aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/include/llvm/ADT/BitVector.h
blob: c1806c6d23a66ef61b6add83cb8cc27ba3f02a64 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the BitVector class.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_BITVECTOR_H
#define LLVM_ADT_BITVECTOR_H

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <utility>

namespace llvm {

/// ForwardIterator for the bits that are set.
/// Iterators get invalidated when resize / reserve is called.
template <typename BitVectorT> class const_set_bits_iterator_impl {
  const BitVectorT &Parent;
  int Current = 0;

  void advance() {
    assert(Current != -1 && "Trying to advance past end.");
    Current = Parent.find_next(Current);
  }

public:
  const_set_bits_iterator_impl(const BitVectorT &Parent, int Current)
      : Parent(Parent), Current(Current) {}
  explicit const_set_bits_iterator_impl(const BitVectorT &Parent)
      : const_set_bits_iterator_impl(Parent, Parent.find_first()) {}
  const_set_bits_iterator_impl(const const_set_bits_iterator_impl &) = default;

  const_set_bits_iterator_impl operator++(int) {
    auto Prev = *this;
    advance();
    return Prev;
  }

  const_set_bits_iterator_impl &operator++() {
    advance();
    return *this;
  }

  unsigned operator*() const { return Current; }

  bool operator==(const const_set_bits_iterator_impl &Other) const {
    assert(&Parent == &Other.Parent &&
           "Comparing iterators from different BitVectors");
    return Current == Other.Current;
  }

  bool operator!=(const const_set_bits_iterator_impl &Other) const {
    assert(&Parent == &Other.Parent &&
           "Comparing iterators from different BitVectors");
    return Current != Other.Current;
  }
};

class BitVector {
  typedef uintptr_t BitWord;

  enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT };

  static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32,
                "Unsupported word size");

  MutableArrayRef<BitWord> Bits; // Actual bits.
  unsigned Size;                 // Size of bitvector in bits.

public:
  typedef unsigned size_type;
  // Encapsulation of a single bit.
  class reference {
    friend class BitVector;

    BitWord *WordRef;
    unsigned BitPos;

  public:
    reference(BitVector &b, unsigned Idx) {
      WordRef = &b.Bits[Idx / BITWORD_SIZE];
      BitPos = Idx % BITWORD_SIZE;
    }

    reference() = delete;
    reference(const reference&) = default;

    reference &operator=(reference t) {
      *this = bool(t);
      return *this;
    }

    reference& operator=(bool t) {
      if (t)
        *WordRef |= BitWord(1) << BitPos;
      else
        *WordRef &= ~(BitWord(1) << BitPos);
      return *this;
    }

    operator bool() const {
      return ((*WordRef) & (BitWord(1) << BitPos)) != 0;
    }
  };

  typedef const_set_bits_iterator_impl<BitVector> const_set_bits_iterator;
  typedef const_set_bits_iterator set_iterator;

  const_set_bits_iterator set_bits_begin() const {
    return const_set_bits_iterator(*this);
  }
  const_set_bits_iterator set_bits_end() const {
    return const_set_bits_iterator(*this, -1);
  }
  iterator_range<const_set_bits_iterator> set_bits() const {
    return make_range(set_bits_begin(), set_bits_end());
  }

  /// BitVector default ctor - Creates an empty bitvector.
  BitVector() : Size(0) {}

  /// BitVector ctor - Creates a bitvector of specified number of bits. All
  /// bits are initialized to the specified value.
  explicit BitVector(unsigned s, bool t = false) : Size(s) {
    size_t Capacity = NumBitWords(s);
    Bits = allocate(Capacity);
    init_words(Bits, t);
    if (t)
      clear_unused_bits();
  }

  /// BitVector copy ctor.
  BitVector(const BitVector &RHS) : Size(RHS.size()) {
    if (Size == 0) {
      Bits = MutableArrayRef<BitWord>();
      return;
    }

    size_t Capacity = NumBitWords(RHS.size());
    Bits = allocate(Capacity);
    std::memcpy(Bits.data(), RHS.Bits.data(), Capacity * sizeof(BitWord));
  }

  BitVector(BitVector &&RHS) : Bits(RHS.Bits), Size(RHS.Size) {
    RHS.Bits = MutableArrayRef<BitWord>();
    RHS.Size = 0;
  }

  ~BitVector() { std::free(Bits.data()); }

  /// empty - Tests whether there are no bits in this bitvector.
  bool empty() const { return Size == 0; }

  /// size - Returns the number of bits in this bitvector.
  size_type size() const { return Size; }

  /// count - Returns the number of bits which are set.
  size_type count() const {
    unsigned NumBits = 0;
    for (unsigned i = 0; i < NumBitWords(size()); ++i)
      NumBits += countPopulation(Bits[i]);
    return NumBits;
  }

  /// any - Returns true if any bit is set.
  bool any() const {
    for (unsigned i = 0; i < NumBitWords(size()); ++i)
      if (Bits[i] != 0)
        return true;
    return false;
  }

  /// all - Returns true if all bits are set.
  bool all() const {
    for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i)
      if (Bits[i] != ~BitWord(0))
        return false;

    // If bits remain check that they are ones. The unused bits are always zero.
    if (unsigned Remainder = Size % BITWORD_SIZE)
      return Bits[Size / BITWORD_SIZE] == (BitWord(1) << Remainder) - 1;

    return true;
  }

  /// none - Returns true if none of the bits are set.
  bool none() const {
    return !any();
  }

  /// find_first_in - Returns the index of the first set / unset bit,
  /// depending on \p Set, in the range [Begin, End).
  /// Returns -1 if all bits in the range are unset / set.
  int find_first_in(unsigned Begin, unsigned End, bool Set = true) const {
    assert(Begin <= End && End <= Size);
    if (Begin == End)
      return -1;

    unsigned FirstWord = Begin / BITWORD_SIZE;
    unsigned LastWord = (End - 1) / BITWORD_SIZE;

    // Check subsequent words.
    // The code below is based on search for the first _set_ bit. If
    // we're searching for the first _unset_, we just take the
    // complement of each word before we use it and apply
    // the same method.
    for (unsigned i = FirstWord; i <= LastWord; ++i) {
      BitWord Copy = Bits[i];
      if (!Set)
        Copy = ~Copy;

      if (i == FirstWord) {
        unsigned FirstBit = Begin % BITWORD_SIZE;
        Copy &= maskTrailingZeros<BitWord>(FirstBit);
      }

      if (i == LastWord) {
        unsigned LastBit = (End - 1) % BITWORD_SIZE;
        Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
      }
      if (Copy != 0)
        return i * BITWORD_SIZE + countTrailingZeros(Copy);
    }
    return -1;
  }

  /// find_last_in - Returns the index of the last set bit in the range
  /// [Begin, End).  Returns -1 if all bits in the range are unset.
  int find_last_in(unsigned Begin, unsigned End) const {
    assert(Begin <= End && End <= Size);
    if (Begin == End)
      return -1;

    unsigned LastWord = (End - 1) / BITWORD_SIZE;
    unsigned FirstWord = Begin / BITWORD_SIZE;

    for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
      unsigned CurrentWord = i - 1;

      BitWord Copy = Bits[CurrentWord];
      if (CurrentWord == LastWord) {
        unsigned LastBit = (End - 1) % BITWORD_SIZE;
        Copy &= maskTrailingOnes<BitWord>(LastBit + 1);
      }

      if (CurrentWord == FirstWord) {
        unsigned FirstBit = Begin % BITWORD_SIZE;
        Copy &= maskTrailingZeros<BitWord>(FirstBit);
      }

      if (Copy != 0)
        return (CurrentWord + 1) * BITWORD_SIZE - countLeadingZeros(Copy) - 1;
    }

    return -1;
  }

  /// find_first_unset_in - Returns the index of the first unset bit in the
  /// range [Begin, End).  Returns -1 if all bits in the range are set.
  int find_first_unset_in(unsigned Begin, unsigned End) const {
    return find_first_in(Begin, End, /* Set = */ false);
  }

  /// find_last_unset_in - Returns the index of the last unset bit in the
  /// range [Begin, End).  Returns -1 if all bits in the range are set.
  int find_last_unset_in(unsigned Begin, unsigned End) const {
    assert(Begin <= End && End <= Size);
    if (Begin == End)
      return -1;

    unsigned LastWord = (End - 1) / BITWORD_SIZE;
    unsigned FirstWord = Begin / BITWORD_SIZE;

    for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) {
      unsigned CurrentWord = i - 1;

      BitWord Copy = Bits[CurrentWord];
      if (CurrentWord == LastWord) {
        unsigned LastBit = (End - 1) % BITWORD_SIZE;
        Copy |= maskTrailingZeros<BitWord>(LastBit + 1);
      }

      if (CurrentWord == FirstWord) {
        unsigned FirstBit = Begin % BITWORD_SIZE;
        Copy |= maskTrailingOnes<BitWord>(FirstBit);
      }

      if (Copy != ~BitWord(0)) {
        unsigned Result =
            (CurrentWord + 1) * BITWORD_SIZE - countLeadingOnes(Copy) - 1;
        return Result < Size ? Result : -1;
      }
    }
    return -1;
  }

  /// find_first - Returns the index of the first set bit, -1 if none
  /// of the bits are set.
  int find_first() const { return find_first_in(0, Size); }

  /// find_last - Returns the index of the last set bit, -1 if none of the bits
  /// are set.
  int find_last() const { return find_last_in(0, Size); }

  /// find_next - Returns the index of the next set bit following the
  /// "Prev" bit. Returns -1 if the next set bit is not found.
  int find_next(unsigned Prev) const { return find_first_in(Prev + 1, Size); }

  /// find_prev - Returns the index of the first set bit that precedes the
  /// the bit at \p PriorTo.  Returns -1 if all previous bits are unset.
  int find_prev(unsigned PriorTo) const { return find_last_in(0, PriorTo); }

  /// find_first_unset - Returns the index of the first unset bit, -1 if all
  /// of the bits are set.
  int find_first_unset() const { return find_first_unset_in(0, Size); }

  /// find_next_unset - Returns the index of the next unset bit following the
  /// "Prev" bit.  Returns -1 if all remaining bits are set.
  int find_next_unset(unsigned Prev) const {
    return find_first_unset_in(Prev + 1, Size);
  }

  /// find_last_unset - Returns the index of the last unset bit, -1 if all of
  /// the bits are set.
  int find_last_unset() const { return find_last_unset_in(0, Size); }

  /// find_prev_unset - Returns the index of the first unset bit that precedes
  /// the bit at \p PriorTo.  Returns -1 if all previous bits are set.
  int find_prev_unset(unsigned PriorTo) {
    return find_last_unset_in(0, PriorTo);
  }

  /// clear - Removes all bits from the bitvector. Does not change capacity.
  void clear() {
    Size = 0;
  }

  /// resize - Grow or shrink the bitvector.
  void resize(unsigned N, bool t = false) {
    if (N > getBitCapacity()) {
      unsigned OldCapacity = Bits.size();
      grow(N);
      init_words(Bits.drop_front(OldCapacity), t);
    }

    // Set any old unused bits that are now included in the BitVector. This
    // may set bits that are not included in the new vector, but we will clear
    // them back out below.
    if (N > Size)
      set_unused_bits(t);

    // Update the size, and clear out any bits that are now unused
    unsigned OldSize = Size;
    Size = N;
    if (t || N < OldSize)
      clear_unused_bits();
  }

  void reserve(unsigned N) {
    if (N > getBitCapacity())
      grow(N);
  }

  // Set, reset, flip
  BitVector &set() {
    init_words(Bits, true);
    clear_unused_bits();
    return *this;
  }

  BitVector &set(unsigned Idx) {
    assert(Bits.data() && "Bits never allocated");
    Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE);
    return *this;
  }

  /// set - Efficiently set a range of bits in [I, E)
  BitVector &set(unsigned I, unsigned E) {
    assert(I <= E && "Attempted to set backwards range!");
    assert(E <= size() && "Attempted to set out-of-bounds range!");

    if (I == E) return *this;

    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
      BitWord EMask = BitWord(1) << (E % BITWORD_SIZE);
      BitWord IMask = BitWord(1) << (I % BITWORD_SIZE);
      BitWord Mask = EMask - IMask;
      Bits[I / BITWORD_SIZE] |= Mask;
      return *this;
    }

    BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE);
    Bits[I / BITWORD_SIZE] |= PrefixMask;
    I = alignTo(I, BITWORD_SIZE);

    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
      Bits[I / BITWORD_SIZE] = ~BitWord(0);

    BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1;
    if (I < E)
      Bits[I / BITWORD_SIZE] |= PostfixMask;

    return *this;
  }

  BitVector &reset() {
    init_words(Bits, false);
    return *this;
  }

  BitVector &reset(unsigned Idx) {
    Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE));
    return *this;
  }

  /// reset - Efficiently reset a range of bits in [I, E)
  BitVector &reset(unsigned I, unsigned E) {
    assert(I <= E && "Attempted to reset backwards range!");
    assert(E <= size() && "Attempted to reset out-of-bounds range!");

    if (I == E) return *this;

    if (I / BITWORD_SIZE == E / BITWORD_SIZE) {
      BitWord EMask = BitWord(1) << (E % BITWORD_SIZE);
      BitWord IMask = BitWord(1) << (I % BITWORD_SIZE);
      BitWord Mask = EMask - IMask;
      Bits[I / BITWORD_SIZE] &= ~Mask;
      return *this;
    }

    BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE);
    Bits[I / BITWORD_SIZE] &= ~PrefixMask;
    I = alignTo(I, BITWORD_SIZE);

    for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE)
      Bits[I / BITWORD_SIZE] = BitWord(0);

    BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1;
    if (I < E)
      Bits[I / BITWORD_SIZE] &= ~PostfixMask;

    return *this;
  }

  BitVector &flip() {
    for (unsigned i = 0; i < NumBitWords(size()); ++i)
      Bits[i] = ~Bits[i];
    clear_unused_bits();
    return *this;
  }

  BitVector &flip(unsigned Idx) {
    Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE);
    return *this;
  }

  // Indexing.
  reference operator[](unsigned Idx) {
    assert (Idx < Size && "Out-of-bounds Bit access.");
    return reference(*this, Idx);
  }

  bool operator[](unsigned Idx) const {
    assert (Idx < Size && "Out-of-bounds Bit access.");
    BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE);
    return (Bits[Idx / BITWORD_SIZE] & Mask) != 0;
  }

  bool test(unsigned Idx) const {
    return (*this)[Idx];
  }

  // Push single bit to end of vector.
  void push_back(bool Val) {
    unsigned OldSize = Size;
    unsigned NewSize = Size + 1;

    // Resize, which will insert zeros.
    // If we already fit then the unused bits will be already zero.
    if (NewSize > getBitCapacity())
      resize(NewSize, false);
    else
      Size = NewSize;

    // If true, set single bit.
    if (Val)
      set(OldSize);
  }

  /// Test if any common bits are set.
  bool anyCommon(const BitVector &RHS) const {
    unsigned ThisWords = NumBitWords(size());
    unsigned RHSWords  = NumBitWords(RHS.size());
    for (unsigned i = 0, e = std::min(ThisWords, RHSWords); i != e; ++i)
      if (Bits[i] & RHS.Bits[i])
        return true;
    return false;
  }

  // Comparison operators.
  bool operator==(const BitVector &RHS) const {
    if (size() != RHS.size())
      return false;
    unsigned NumWords = NumBitWords(size());
    return Bits.take_front(NumWords) == RHS.Bits.take_front(NumWords);
  }

  bool operator!=(const BitVector &RHS) const {
    return !(*this == RHS);
  }

  /// Intersection, union, disjoint union.
  BitVector &operator&=(const BitVector &RHS) {
    unsigned ThisWords = NumBitWords(size());
    unsigned RHSWords  = NumBitWords(RHS.size());
    unsigned i;
    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
      Bits[i] &= RHS.Bits[i];

    // Any bits that are just in this bitvector become zero, because they aren't
    // in the RHS bit vector.  Any words only in RHS are ignored because they
    // are already zero in the LHS.
    for (; i != ThisWords; ++i)
      Bits[i] = 0;

    return *this;
  }

  /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
  BitVector &reset(const BitVector &RHS) {
    unsigned ThisWords = NumBitWords(size());
    unsigned RHSWords  = NumBitWords(RHS.size());
    unsigned i;
    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
      Bits[i] &= ~RHS.Bits[i];
    return *this;
  }

  /// test - Check if (This - RHS) is zero.
  /// This is the same as reset(RHS) and any().
  bool test(const BitVector &RHS) const {
    unsigned ThisWords = NumBitWords(size());
    unsigned RHSWords  = NumBitWords(RHS.size());
    unsigned i;
    for (i = 0; i != std::min(ThisWords, RHSWords); ++i)
      if ((Bits[i] & ~RHS.Bits[i]) != 0)
        return true;

    for (; i != ThisWords ; ++i)
      if (Bits[i] != 0)
        return true;

    return false;
  }

  BitVector &operator|=(const BitVector &RHS) {
    if (size() < RHS.size())
      resize(RHS.size());
    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
      Bits[i] |= RHS.Bits[i];
    return *this;
  }

  BitVector &operator^=(const BitVector &RHS) {
    if (size() < RHS.size())
      resize(RHS.size());
    for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
      Bits[i] ^= RHS.Bits[i];
    return *this;
  }

  BitVector &operator>>=(unsigned N) {
    assert(N <= Size);
    if (LLVM_UNLIKELY(empty() || N == 0))
      return *this;

    unsigned NumWords = NumBitWords(Size);
    assert(NumWords >= 1);

    wordShr(N / BITWORD_SIZE);

    unsigned BitDistance = N % BITWORD_SIZE;
    if (BitDistance == 0)
      return *this;

    // When the shift size is not a multiple of the word size, then we have
    // a tricky situation where each word in succession needs to extract some
    // of the bits from the next word and or them into this word while
    // shifting this word to make room for the new bits.  This has to be done
    // for every word in the array.

    // Since we're shifting each word right, some bits will fall off the end
    // of each word to the right, and empty space will be created on the left.
    // The final word in the array will lose bits permanently, so starting at
    // the beginning, work forwards shifting each word to the right, and
    // OR'ing in the bits from the end of the next word to the beginning of
    // the current word.

    // Example:
    //   Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting right
    //   by 4 bits.
    // Step 1: Word[0] >>= 4           ; 0x0ABBCCDD
    // Step 2: Word[0] |= 0x10000000   ; 0x1ABBCCDD
    // Step 3: Word[1] >>= 4           ; 0x0EEFF001
    // Step 4: Word[1] |= 0x50000000   ; 0x5EEFF001
    // Step 5: Word[2] >>= 4           ; 0x02334455
    // Result: { 0x1ABBCCDD, 0x5EEFF001, 0x02334455 }
    const BitWord Mask = maskTrailingOnes<BitWord>(BitDistance);
    const unsigned LSH = BITWORD_SIZE - BitDistance;

    for (unsigned I = 0; I < NumWords - 1; ++I) {
      Bits[I] >>= BitDistance;
      Bits[I] |= (Bits[I + 1] & Mask) << LSH;
    }

    Bits[NumWords - 1] >>= BitDistance;

    return *this;
  }

  BitVector &operator<<=(unsigned N) {
    assert(N <= Size);
    if (LLVM_UNLIKELY(empty() || N == 0))
      return *this;

    unsigned NumWords = NumBitWords(Size);
    assert(NumWords >= 1);

    wordShl(N / BITWORD_SIZE);

    unsigned BitDistance = N % BITWORD_SIZE;
    if (BitDistance == 0)
      return *this;

    // When the shift size is not a multiple of the word size, then we have
    // a tricky situation where each word in succession needs to extract some
    // of the bits from the previous word and or them into this word while
    // shifting this word to make room for the new bits.  This has to be done
    // for every word in the array.  This is similar to the algorithm outlined
    // in operator>>=, but backwards.

    // Since we're shifting each word left, some bits will fall off the end
    // of each word to the left, and empty space will be created on the right.
    // The first word in the array will lose bits permanently, so starting at
    // the end, work backwards shifting each word to the left, and OR'ing
    // in the bits from the end of the next word to the beginning of the
    // current word.

    // Example:
    //   Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting left
    //   by 4 bits.
    // Step 1: Word[2] <<= 4           ; 0x23344550
    // Step 2: Word[2] |= 0x0000000E   ; 0x2334455E
    // Step 3: Word[1] <<= 4           ; 0xEFF00110
    // Step 4: Word[1] |= 0x0000000A   ; 0xEFF0011A
    // Step 5: Word[0] <<= 4           ; 0xABBCCDD0
    // Result: { 0xABBCCDD0, 0xEFF0011A, 0x2334455E }
    const BitWord Mask = maskLeadingOnes<BitWord>(BitDistance);
    const unsigned RSH = BITWORD_SIZE - BitDistance;

    for (int I = NumWords - 1; I > 0; --I) {
      Bits[I] <<= BitDistance;
      Bits[I] |= (Bits[I - 1] & Mask) >> RSH;
    }
    Bits[0] <<= BitDistance;
    clear_unused_bits();

    return *this;
  }

  // Assignment operator.
  const BitVector &operator=(const BitVector &RHS) {
    if (this == &RHS) return *this;

    Size = RHS.size();

    // Handle tombstone when the BitVector is a key of a DenseHash.
    if (RHS.isInvalid()) {
      std::free(Bits.data());
      Bits = None;
      return *this;
    }

    unsigned RHSWords = NumBitWords(Size);
    if (Size <= getBitCapacity()) {
      if (Size)
        std::memcpy(Bits.data(), RHS.Bits.data(), RHSWords * sizeof(BitWord));
      clear_unused_bits();
      return *this;
    }

    // Grow the bitvector to have enough elements.
    unsigned NewCapacity = RHSWords;
    assert(NewCapacity > 0 && "negative capacity?");
    auto NewBits = allocate(NewCapacity);
    std::memcpy(NewBits.data(), RHS.Bits.data(), NewCapacity * sizeof(BitWord));

    // Destroy the old bits.
    std::free(Bits.data());
    Bits = NewBits;

    return *this;
  }

  const BitVector &operator=(BitVector &&RHS) {
    if (this == &RHS) return *this;

    std::free(Bits.data());
    Bits = RHS.Bits;
    Size = RHS.Size;

    RHS.Bits = MutableArrayRef<BitWord>();
    RHS.Size = 0;

    return *this;
  }

  void swap(BitVector &RHS) {
    std::swap(Bits, RHS.Bits);
    std::swap(Size, RHS.Size);
  }

  void invalid() {
    assert(!Size && Bits.empty());
    Size = (unsigned)-1;
  }
  bool isInvalid() const { return Size == (unsigned)-1; }

  ArrayRef<BitWord> getData() const {
    return Bits.take_front(NumBitWords(size()));
  }

  //===--------------------------------------------------------------------===//
  // Portable bit mask operations.
  //===--------------------------------------------------------------------===//
  //
  // These methods all operate on arrays of uint32_t, each holding 32 bits. The
  // fixed word size makes it easier to work with literal bit vector constants
  // in portable code.
  //
  // The LSB in each word is the lowest numbered bit.  The size of a portable
  // bit mask is always a whole multiple of 32 bits.  If no bit mask size is
  // given, the bit mask is assumed to cover the entire BitVector.

  /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
  /// This computes "*this |= Mask".
  void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    applyMask<true, false>(Mask, MaskWords);
  }

  /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
  /// Don't resize. This computes "*this &= ~Mask".
  void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    applyMask<false, false>(Mask, MaskWords);
  }

  /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
  /// Don't resize.  This computes "*this |= ~Mask".
  void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    applyMask<true, true>(Mask, MaskWords);
  }

  /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
  /// Don't resize.  This computes "*this &= Mask".
  void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    applyMask<false, true>(Mask, MaskWords);
  }

private:
  /// Perform a logical left shift of \p Count words by moving everything
  /// \p Count words to the right in memory.
  ///
  /// While confusing, words are stored from least significant at Bits[0] to
  /// most significant at Bits[NumWords-1].  A logical shift left, however,
  /// moves the current least significant bit to a higher logical index, and
  /// fills the previous least significant bits with 0.  Thus, we actually
  /// need to move the bytes of the memory to the right, not to the left.
  /// Example:
  ///   Words = [0xBBBBAAAA, 0xDDDDFFFF, 0x00000000, 0xDDDD0000]
  /// represents a BitVector where 0xBBBBAAAA contain the least significant
  /// bits.  So if we want to shift the BitVector left by 2 words, we need to
  /// turn this into 0x00000000 0x00000000 0xBBBBAAAA 0xDDDDFFFF by using a
  /// memmove which moves right, not left.
  void wordShl(uint32_t Count) {
    if (Count == 0)
      return;

    uint32_t NumWords = NumBitWords(Size);

    auto Src = Bits.take_front(NumWords).drop_back(Count);
    auto Dest = Bits.take_front(NumWords).drop_front(Count);

    // Since we always move Word-sized chunks of data with src and dest both
    // aligned to a word-boundary, we don't need to worry about endianness
    // here.
    std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord));
    std::memset(Bits.data(), 0, Count * sizeof(BitWord));
    clear_unused_bits();
  }

  /// Perform a logical right shift of \p Count words by moving those
  /// words to the left in memory.  See wordShl for more information.
  ///
  void wordShr(uint32_t Count) {
    if (Count == 0)
      return;

    uint32_t NumWords = NumBitWords(Size);

    auto Src = Bits.take_front(NumWords).drop_front(Count);
    auto Dest = Bits.take_front(NumWords).drop_back(Count);
    assert(Dest.size() == Src.size());

    std::memmove(Dest.begin(), Src.begin(), Dest.size() * sizeof(BitWord));
    std::memset(Dest.end(), 0, Count * sizeof(BitWord));
  }

  MutableArrayRef<BitWord> allocate(size_t NumWords) {
    BitWord *RawBits = static_cast<BitWord *>(
        safe_malloc(NumWords * sizeof(BitWord)));
    return MutableArrayRef<BitWord>(RawBits, NumWords);
  }

  int next_unset_in_word(int WordIndex, BitWord Word) const {
    unsigned Result = WordIndex * BITWORD_SIZE + countTrailingOnes(Word);
    return Result < size() ? Result : -1;
  }

  unsigned NumBitWords(unsigned S) const {
    return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
  }

  // Set the unused bits in the high words.
  void set_unused_bits(bool t = true) {
    //  Set high words first.
    unsigned UsedWords = NumBitWords(Size);
    if (Bits.size() > UsedWords)
      init_words(Bits.drop_front(UsedWords), t);

    //  Then set any stray high bits of the last used word.
    unsigned ExtraBits = Size % BITWORD_SIZE;
    if (ExtraBits) {
      BitWord ExtraBitMask = ~BitWord(0) << ExtraBits;
      if (t)
        Bits[UsedWords-1] |= ExtraBitMask;
      else
        Bits[UsedWords-1] &= ~ExtraBitMask;
    }
  }

  // Clear the unused bits in the high words.
  void clear_unused_bits() {
    set_unused_bits(false);
  }

  void grow(unsigned NewSize) {
    size_t NewCapacity = std::max<size_t>(NumBitWords(NewSize), Bits.size() * 2);
    assert(NewCapacity > 0 && "realloc-ing zero space");
    BitWord *NewBits = static_cast<BitWord *>(
        safe_realloc(Bits.data(), NewCapacity * sizeof(BitWord)));
    Bits = MutableArrayRef<BitWord>(NewBits, NewCapacity);
    clear_unused_bits();
  }

  void init_words(MutableArrayRef<BitWord> B, bool t) {
    if (B.size() > 0)
      memset(B.data(), 0 - (int)t, B.size() * sizeof(BitWord));
  }

  template<bool AddBits, bool InvertMask>
  void applyMask(const uint32_t *Mask, unsigned MaskWords) {
    static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size.");
    MaskWords = std::min(MaskWords, (size() + 31) / 32);
    const unsigned Scale = BITWORD_SIZE / 32;
    unsigned i;
    for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) {
      BitWord BW = Bits[i];
      // This inner loop should unroll completely when BITWORD_SIZE > 32.
      for (unsigned b = 0; b != BITWORD_SIZE; b += 32) {
        uint32_t M = *Mask++;
        if (InvertMask) M = ~M;
        if (AddBits) BW |=   BitWord(M) << b;
        else         BW &= ~(BitWord(M) << b);
      }
      Bits[i] = BW;
    }
    for (unsigned b = 0; MaskWords; b += 32, --MaskWords) {
      uint32_t M = *Mask++;
      if (InvertMask) M = ~M;
      if (AddBits) Bits[i] |=   BitWord(M) << b;
      else         Bits[i] &= ~(BitWord(M) << b);
    }
    if (AddBits)
      clear_unused_bits();
  }

public:
  /// Return the size (in bytes) of the bit vector.
  size_t getMemorySize() const { return Bits.size() * sizeof(BitWord); }
  size_t getBitCapacity() const { return Bits.size() * BITWORD_SIZE; }
};

inline size_t capacity_in_bytes(const BitVector &X) {
  return X.getMemorySize();
}

template <> struct DenseMapInfo<BitVector> {
  static inline BitVector getEmptyKey() { return BitVector(); }
  static inline BitVector getTombstoneKey() {
    BitVector V;
    V.invalid();
    return V;
  }
  static unsigned getHashValue(const BitVector &V) {
    return DenseMapInfo<std::pair<unsigned, ArrayRef<uintptr_t>>>::getHashValue(
        std::make_pair(V.size(), V.getData()));
  }
  static bool isEqual(const BitVector &LHS, const BitVector &RHS) {
    if (LHS.isInvalid() || RHS.isInvalid())
      return LHS.isInvalid() == RHS.isInvalid();
    return LHS == RHS;
  }
};
} // end namespace llvm

namespace std {
  /// Implement std::swap in terms of BitVector swap.
  inline void
  swap(llvm::BitVector &LHS, llvm::BitVector &RHS) {
    LHS.swap(RHS);
  }
} // end namespace std

#endif // LLVM_ADT_BITVECTOR_H

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif