aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/include/llvm/ADT/APFloat.h
blob: 2afb3070c3a36a44aeea554efc1032b2f041dc29 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
#pragma once

#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#endif

//===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief
/// This file declares a class to represent arbitrary precision floating point
/// values and provide a variety of arithmetic operations on them.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ADT_APFLOAT_H
#define LLVM_ADT_APFLOAT_H

#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/FloatingPointMode.h"
#include "llvm/Support/ErrorHandling.h"
#include <memory>

#define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)                             \
  do {                                                                         \
    if (usesLayout<IEEEFloat>(getSemantics()))                                 \
      return U.IEEE.METHOD_CALL;                                               \
    if (usesLayout<DoubleAPFloat>(getSemantics()))                             \
      return U.Double.METHOD_CALL;                                             \
    llvm_unreachable("Unexpected semantics");                                  \
  } while (false)

namespace llvm {

struct fltSemantics;
class APSInt;
class StringRef;
class APFloat;
class raw_ostream;

template <typename T> class Expected;
template <typename T> class SmallVectorImpl;

/// Enum that represents what fraction of the LSB truncated bits of an fp number
/// represent.
///
/// This essentially combines the roles of guard and sticky bits.
enum lostFraction { // Example of truncated bits:
  lfExactlyZero,    // 000000
  lfLessThanHalf,   // 0xxxxx  x's not all zero
  lfExactlyHalf,    // 100000
  lfMoreThanHalf    // 1xxxxx  x's not all zero
};

/// A self-contained host- and target-independent arbitrary-precision
/// floating-point software implementation.
///
/// APFloat uses bignum integer arithmetic as provided by static functions in
/// the APInt class.  The library will work with bignum integers whose parts are
/// any unsigned type at least 16 bits wide, but 64 bits is recommended.
///
/// Written for clarity rather than speed, in particular with a view to use in
/// the front-end of a cross compiler so that target arithmetic can be correctly
/// performed on the host.  Performance should nonetheless be reasonable,
/// particularly for its intended use.  It may be useful as a base
/// implementation for a run-time library during development of a faster
/// target-specific one.
///
/// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
/// implemented operations.  Currently implemented operations are add, subtract,
/// multiply, divide, fused-multiply-add, conversion-to-float,
/// conversion-to-integer and conversion-from-integer.  New rounding modes
/// (e.g. away from zero) can be added with three or four lines of code.
///
/// Four formats are built-in: IEEE single precision, double precision,
/// quadruple precision, and x87 80-bit extended double (when operating with
/// full extended precision).  Adding a new format that obeys IEEE semantics
/// only requires adding two lines of code: a declaration and definition of the
/// format.
///
/// All operations return the status of that operation as an exception bit-mask,
/// so multiple operations can be done consecutively with their results or-ed
/// together.  The returned status can be useful for compiler diagnostics; e.g.,
/// inexact, underflow and overflow can be easily diagnosed on constant folding,
/// and compiler optimizers can determine what exceptions would be raised by
/// folding operations and optimize, or perhaps not optimize, accordingly.
///
/// At present, underflow tininess is detected after rounding; it should be
/// straight forward to add support for the before-rounding case too.
///
/// The library reads hexadecimal floating point numbers as per C99, and
/// correctly rounds if necessary according to the specified rounding mode.
/// Syntax is required to have been validated by the caller.  It also converts
/// floating point numbers to hexadecimal text as per the C99 %a and %A
/// conversions.  The output precision (or alternatively the natural minimal
/// precision) can be specified; if the requested precision is less than the
/// natural precision the output is correctly rounded for the specified rounding
/// mode.
///
/// It also reads decimal floating point numbers and correctly rounds according
/// to the specified rounding mode.
///
/// Conversion to decimal text is not currently implemented.
///
/// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
/// signed exponent, and the significand as an array of integer parts.  After
/// normalization of a number of precision P the exponent is within the range of
/// the format, and if the number is not denormal the P-th bit of the
/// significand is set as an explicit integer bit.  For denormals the most
/// significant bit is shifted right so that the exponent is maintained at the
/// format's minimum, so that the smallest denormal has just the least
/// significant bit of the significand set.  The sign of zeroes and infinities
/// is significant; the exponent and significand of such numbers is not stored,
/// but has a known implicit (deterministic) value: 0 for the significands, 0
/// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
/// significand are deterministic, although not really meaningful, and preserved
/// in non-conversion operations.  The exponent is implicitly all 1 bits.
///
/// APFloat does not provide any exception handling beyond default exception
/// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
/// by encoding Signaling NaNs with the first bit of its trailing significand as
/// 0.
///
/// TODO
/// ====
///
/// Some features that may or may not be worth adding:
///
/// Binary to decimal conversion (hard).
///
/// Optional ability to detect underflow tininess before rounding.
///
/// New formats: x87 in single and double precision mode (IEEE apart from
/// extended exponent range) (hard).
///
/// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
///

// This is the common type definitions shared by APFloat and its internal
// implementation classes. This struct should not define any non-static data
// members.
struct APFloatBase {
  typedef APInt::WordType integerPart;
  static constexpr unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD;

  /// A signed type to represent a floating point numbers unbiased exponent.
  typedef int32_t ExponentType;

  /// \name Floating Point Semantics.
  /// @{
  enum Semantics {
    S_IEEEhalf,
    S_BFloat,
    S_IEEEsingle,
    S_IEEEdouble,
    S_x87DoubleExtended,
    S_IEEEquad,
    S_PPCDoubleDouble
  };

  static const llvm::fltSemantics &EnumToSemantics(Semantics S);
  static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem);

  static const fltSemantics &IEEEhalf() LLVM_READNONE;
  static const fltSemantics &BFloat() LLVM_READNONE;
  static const fltSemantics &IEEEsingle() LLVM_READNONE;
  static const fltSemantics &IEEEdouble() LLVM_READNONE;
  static const fltSemantics &IEEEquad() LLVM_READNONE;
  static const fltSemantics &PPCDoubleDouble() LLVM_READNONE;
  static const fltSemantics &x87DoubleExtended() LLVM_READNONE;

  /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
  /// anything real.
  static const fltSemantics &Bogus() LLVM_READNONE;

  /// @}

  /// IEEE-754R 5.11: Floating Point Comparison Relations.
  enum cmpResult {
    cmpLessThan,
    cmpEqual,
    cmpGreaterThan,
    cmpUnordered
  };

  /// IEEE-754R 4.3: Rounding-direction attributes.
  using roundingMode = llvm::RoundingMode;

  static constexpr roundingMode rmNearestTiesToEven =
                                                RoundingMode::NearestTiesToEven;
  static constexpr roundingMode rmTowardPositive = RoundingMode::TowardPositive;
  static constexpr roundingMode rmTowardNegative = RoundingMode::TowardNegative;
  static constexpr roundingMode rmTowardZero     = RoundingMode::TowardZero;
  static constexpr roundingMode rmNearestTiesToAway =
                                                RoundingMode::NearestTiesToAway;

  /// IEEE-754R 7: Default exception handling.
  ///
  /// opUnderflow or opOverflow are always returned or-ed with opInexact.
  ///
  /// APFloat models this behavior specified by IEEE-754:
  ///   "For operations producing results in floating-point format, the default
  ///    result of an operation that signals the invalid operation exception
  ///    shall be a quiet NaN."
  enum opStatus {
    opOK = 0x00,
    opInvalidOp = 0x01,
    opDivByZero = 0x02,
    opOverflow = 0x04,
    opUnderflow = 0x08,
    opInexact = 0x10
  };

  /// Category of internally-represented number.
  enum fltCategory {
    fcInfinity,
    fcNaN,
    fcNormal,
    fcZero
  };

  /// Convenience enum used to construct an uninitialized APFloat.
  enum uninitializedTag {
    uninitialized
  };

  /// Enumeration of \c ilogb error results.
  enum IlogbErrorKinds {
    IEK_Zero = INT_MIN + 1,
    IEK_NaN = INT_MIN,
    IEK_Inf = INT_MAX
  };

  static unsigned int semanticsPrecision(const fltSemantics &);
  static ExponentType semanticsMinExponent(const fltSemantics &);
  static ExponentType semanticsMaxExponent(const fltSemantics &);
  static unsigned int semanticsSizeInBits(const fltSemantics &);

  /// Returns the size of the floating point number (in bits) in the given
  /// semantics.
  static unsigned getSizeInBits(const fltSemantics &Sem);
};

namespace detail {

class IEEEFloat final : public APFloatBase {
public:
  /// \name Constructors
  /// @{

  IEEEFloat(const fltSemantics &); // Default construct to +0.0 
  IEEEFloat(const fltSemantics &, integerPart);
  IEEEFloat(const fltSemantics &, uninitializedTag);
  IEEEFloat(const fltSemantics &, const APInt &);
  explicit IEEEFloat(double d);
  explicit IEEEFloat(float f);
  IEEEFloat(const IEEEFloat &);
  IEEEFloat(IEEEFloat &&);
  ~IEEEFloat();

  /// @}

  /// Returns whether this instance allocated memory.
  bool needsCleanup() const { return partCount() > 1; }

  /// \name Convenience "constructors"
  /// @{

  /// @}

  /// \name Arithmetic
  /// @{

  opStatus add(const IEEEFloat &, roundingMode);
  opStatus subtract(const IEEEFloat &, roundingMode);
  opStatus multiply(const IEEEFloat &, roundingMode);
  opStatus divide(const IEEEFloat &, roundingMode);
  /// IEEE remainder.
  opStatus remainder(const IEEEFloat &);
  /// C fmod, or llvm frem.
  opStatus mod(const IEEEFloat &);
  opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
  opStatus roundToIntegral(roundingMode);
  /// IEEE-754R 5.3.1: nextUp/nextDown.
  opStatus next(bool nextDown);

  /// @}

  /// \name Sign operations.
  /// @{

  void changeSign();

  /// @}

  /// \name Conversions
  /// @{

  opStatus convert(const fltSemantics &, roundingMode, bool *);
  opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool,
                            roundingMode, bool *) const;
  opStatus convertFromAPInt(const APInt &, bool, roundingMode);
  opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
                                          bool, roundingMode);
  opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
                                          bool, roundingMode);
  Expected<opStatus> convertFromString(StringRef, roundingMode);
  APInt bitcastToAPInt() const;
  double convertToDouble() const;
  float convertToFloat() const;

  /// @}

  /// The definition of equality is not straightforward for floating point, so
  /// we won't use operator==.  Use one of the following, or write whatever it
  /// is you really mean.
  bool operator==(const IEEEFloat &) const = delete;

  /// IEEE comparison with another floating point number (NaNs compare
  /// unordered, 0==-0).
  cmpResult compare(const IEEEFloat &) const;

  /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
  bool bitwiseIsEqual(const IEEEFloat &) const;

  /// Write out a hexadecimal representation of the floating point value to DST,
  /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
  /// Return the number of characters written, excluding the terminating NUL.
  unsigned int convertToHexString(char *dst, unsigned int hexDigits,
                                  bool upperCase, roundingMode) const;

  /// \name IEEE-754R 5.7.2 General operations.
  /// @{

  /// IEEE-754R isSignMinus: Returns true if and only if the current value is
  /// negative.
  ///
  /// This applies to zeros and NaNs as well.
  bool isNegative() const { return sign; }

  /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
  ///
  /// This implies that the current value of the float is not zero, subnormal,
  /// infinite, or NaN following the definition of normality from IEEE-754R.
  bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }

  /// Returns true if and only if the current value is zero, subnormal, or
  /// normal.
  ///
  /// This means that the value is not infinite or NaN.
  bool isFinite() const { return !isNaN() && !isInfinity(); }

  /// Returns true if and only if the float is plus or minus zero.
  bool isZero() const { return category == fcZero; }

  /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
  /// denormal.
  bool isDenormal() const;

  /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
  bool isInfinity() const { return category == fcInfinity; }

  /// Returns true if and only if the float is a quiet or signaling NaN.
  bool isNaN() const { return category == fcNaN; }

  /// Returns true if and only if the float is a signaling NaN.
  bool isSignaling() const;

  /// @}

  /// \name Simple Queries
  /// @{

  fltCategory getCategory() const { return category; }
  const fltSemantics &getSemantics() const { return *semantics; }
  bool isNonZero() const { return category != fcZero; }
  bool isFiniteNonZero() const { return isFinite() && !isZero(); }
  bool isPosZero() const { return isZero() && !isNegative(); }
  bool isNegZero() const { return isZero() && isNegative(); }

  /// Returns true if and only if the number has the smallest possible non-zero
  /// magnitude in the current semantics.
  bool isSmallest() const;

  /// Returns true if and only if the number has the largest possible finite
  /// magnitude in the current semantics.
  bool isLargest() const;

  /// Returns true if and only if the number is an exact integer.
  bool isInteger() const;

  /// @}

  IEEEFloat &operator=(const IEEEFloat &);
  IEEEFloat &operator=(IEEEFloat &&);

  /// Overload to compute a hash code for an APFloat value.
  ///
  /// Note that the use of hash codes for floating point values is in general
  /// frought with peril. Equality is hard to define for these values. For
  /// example, should negative and positive zero hash to different codes? Are
  /// they equal or not? This hash value implementation specifically
  /// emphasizes producing different codes for different inputs in order to
  /// be used in canonicalization and memoization. As such, equality is
  /// bitwiseIsEqual, and 0 != -0.
  friend hash_code hash_value(const IEEEFloat &Arg);

  /// Converts this value into a decimal string.
  ///
  /// \param FormatPrecision The maximum number of digits of
  ///   precision to output.  If there are fewer digits available,
  ///   zero padding will not be used unless the value is
  ///   integral and small enough to be expressed in
  ///   FormatPrecision digits.  0 means to use the natural
  ///   precision of the number.
  /// \param FormatMaxPadding The maximum number of zeros to
  ///   consider inserting before falling back to scientific
  ///   notation.  0 means to always use scientific notation.
  ///
  /// \param TruncateZero Indicate whether to remove the trailing zero in
  ///   fraction part or not. Also setting this parameter to false forcing
  ///   producing of output more similar to default printf behavior.
  ///   Specifically the lower e is used as exponent delimiter and exponent
  ///   always contains no less than two digits.
  ///
  /// Number       Precision    MaxPadding      Result
  /// ------       ---------    ----------      ------
  /// 1.01E+4              5             2       10100
  /// 1.01E+4              4             2       1.01E+4
  /// 1.01E+4              5             1       1.01E+4
  /// 1.01E-2              5             2       0.0101
  /// 1.01E-2              4             2       0.0101
  /// 1.01E-2              4             1       1.01E-2
  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
                unsigned FormatMaxPadding = 3, bool TruncateZero = true) const;

  /// If this value has an exact multiplicative inverse, store it in inv and
  /// return true.
  bool getExactInverse(APFloat *inv) const;

  /// Returns the exponent of the internal representation of the APFloat.
  ///
  /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
  /// For special APFloat values, this returns special error codes:
  ///
  ///   NaN -> \c IEK_NaN
  ///   0   -> \c IEK_Zero
  ///   Inf -> \c IEK_Inf
  ///
  friend int ilogb(const IEEEFloat &Arg);

  /// Returns: X * 2^Exp for integral exponents.
  friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);

  friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);

  /// \name Special value setters.
  /// @{

  void makeLargest(bool Neg = false);
  void makeSmallest(bool Neg = false);
  void makeNaN(bool SNaN = false, bool Neg = false,
               const APInt *fill = nullptr);
  void makeInf(bool Neg = false);
  void makeZero(bool Neg = false);
  void makeQuiet();

  /// Returns the smallest (by magnitude) normalized finite number in the given
  /// semantics.
  ///
  /// \param Negative - True iff the number should be negative
  void makeSmallestNormalized(bool Negative = false);

  /// @}

  cmpResult compareAbsoluteValue(const IEEEFloat &) const;

private:
  /// \name Simple Queries
  /// @{

  integerPart *significandParts();
  const integerPart *significandParts() const;
  unsigned int partCount() const;

  /// @}

  /// \name Significand operations.
  /// @{

  integerPart addSignificand(const IEEEFloat &);
  integerPart subtractSignificand(const IEEEFloat &, integerPart);
  lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
  lostFraction multiplySignificand(const IEEEFloat &, IEEEFloat);
  lostFraction multiplySignificand(const IEEEFloat&);
  lostFraction divideSignificand(const IEEEFloat &);
  void incrementSignificand();
  void initialize(const fltSemantics *);
  void shiftSignificandLeft(unsigned int);
  lostFraction shiftSignificandRight(unsigned int);
  unsigned int significandLSB() const;
  unsigned int significandMSB() const;
  void zeroSignificand();
  /// Return true if the significand excluding the integral bit is all ones.
  bool isSignificandAllOnes() const;
  /// Return true if the significand excluding the integral bit is all zeros.
  bool isSignificandAllZeros() const;

  /// @}

  /// \name Arithmetic on special values.
  /// @{

  opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
  opStatus divideSpecials(const IEEEFloat &);
  opStatus multiplySpecials(const IEEEFloat &);
  opStatus modSpecials(const IEEEFloat &);
  opStatus remainderSpecials(const IEEEFloat&);

  /// @}

  /// \name Miscellany
  /// @{

  bool convertFromStringSpecials(StringRef str);
  opStatus normalize(roundingMode, lostFraction);
  opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
  opStatus handleOverflow(roundingMode);
  bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
  opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>,
                                        unsigned int, bool, roundingMode,
                                        bool *) const;
  opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
                                    roundingMode);
  Expected<opStatus> convertFromHexadecimalString(StringRef, roundingMode);
  Expected<opStatus> convertFromDecimalString(StringRef, roundingMode);
  char *convertNormalToHexString(char *, unsigned int, bool,
                                 roundingMode) const;
  opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
                                        roundingMode);
  ExponentType exponentNaN() const; 
  ExponentType exponentInf() const; 
  ExponentType exponentZero() const; 

  /// @}

  APInt convertHalfAPFloatToAPInt() const;
  APInt convertBFloatAPFloatToAPInt() const;
  APInt convertFloatAPFloatToAPInt() const;
  APInt convertDoubleAPFloatToAPInt() const;
  APInt convertQuadrupleAPFloatToAPInt() const;
  APInt convertF80LongDoubleAPFloatToAPInt() const;
  APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
  void initFromAPInt(const fltSemantics *Sem, const APInt &api);
  void initFromHalfAPInt(const APInt &api);
  void initFromBFloatAPInt(const APInt &api);
  void initFromFloatAPInt(const APInt &api);
  void initFromDoubleAPInt(const APInt &api);
  void initFromQuadrupleAPInt(const APInt &api);
  void initFromF80LongDoubleAPInt(const APInt &api);
  void initFromPPCDoubleDoubleAPInt(const APInt &api);

  void assign(const IEEEFloat &);
  void copySignificand(const IEEEFloat &);
  void freeSignificand();

  /// Note: this must be the first data member.
  /// The semantics that this value obeys.
  const fltSemantics *semantics;

  /// A binary fraction with an explicit integer bit.
  ///
  /// The significand must be at least one bit wider than the target precision.
  union Significand {
    integerPart part;
    integerPart *parts;
  } significand;

  /// The signed unbiased exponent of the value.
  ExponentType exponent;

  /// What kind of floating point number this is.
  ///
  /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
  /// Using the extra bit keeps it from failing under VisualStudio.
  fltCategory category : 3;

  /// Sign bit of the number.
  unsigned int sign : 1;
};

hash_code hash_value(const IEEEFloat &Arg);
int ilogb(const IEEEFloat &Arg);
IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode);
IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM);

// This mode implements more precise float in terms of two APFloats.
// The interface and layout is designed for arbitrary underlying semantics,
// though currently only PPCDoubleDouble semantics are supported, whose
// corresponding underlying semantics are IEEEdouble.
class DoubleAPFloat final : public APFloatBase {
  // Note: this must be the first data member.
  const fltSemantics *Semantics;
  std::unique_ptr<APFloat[]> Floats;

  opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
                   const APFloat &cc, roundingMode RM);

  opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
                          DoubleAPFloat &Out, roundingMode RM);

public:
  DoubleAPFloat(const fltSemantics &S);
  DoubleAPFloat(const fltSemantics &S, uninitializedTag);
  DoubleAPFloat(const fltSemantics &S, integerPart);
  DoubleAPFloat(const fltSemantics &S, const APInt &I);
  DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
  DoubleAPFloat(const DoubleAPFloat &RHS);
  DoubleAPFloat(DoubleAPFloat &&RHS);

  DoubleAPFloat &operator=(const DoubleAPFloat &RHS);

  DoubleAPFloat &operator=(DoubleAPFloat &&RHS) {
    if (this != &RHS) {
      this->~DoubleAPFloat();
      new (this) DoubleAPFloat(std::move(RHS));
    }
    return *this;
  }

  bool needsCleanup() const { return Floats != nullptr; }

  APFloat &getFirst() { return Floats[0]; }
  const APFloat &getFirst() const { return Floats[0]; }
  APFloat &getSecond() { return Floats[1]; }
  const APFloat &getSecond() const { return Floats[1]; }

  opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
  opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
  opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM);
  opStatus divide(const DoubleAPFloat &RHS, roundingMode RM);
  opStatus remainder(const DoubleAPFloat &RHS);
  opStatus mod(const DoubleAPFloat &RHS);
  opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
                            const DoubleAPFloat &Addend, roundingMode RM);
  opStatus roundToIntegral(roundingMode RM);
  void changeSign();
  cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;

  fltCategory getCategory() const;
  bool isNegative() const;

  void makeInf(bool Neg);
  void makeZero(bool Neg);
  void makeLargest(bool Neg);
  void makeSmallest(bool Neg);
  void makeSmallestNormalized(bool Neg);
  void makeNaN(bool SNaN, bool Neg, const APInt *fill);

  cmpResult compare(const DoubleAPFloat &RHS) const;
  bool bitwiseIsEqual(const DoubleAPFloat &RHS) const;
  APInt bitcastToAPInt() const;
  Expected<opStatus> convertFromString(StringRef, roundingMode);
  opStatus next(bool nextDown);

  opStatus convertToInteger(MutableArrayRef<integerPart> Input,
                            unsigned int Width, bool IsSigned, roundingMode RM,
                            bool *IsExact) const;
  opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM);
  opStatus convertFromSignExtendedInteger(const integerPart *Input,
                                          unsigned int InputSize, bool IsSigned,
                                          roundingMode RM);
  opStatus convertFromZeroExtendedInteger(const integerPart *Input,
                                          unsigned int InputSize, bool IsSigned,
                                          roundingMode RM);
  unsigned int convertToHexString(char *DST, unsigned int HexDigits,
                                  bool UpperCase, roundingMode RM) const;

  bool isDenormal() const;
  bool isSmallest() const;
  bool isLargest() const;
  bool isInteger() const;

  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
                unsigned FormatMaxPadding, bool TruncateZero = true) const;

  bool getExactInverse(APFloat *inv) const;

  friend int ilogb(const DoubleAPFloat &Arg);
  friend DoubleAPFloat scalbn(DoubleAPFloat X, int Exp, roundingMode);
  friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
  friend hash_code hash_value(const DoubleAPFloat &Arg);
};

hash_code hash_value(const DoubleAPFloat &Arg);

} // End detail namespace

// This is a interface class that is currently forwarding functionalities from
// detail::IEEEFloat.
class APFloat : public APFloatBase {
  typedef detail::IEEEFloat IEEEFloat;
  typedef detail::DoubleAPFloat DoubleAPFloat;

  static_assert(std::is_standard_layout<IEEEFloat>::value, "");

  union Storage {
    const fltSemantics *semantics;
    IEEEFloat IEEE;
    DoubleAPFloat Double;

    explicit Storage(IEEEFloat F, const fltSemantics &S);
    explicit Storage(DoubleAPFloat F, const fltSemantics &S)
        : Double(std::move(F)) {
      assert(&S == &PPCDoubleDouble());
    }

    template <typename... ArgTypes>
    Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
      if (usesLayout<IEEEFloat>(Semantics)) {
        new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
        return;
      }
      if (usesLayout<DoubleAPFloat>(Semantics)) {
        new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
        return;
      }
      llvm_unreachable("Unexpected semantics");
    }

    ~Storage() {
      if (usesLayout<IEEEFloat>(*semantics)) {
        IEEE.~IEEEFloat();
        return;
      }
      if (usesLayout<DoubleAPFloat>(*semantics)) {
        Double.~DoubleAPFloat();
        return;
      }
      llvm_unreachable("Unexpected semantics");
    }

    Storage(const Storage &RHS) {
      if (usesLayout<IEEEFloat>(*RHS.semantics)) {
        new (this) IEEEFloat(RHS.IEEE);
        return;
      }
      if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
        new (this) DoubleAPFloat(RHS.Double);
        return;
      }
      llvm_unreachable("Unexpected semantics");
    }

    Storage(Storage &&RHS) {
      if (usesLayout<IEEEFloat>(*RHS.semantics)) {
        new (this) IEEEFloat(std::move(RHS.IEEE));
        return;
      }
      if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
        new (this) DoubleAPFloat(std::move(RHS.Double));
        return;
      }
      llvm_unreachable("Unexpected semantics");
    }

    Storage &operator=(const Storage &RHS) {
      if (usesLayout<IEEEFloat>(*semantics) &&
          usesLayout<IEEEFloat>(*RHS.semantics)) {
        IEEE = RHS.IEEE;
      } else if (usesLayout<DoubleAPFloat>(*semantics) &&
                 usesLayout<DoubleAPFloat>(*RHS.semantics)) {
        Double = RHS.Double;
      } else if (this != &RHS) {
        this->~Storage();
        new (this) Storage(RHS);
      }
      return *this;
    }

    Storage &operator=(Storage &&RHS) {
      if (usesLayout<IEEEFloat>(*semantics) &&
          usesLayout<IEEEFloat>(*RHS.semantics)) {
        IEEE = std::move(RHS.IEEE);
      } else if (usesLayout<DoubleAPFloat>(*semantics) &&
                 usesLayout<DoubleAPFloat>(*RHS.semantics)) {
        Double = std::move(RHS.Double);
      } else if (this != &RHS) {
        this->~Storage();
        new (this) Storage(std::move(RHS));
      }
      return *this;
    }
  } U;

  template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
    static_assert(std::is_same<T, IEEEFloat>::value ||
                  std::is_same<T, DoubleAPFloat>::value, "");
    if (std::is_same<T, DoubleAPFloat>::value) {
      return &Semantics == &PPCDoubleDouble();
    }
    return &Semantics != &PPCDoubleDouble();
  }

  IEEEFloat &getIEEE() {
    if (usesLayout<IEEEFloat>(*U.semantics))
      return U.IEEE;
    if (usesLayout<DoubleAPFloat>(*U.semantics))
      return U.Double.getFirst().U.IEEE;
    llvm_unreachable("Unexpected semantics");
  }

  const IEEEFloat &getIEEE() const {
    if (usesLayout<IEEEFloat>(*U.semantics))
      return U.IEEE;
    if (usesLayout<DoubleAPFloat>(*U.semantics))
      return U.Double.getFirst().U.IEEE;
    llvm_unreachable("Unexpected semantics");
  }

  void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); }

  void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); }

  void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
    APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill));
  }

  void makeLargest(bool Neg) {
    APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg));
  }

  void makeSmallest(bool Neg) {
    APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg));
  }

  void makeSmallestNormalized(bool Neg) {
    APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg));
  }

  // FIXME: This is due to clang 3.3 (or older version) always checks for the
  // default constructor in an array aggregate initialization, even if no
  // elements in the array is default initialized.
  APFloat() : U(IEEEdouble()) {
    llvm_unreachable("This is a workaround for old clang.");
  }

  explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
  explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
      : U(std::move(F), S) {}

  cmpResult compareAbsoluteValue(const APFloat &RHS) const {
    assert(&getSemantics() == &RHS.getSemantics() &&
           "Should only compare APFloats with the same semantics");
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.compareAbsoluteValue(RHS.U.Double);
    llvm_unreachable("Unexpected semantics");
  }

public:
  APFloat(const fltSemantics &Semantics) : U(Semantics) {}
  APFloat(const fltSemantics &Semantics, StringRef S);
  APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
  template <typename T,
            typename = std::enable_if_t<std::is_floating_point<T>::value>>
  APFloat(const fltSemantics &Semantics, T V) = delete;
  // TODO: Remove this constructor. This isn't faster than the first one.
  APFloat(const fltSemantics &Semantics, uninitializedTag)
      : U(Semantics, uninitialized) {}
  APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
  explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
  explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
  APFloat(const APFloat &RHS) = default;
  APFloat(APFloat &&RHS) = default;

  ~APFloat() = default;

  bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); }

  /// Factory for Positive and Negative Zero.
  ///
  /// \param Negative True iff the number should be negative.
  static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
    APFloat Val(Sem, uninitialized);
    Val.makeZero(Negative);
    return Val;
  }

  /// Factory for Positive and Negative Infinity.
  ///
  /// \param Negative True iff the number should be negative.
  static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
    APFloat Val(Sem, uninitialized);
    Val.makeInf(Negative);
    return Val;
  }

  /// Factory for NaN values.
  ///
  /// \param Negative - True iff the NaN generated should be negative.
  /// \param payload - The unspecified fill bits for creating the NaN, 0 by
  /// default.  The value is truncated as necessary.
  static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
                        uint64_t payload = 0) {
    if (payload) {
      APInt intPayload(64, payload);
      return getQNaN(Sem, Negative, &intPayload);
    } else {
      return getQNaN(Sem, Negative, nullptr);
    }
  }

  /// Factory for QNaN values.
  static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
                         const APInt *payload = nullptr) {
    APFloat Val(Sem, uninitialized);
    Val.makeNaN(false, Negative, payload);
    return Val;
  }

  /// Factory for SNaN values.
  static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
                         const APInt *payload = nullptr) {
    APFloat Val(Sem, uninitialized);
    Val.makeNaN(true, Negative, payload);
    return Val;
  }

  /// Returns the largest finite number in the given semantics.
  ///
  /// \param Negative - True iff the number should be negative
  static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
    APFloat Val(Sem, uninitialized);
    Val.makeLargest(Negative);
    return Val;
  }

  /// Returns the smallest (by magnitude) finite number in the given semantics.
  /// Might be denormalized, which implies a relative loss of precision.
  ///
  /// \param Negative - True iff the number should be negative
  static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
    APFloat Val(Sem, uninitialized);
    Val.makeSmallest(Negative);
    return Val;
  }

  /// Returns the smallest (by magnitude) normalized finite number in the given
  /// semantics.
  ///
  /// \param Negative - True iff the number should be negative
  static APFloat getSmallestNormalized(const fltSemantics &Sem,
                                       bool Negative = false) {
    APFloat Val(Sem, uninitialized);
    Val.makeSmallestNormalized(Negative);
    return Val;
  }

  /// Returns a float which is bitcasted from an all one value int.
  ///
  /// \param Semantics - type float semantics
  /// \param BitWidth - Select float type
  static APFloat getAllOnesValue(const fltSemantics &Semantics,
                                 unsigned BitWidth);

  /// Used to insert APFloat objects, or objects that contain APFloat objects,
  /// into FoldingSets.
  void Profile(FoldingSetNodeID &NID) const;

  opStatus add(const APFloat &RHS, roundingMode RM) {
    assert(&getSemantics() == &RHS.getSemantics() &&
           "Should only call on two APFloats with the same semantics");
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.add(RHS.U.IEEE, RM);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.add(RHS.U.Double, RM);
    llvm_unreachable("Unexpected semantics");
  }
  opStatus subtract(const APFloat &RHS, roundingMode RM) {
    assert(&getSemantics() == &RHS.getSemantics() &&
           "Should only call on two APFloats with the same semantics");
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.subtract(RHS.U.IEEE, RM);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.subtract(RHS.U.Double, RM);
    llvm_unreachable("Unexpected semantics");
  }
  opStatus multiply(const APFloat &RHS, roundingMode RM) {
    assert(&getSemantics() == &RHS.getSemantics() &&
           "Should only call on two APFloats with the same semantics");
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.multiply(RHS.U.IEEE, RM);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.multiply(RHS.U.Double, RM);
    llvm_unreachable("Unexpected semantics");
  }
  opStatus divide(const APFloat &RHS, roundingMode RM) {
    assert(&getSemantics() == &RHS.getSemantics() &&
           "Should only call on two APFloats with the same semantics");
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.divide(RHS.U.IEEE, RM);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.divide(RHS.U.Double, RM);
    llvm_unreachable("Unexpected semantics");
  }
  opStatus remainder(const APFloat &RHS) {
    assert(&getSemantics() == &RHS.getSemantics() &&
           "Should only call on two APFloats with the same semantics");
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.remainder(RHS.U.IEEE);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.remainder(RHS.U.Double);
    llvm_unreachable("Unexpected semantics");
  }
  opStatus mod(const APFloat &RHS) {
    assert(&getSemantics() == &RHS.getSemantics() &&
           "Should only call on two APFloats with the same semantics");
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.mod(RHS.U.IEEE);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.mod(RHS.U.Double);
    llvm_unreachable("Unexpected semantics");
  }
  opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
                            roundingMode RM) {
    assert(&getSemantics() == &Multiplicand.getSemantics() &&
           "Should only call on APFloats with the same semantics");
    assert(&getSemantics() == &Addend.getSemantics() &&
           "Should only call on APFloats with the same semantics");
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double,
                                       RM);
    llvm_unreachable("Unexpected semantics");
  }
  opStatus roundToIntegral(roundingMode RM) {
    APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM));
  }

  // TODO: bool parameters are not readable and a source of bugs.
  // Do something.
  opStatus next(bool nextDown) {
    APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown));
  }

  /// Negate an APFloat.
  APFloat operator-() const {
    APFloat Result(*this);
    Result.changeSign();
    return Result;
  }

  /// Add two APFloats, rounding ties to the nearest even.
  /// No error checking.
  APFloat operator+(const APFloat &RHS) const {
    APFloat Result(*this);
    (void)Result.add(RHS, rmNearestTiesToEven);
    return Result;
  }

  /// Subtract two APFloats, rounding ties to the nearest even.
  /// No error checking.
  APFloat operator-(const APFloat &RHS) const {
    APFloat Result(*this);
    (void)Result.subtract(RHS, rmNearestTiesToEven);
    return Result;
  }

  /// Multiply two APFloats, rounding ties to the nearest even.
  /// No error checking.
  APFloat operator*(const APFloat &RHS) const {
    APFloat Result(*this);
    (void)Result.multiply(RHS, rmNearestTiesToEven);
    return Result;
  }

  /// Divide the first APFloat by the second, rounding ties to the nearest even.
  /// No error checking.
  APFloat operator/(const APFloat &RHS) const {
    APFloat Result(*this);
    (void)Result.divide(RHS, rmNearestTiesToEven);
    return Result;
  }

  void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); }
  void clearSign() {
    if (isNegative())
      changeSign();
  }
  void copySign(const APFloat &RHS) {
    if (isNegative() != RHS.isNegative())
      changeSign();
  }

  /// A static helper to produce a copy of an APFloat value with its sign
  /// copied from some other APFloat.
  static APFloat copySign(APFloat Value, const APFloat &Sign) {
    Value.copySign(Sign);
    return Value;
  }

  opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
                   bool *losesInfo);
  opStatus convertToInteger(MutableArrayRef<integerPart> Input,
                            unsigned int Width, bool IsSigned, roundingMode RM,
                            bool *IsExact) const {
    APFLOAT_DISPATCH_ON_SEMANTICS(
        convertToInteger(Input, Width, IsSigned, RM, IsExact));
  }
  opStatus convertToInteger(APSInt &Result, roundingMode RM,
                            bool *IsExact) const;
  opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
                            roundingMode RM) {
    APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM));
  }
  opStatus convertFromSignExtendedInteger(const integerPart *Input,
                                          unsigned int InputSize, bool IsSigned,
                                          roundingMode RM) {
    APFLOAT_DISPATCH_ON_SEMANTICS(
        convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM));
  }
  opStatus convertFromZeroExtendedInteger(const integerPart *Input,
                                          unsigned int InputSize, bool IsSigned,
                                          roundingMode RM) {
    APFLOAT_DISPATCH_ON_SEMANTICS(
        convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM));
  }
  Expected<opStatus> convertFromString(StringRef, roundingMode);
  APInt bitcastToAPInt() const {
    APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt());
  }
  double convertToDouble() const { return getIEEE().convertToDouble(); }
  float convertToFloat() const { return getIEEE().convertToFloat(); }

  bool operator==(const APFloat &RHS) const { return compare(RHS) == cmpEqual; }

  bool operator!=(const APFloat &RHS) const { return compare(RHS) != cmpEqual; }

  bool operator<(const APFloat &RHS) const {
    return compare(RHS) == cmpLessThan;
  }

  bool operator>(const APFloat &RHS) const {
    return compare(RHS) == cmpGreaterThan;
  }

  bool operator<=(const APFloat &RHS) const {
    cmpResult Res = compare(RHS);
    return Res == cmpLessThan || Res == cmpEqual;
  }

  bool operator>=(const APFloat &RHS) const {
    cmpResult Res = compare(RHS);
    return Res == cmpGreaterThan || Res == cmpEqual;
  }

  cmpResult compare(const APFloat &RHS) const {
    assert(&getSemantics() == &RHS.getSemantics() &&
           "Should only compare APFloats with the same semantics");
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.compare(RHS.U.IEEE);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.compare(RHS.U.Double);
    llvm_unreachable("Unexpected semantics");
  }

  bool bitwiseIsEqual(const APFloat &RHS) const {
    if (&getSemantics() != &RHS.getSemantics())
      return false;
    if (usesLayout<IEEEFloat>(getSemantics()))
      return U.IEEE.bitwiseIsEqual(RHS.U.IEEE);
    if (usesLayout<DoubleAPFloat>(getSemantics()))
      return U.Double.bitwiseIsEqual(RHS.U.Double);
    llvm_unreachable("Unexpected semantics");
  }

  /// We don't rely on operator== working on double values, as
  /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
  /// As such, this method can be used to do an exact bit-for-bit comparison of
  /// two floating point values.
  ///
  /// We leave the version with the double argument here because it's just so
  /// convenient to write "2.0" and the like.  Without this function we'd
  /// have to duplicate its logic everywhere it's called.
  bool isExactlyValue(double V) const {
    bool ignored;
    APFloat Tmp(V);
    Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
    return bitwiseIsEqual(Tmp);
  }

  unsigned int convertToHexString(char *DST, unsigned int HexDigits,
                                  bool UpperCase, roundingMode RM) const {
    APFLOAT_DISPATCH_ON_SEMANTICS(
        convertToHexString(DST, HexDigits, UpperCase, RM));
  }

  bool isZero() const { return getCategory() == fcZero; }
  bool isInfinity() const { return getCategory() == fcInfinity; }
  bool isNaN() const { return getCategory() == fcNaN; }

  bool isNegative() const { return getIEEE().isNegative(); }
  bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); }
  bool isSignaling() const { return getIEEE().isSignaling(); }

  bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
  bool isFinite() const { return !isNaN() && !isInfinity(); }

  fltCategory getCategory() const { return getIEEE().getCategory(); }
  const fltSemantics &getSemantics() const { return *U.semantics; }
  bool isNonZero() const { return !isZero(); }
  bool isFiniteNonZero() const { return isFinite() && !isZero(); }
  bool isPosZero() const { return isZero() && !isNegative(); }
  bool isNegZero() const { return isZero() && isNegative(); }
  bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); }
  bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); }
  bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); }

  APFloat &operator=(const APFloat &RHS) = default;
  APFloat &operator=(APFloat &&RHS) = default;

  void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
                unsigned FormatMaxPadding = 3, bool TruncateZero = true) const {
    APFLOAT_DISPATCH_ON_SEMANTICS(
        toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero));
  }

  void print(raw_ostream &) const;
  void dump() const;

  bool getExactInverse(APFloat *inv) const {
    APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv));
  }

  friend hash_code hash_value(const APFloat &Arg);
  friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
  friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
  friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
  friend IEEEFloat;
  friend DoubleAPFloat;
};

/// See friend declarations above.
///
/// These additional declarations are required in order to compile LLVM with IBM
/// xlC compiler.
hash_code hash_value(const APFloat &Arg);
inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
  if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
    return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics());
  if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
    return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics());
  llvm_unreachable("Unexpected semantics");
}

/// Equivalent of C standard library function.
///
/// While the C standard says Exp is an unspecified value for infinity and nan,
/// this returns INT_MAX for infinities, and INT_MIN for NaNs.
inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
  if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
    return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics());
  if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
    return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics());
  llvm_unreachable("Unexpected semantics");
}
/// Returns the absolute value of the argument.
inline APFloat abs(APFloat X) {
  X.clearSign();
  return X;
}

/// Returns the negated value of the argument.
inline APFloat neg(APFloat X) {
  X.changeSign();
  return X;
}

/// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
/// both are not NaN. If either argument is a NaN, returns the other argument.
LLVM_READONLY
inline APFloat minnum(const APFloat &A, const APFloat &B) {
  if (A.isNaN())
    return B;
  if (B.isNaN())
    return A;
  return B < A ? B : A;
}

/// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
/// both are not NaN. If either argument is a NaN, returns the other argument.
LLVM_READONLY
inline APFloat maxnum(const APFloat &A, const APFloat &B) {
  if (A.isNaN())
    return B;
  if (B.isNaN())
    return A;
  return A < B ? B : A;
}

/// Implements IEEE 754-2018 minimum semantics. Returns the smaller of 2
/// arguments, propagating NaNs and treating -0 as less than +0.
LLVM_READONLY
inline APFloat minimum(const APFloat &A, const APFloat &B) {
  if (A.isNaN())
    return A;
  if (B.isNaN())
    return B;
  if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
    return A.isNegative() ? A : B;
  return B < A ? B : A;
}

/// Implements IEEE 754-2018 maximum semantics. Returns the larger of 2
/// arguments, propagating NaNs and treating -0 as less than +0.
LLVM_READONLY
inline APFloat maximum(const APFloat &A, const APFloat &B) {
  if (A.isNaN())
    return A;
  if (B.isNaN())
    return B;
  if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
    return A.isNegative() ? B : A;
  return A < B ? B : A;
}

} // namespace llvm

#undef APFLOAT_DISPATCH_ON_SEMANTICS
#endif // LLVM_ADT_APFLOAT_H

#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif