);
using BlockFrequencyInfoImplBase::getEntryFreq;
BlockFrequency getBlockFreq(const BlockT *BB) const {
return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
}
Optional<uint64_t> getBlockProfileCount(const Function &F,
const BlockT *BB,
bool AllowSynthetic = false) const {
return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB),
AllowSynthetic);
}
Optional<uint64_t> getProfileCountFromFreq(const Function &F,
uint64_t Freq,
bool AllowSynthetic = false) const {
return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq,
AllowSynthetic);
}
bool isIrrLoopHeader(const BlockT *BB) {
return BlockFrequencyInfoImplBase::isIrrLoopHeader(getNode(BB));
}
void setBlockFreq(const BlockT *BB, uint64_t Freq);
void forgetBlock(const BlockT *BB) {
// We don't erase corresponding items from `Freqs`, `RPOT` and other to
// avoid invalidating indices. Doing so would have saved some memory, but
// it's not worth it.
Nodes.erase(BB);
}
Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
}
const BranchProbabilityInfoT &getBPI() const { return *BPI; }
/// Print the frequencies for the current function.
///
/// Prints the frequencies for the blocks in the current function.
///
/// Blocks are printed in the natural iteration order of the function, rather
/// than reverse post-order. This provides two advantages: writing -analyze
/// tests is easier (since blocks come out in source order), and even
/// unreachable blocks are printed.
///
/// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
/// we need to override it here.
raw_ostream &print(raw_ostream &OS) const override;
using BlockFrequencyInfoImplBase::dump;
using BlockFrequencyInfoImplBase::printBlockFreq;
raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const {
return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB));
}
void verifyMatch(BlockFrequencyInfoImpl<BT> &Other) const;
};
namespace bfi_detail {
template <class BFIImplT>
class BFICallbackVH<BasicBlock, BFIImplT> : public CallbackVH {
BFIImplT *BFIImpl;
public:
BFICallbackVH() = default;
BFICallbackVH(const BasicBlock *BB, BFIImplT *BFIImpl)
: CallbackVH(BB), BFIImpl(BFIImpl) {}
virtual ~BFICallbackVH() = default;
void deleted() override {
BFIImpl->forgetBlock(cast<BasicBlock>(getValPtr()));
}
};
/// Dummy implementation since MachineBasicBlocks aren't Values, so ValueHandles
/// don't apply to them.
template <class BFIImplT>
class BFICallbackVH<MachineBasicBlock, BFIImplT> {
public:
BFICallbackVH() = default;
BFICallbackVH(const MachineBasicBlock *, BFIImplT *) {}
};
} // end namespace bfi_detail
template <class BT>
void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F,
const BranchProbabilityInfoT &BPI,
const LoopInfoT &LI) {
// Save the parameters.
this->BPI = &BPI;
this->LI = &LI;
this->F = &F;
// Clean up left-over data structures.
BlockFrequencyInfoImplBase::clear();
RPOT.clear();
Nodes.clear();
// Initialize.
LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName()
<< "\n================="
<< std::string(F.getName().size(), '=') << "\n");
initializeRPOT();
initializeLoops();
// Visit loops in post-order to find the local mass distribution, and then do
// the full function.
computeMassInLoops();
computeMassInFunction();
unwrapLoops();
finalizeMetrics();
if (CheckBFIUnknownBlockQueries) {
// To detect BFI queries for unknown blocks, add entries for unreachable
// blocks, if any. This is to distinguish between known/existing unreachable
// blocks and unknown blocks.
for (const BlockT &BB : F)
if (!Nodes.count(&BB))
setBlockFreq(&BB, 0);
}
}
template <class BT>
void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) {
if (Nodes.count(BB))
BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq);
else {
// If BB is a newly added block after BFI is done, we need to create a new
// BlockNode for it assigned with a new index. The index can be determined
// by the size of Freqs.
BlockNode NewNode(Freqs.size());
Nodes[BB] = {NewNode, BFICallbackVH(BB, this)};
Freqs.emplace_back();
BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq);
}
}
template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
const BlockT *Entry = &F->front();
RPOT.reserve(F->size());
std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
std::reverse(RPOT.begin(), RPOT.end());
assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
"More nodes in function than Block Frequency Info supports");
LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n");
for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
BlockNode Node = getNode(I);
LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node)
<< "\n");
Nodes[*I] = {Node, BFICallbackVH(*I, this)};
}
Working.reserve(RPOT.size());
for (size_t Index = 0; Index < RPOT.size(); ++Index)
Working.emplace_back(Index);
Freqs.resize(RPOT.size());
}
template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
LLVM_DEBUG(dbgs() << "loop-detection\n");
if (LI->empty())
return;
// Visit loops top down and assign them an index.
std::deque<std::pair<const LoopT *, LoopData *>> Q;
for (const LoopT *L : *LI)
Q.emplace_back(L, nullptr);
while (!Q.empty()) {
const LoopT *Loop = Q.front().first;
LoopData *Parent = Q.front().second;
Q.pop_front();
BlockNode Header = getNode(Loop->getHeader());
assert(Header.isValid());
Loops.emplace_back(Parent, Header);
Working[Header.Index].Loop = &Loops.back();
LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
for (const LoopT *L : *Loop)
Q.emplace_back(L, &Loops.back());
}
// Visit nodes in reverse post-order and add them to their deepest containing
// loop.
for (size_t Index = 0; Index < RPOT.size(); ++Index) {
// Loop headers have already been mostly mapped.
if (Working[Index].isLoopHeader()) {
LoopData *ContainingLoop = Working[Index].getContainingLoop();
if (ContainingLoop)
ContainingLoop->Nodes.push_back(Index);
continue;
}
const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
if (!Loop)
continue;
// Add this node to its containing loop's member list.
BlockNode Header = getNode(Loop->getHeader());
assert(Header.isValid());
const auto &HeaderData = Working[Header.Index];
assert(HeaderData.isLoopHeader());
Working[Index].Loop = HeaderData.Loop;
HeaderData.Loop->Nodes.push_back(Index);
LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header)
<< ": member = " << getBlockName(Index) << "\n");
}
}
template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
// Visit loops with the deepest first, and the top-level loops last.
for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
if (computeMassInLoop(*L))
continue;
auto Next = std::next(L);
computeIrreducibleMass(&*L, L.base());
L = std::prev(Next);
if (computeMassInLoop(*L))
continue;
llvm_unreachable("unhandled irreducible control flow");
}
}
template <class BT>
bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
// Compute mass in loop.
LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
if (Loop.isIrreducible()) {
LLVM_DEBUG(dbgs() << "isIrreducible = true\n");
Distribution Dist;
unsigned NumHeadersWithWeight = 0;
Optional<uint64_t> MinHeaderWeight;
DenseSet<uint32_t> HeadersWithoutWeight;
HeadersWithoutWeight.reserve(Loop.NumHeaders);
for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
auto &HeaderNode = Loop.Nodes[H];
const BlockT *Block = getBlock(HeaderNode);
IsIrrLoopHeader.set(Loop.Nodes[H].Index);
Optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight();
if (!HeaderWeight) {
LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on "
<< getBlockName(HeaderNode) << "\n");
HeadersWithoutWeight.insert(H);
continue;
}
LLVM_DEBUG(dbgs() << getBlockName(HeaderNode)
<< " has irr loop header weight "
<< HeaderWeight.getValue() << "\n");
NumHeadersWithWeight++;
uint64_t HeaderWeightValue = HeaderWeight.getValue();
if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight)
MinHeaderWeight = HeaderWeightValue;
if (HeaderWeightValue) {
Dist.addLocal(HeaderNode, HeaderWeightValue);
}
}
// As a heuristic, if some headers don't have a weight, give them the
// minimum weight seen (not to disrupt the existing trends too much by
// using a weight that's in the general range of the other headers' weights,
// and the minimum seems to perform better than the average.)
// FIXME: better update in the passes that drop the header weight.
// If no headers have a weight, give them even weight (use weight 1).
if (!MinHeaderWeight)
MinHeaderWeight = 1;
for (uint32_t H : HeadersWithoutWeight) {
auto &HeaderNode = Loop.Nodes[H];
assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() &&
"Shouldn't have a weight metadata");
uint64_t MinWeight = MinHeaderWeight.getValue();
LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to "
<< getBlockName(HeaderNode) << "\n");
if (MinWeight)
Dist.addLocal(HeaderNode, MinWeight);
}
distributeIrrLoopHeaderMass(Dist);
for (const BlockNode &M : Loop.Nodes)
if (!propagateMassToSuccessors(&Loop, M))
llvm_unreachable("unhandled irreducible control flow");
if (NumHeadersWithWeight == 0)
// No headers have a metadata. Adjust header mass.
adjustLoopHeaderMass(Loop);
} else {
Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
llvm_unreachable("irreducible control flow to loop header!?");
for (const BlockNode &M : Loop.members())
if (!propagateMassToSuccessors(&Loop, M))
// Irreducible backedge.
return false;
}
computeLoopScale(Loop);
packageLoop(Loop);
return true;
}
template <class BT>
bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
// Compute mass in function.
LLVM_DEBUG(dbgs() << "compute-mass-in-function\n");
assert(!Working.empty() && "no blocks in function");
assert(!Working[0].isLoopHeader() && "entry block is a loop header");
Working[0].getMass() = BlockMass::getFull();
for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
// Check for nodes that have been packaged.
BlockNode Node = getNode(I);
if (Working[Node.Index].isPackaged())
continue;
if (!propagateMassToSuccessors(nullptr, Node))
return false;
}
return true;
}
template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
if (tryToComputeMassInFunction())
return;
computeIrreducibleMass(nullptr, Loops.begin());
if (tryToComputeMassInFunction())
return;
llvm_unreachable("unhandled irreducible control flow");
}
/// \note This should be a lambda, but that crashes GCC 4.7.
namespace bfi_detail {
template <class BT> struct BlockEdgesAdder {
using BlockT = BT;
using LoopData = BlockFrequencyInfoImplBase::LoopData;
using Successor = GraphTraits<const BlockT *>;
const BlockFrequencyInfoImpl<BT> &BFI;
explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
: BFI(BFI) {}
void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
const LoopData *OuterLoop) {
const BlockT *BB = BFI.RPOT[Irr.Node.Index];
for (const auto Succ : children<const BlockT *>(BB))
G.addEdge(Irr, BFI.getNode(Succ), OuterLoop);
}
};
} // end namespace bfi_detail
template <class BT>
void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
LLVM_DEBUG(dbgs() << "analyze-irreducible-in-";
if (OuterLoop) dbgs()
<< "loop: " << getLoopName(*OuterLoop) << "\n";
else dbgs() << "function\n");
using namespace bfi_detail;
// Ideally, addBlockEdges() would be declared here as a lambda, but that
// crashes GCC 4.7.
BlockEdgesAdder<BT> addBlockEdges(*this);
IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
computeMassInLoop(L);
if (!OuterLoop)
return;
updateLoopWithIrreducible(*OuterLoop);
}
// A helper function that converts a branch probability into weight.
inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) {
return Prob.getNumerator();
}
template <class BT>
bool
BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
const BlockNode &Node) {
LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
// Calculate probability for successors.
Distribution Dist;
if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
// Irreducible backedge.
return false;
} else {
const BlockT *BB = getBlock(Node);
for (auto SI = GraphTraits<const BlockT *>::child_begin(BB),
SE = GraphTraits<const BlockT *>::child_end(BB);
SI != SE; ++SI)
if (!addToDist(
Dist, OuterLoop, Node, getNode(*SI),
getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI))))
// Irreducible backedge.
return false;
}
// Distribute mass to successors, saving exit and backedge data in the
// loop header.
distributeMass(Node, OuterLoop, Dist);
return true;
}
template <class BT>
raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
if (!F)
return OS;
OS << "block-frequency-info: " << F->getName() << "\n";
for (const BlockT &BB : *F) {
OS << " - " << bfi_detail::getBlockName(&BB) << ": float = ";
getFloatingBlockFreq(&BB).print(OS, 5)
<< ", int = " << getBlockFreq(&BB).getFrequency();
if (Optional<uint64_t> ProfileCount =
BlockFrequencyInfoImplBase::getBlockProfileCount(
F->getFunction(), getNode(&BB)))
OS << ", count = " << ProfileCount.getValue();
if (Optional<uint64_t> IrrLoopHeaderWeight =
BB.getIrrLoopHeaderWeight())
OS << ", irr_loop_header_weight = " << IrrLoopHeaderWeight.getValue();
OS << "\n";
}
// Add an extra newline for readability.
OS << "\n";
return OS;
}
template <class BT>
void BlockFrequencyInfoImpl<BT>::verifyMatch(
BlockFrequencyInfoImpl<BT> &Other) const {
bool Match = true;
DenseMap<const BlockT *, BlockNode> ValidNodes;
DenseMap<const BlockT *, BlockNode> OtherValidNodes;
for (auto &Entry : Nodes) {
const BlockT *BB = Entry.first;
if (BB) {
ValidNodes[BB] = Entry.second.first;
}
}
for (auto &Entry : Other.Nodes) {
const BlockT *BB = Entry.first;
if (BB) {
OtherValidNodes[BB] = Entry.second.first;
}
}
unsigned NumValidNodes = ValidNodes.size();
unsigned NumOtherValidNodes = OtherValidNodes.size();
if (NumValidNodes != NumOtherValidNodes) {
Match = false;
dbgs() << "Number of blocks mismatch: " << NumValidNodes << " vs "
<< NumOtherValidNodes << "\n";
} else {
for (auto &Entry : ValidNodes) {
const BlockT *BB = Entry.first;
BlockNode Node = Entry.second;
if (OtherValidNodes.count(BB)) {
BlockNode OtherNode = OtherValidNodes[BB];
const auto &Freq = Freqs[Node.Index];
const auto &OtherFreq = Other.Freqs[OtherNode.Index];
if (Freq.Integer != OtherFreq.Integer) {
Match = false;
dbgs() << "Freq mismatch: " << bfi_detail::getBlockName(BB) << " "
<< Freq.Integer << " vs " << OtherFreq.Integer << "\n";
}
} else {
Match = false;
dbgs() << "Block " << bfi_detail::getBlockName(BB) << " index "
<< Node.Index << " does not exist in Other.\n";
}
}
// If there's a valid node in OtherValidNodes that's not in ValidNodes,
// either the above num check or the check on OtherValidNodes will fail.
}
if (!Match) {
dbgs() << "This\n";
print(dbgs());
dbgs() << "Other\n";
Other.print(dbgs());
}
assert(Match && "BFI mismatch");
}
// Graph trait base class for block frequency information graph
// viewer.
enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count };
template <class BlockFrequencyInfoT, class BranchProbabilityInfoT>
struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits {
using GTraits = GraphTraits<BlockFrequencyInfoT *>;
using NodeRef = typename GTraits::NodeRef;
using EdgeIter = typename GTraits::ChildIteratorType;
using NodeIter = typename GTraits::nodes_iterator;
uint64_t MaxFrequency = 0;
explicit BFIDOTGraphTraitsBase(bool isSimple = false)
: DefaultDOTGraphTraits(isSimple) {}
static StringRef getGraphName(const BlockFrequencyInfoT *G) {
return G->getFunction()->getName();
}
std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph,
unsigned HotPercentThreshold = 0) {
std::string Result;
if (!HotPercentThreshold)
return Result;
// Compute MaxFrequency on the fly:
if (!MaxFrequency) {
for (NodeIter I = GTraits::nodes_begin(Graph),
E = GTraits::nodes_end(Graph);
I != E; ++I) {
NodeRef N = *I;
MaxFrequency =
std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency());
}
}
BlockFrequency Freq = Graph->getBlockFreq(Node);
BlockFrequency HotFreq =
(BlockFrequency(MaxFrequency) *
BranchProbability::getBranchProbability(HotPercentThreshold, 100));
if (Freq < HotFreq)
return Result;
raw_string_ostream OS(Result);
OS << "color=\"red\"";
OS.flush();
return Result;
}
std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph,
GVDAGType GType, int layout_order = -1) {
std::string Result;
raw_string_ostream OS(Result);
if (layout_order != -1)
OS << Node->getName() << "[" << layout_order << "] : ";
else
OS << Node->getName() << " : ";
switch (GType) {
case GVDT_Fraction:
Graph->printBlockFreq(OS, Node);
break;
case GVDT_Integer:
OS << Graph->getBlockFreq(Node).getFrequency();
break;
case GVDT_Count: {
auto Count = Graph->getBlockProfileCount(Node);
if (Count)
OS << Count.getValue();
else
OS << "Unknown";
break;
}
case GVDT_None:
llvm_unreachable("If we are not supposed to render a graph we should "
"never reach this point.");
}
return Result;
}
std::string getEdgeAttributes(NodeRef Node, EdgeIter EI,
const BlockFrequencyInfoT *BFI,
const BranchProbabilityInfoT *BPI,
unsigned HotPercentThreshold = 0) {
std::string Str;
if (!BPI)
return Str;
BranchProbability BP = BPI->getEdgeProbability(Node, EI);
uint32_t N = BP.getNumerator();
uint32_t D = BP.getDenominator();
double Percent = 100.0 * N / D;
raw_string_ostream OS(Str);
OS << format("label=\"%.1f%%\"", Percent);
if (HotPercentThreshold) {
BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP;
BlockFrequency HotFreq = BlockFrequency(MaxFrequency) *
BranchProbability(HotPercentThreshold, 100);
if (EFreq >= HotFreq) {
OS << ",color=\"red\"";
}
}
OS.flush();
return Str;
}
};
} // end namespace llvm
#undef DEBUG_TYPE
#endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
|