1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
|
// Copyright 2025 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// AVX2 variant of methods for lossless encoder
//
// Author: Vincent Rabaud ([email protected])
#include "src/dsp/dsp.h"
#if defined(WEBP_USE_AVX2)
#include <emmintrin.h>
#include <immintrin.h>
#include <assert.h>
#include <stddef.h>
#include "src/dsp/cpu.h"
#include "src/dsp/lossless.h"
#include "src/dsp/lossless_common.h"
#include "src/utils/utils.h"
#include "src/webp/format_constants.h"
#include "src/webp/types.h"
//------------------------------------------------------------------------------
// Subtract-Green Transform
static void SubtractGreenFromBlueAndRed_AVX2(uint32_t* argb_data,
int num_pixels) {
int i;
const __m256i kCstShuffle = _mm256_set_epi8(
-1, 29, -1, 29, -1, 25, -1, 25, -1, 21, -1, 21, -1, 17, -1, 17, -1, 13,
-1, 13, -1, 9, -1, 9, -1, 5, -1, 5, -1, 1, -1, 1);
for (i = 0; i + 8 <= num_pixels; i += 8) {
const __m256i in = _mm256_loadu_si256((__m256i*)&argb_data[i]); // argb
const __m256i in_0g0g = _mm256_shuffle_epi8(in, kCstShuffle);
const __m256i out = _mm256_sub_epi8(in, in_0g0g);
_mm256_storeu_si256((__m256i*)&argb_data[i], out);
}
// fallthrough and finish off with plain-SSE
if (i != num_pixels) {
VP8LSubtractGreenFromBlueAndRed_SSE(argb_data + i, num_pixels - i);
}
}
//------------------------------------------------------------------------------
// Color Transform
// For sign-extended multiplying constants, pre-shifted by 5:
#define CST_5b(X) (((int16_t)((uint16_t)(X) << 8)) >> 5)
#define MK_CST_16(HI, LO) \
_mm256_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff)))
static void TransformColor_AVX2(const VP8LMultipliers* WEBP_RESTRICT const m,
uint32_t* WEBP_RESTRICT argb_data,
int num_pixels) {
const __m256i mults_rb =
MK_CST_16(CST_5b(m->green_to_red), CST_5b(m->green_to_blue));
const __m256i mults_b2 = MK_CST_16(CST_5b(m->red_to_blue), 0);
const __m256i mask_rb = _mm256_set1_epi32(0x00ff00ff); // red-blue masks
const __m256i kCstShuffle = _mm256_set_epi8(
29, -1, 29, -1, 25, -1, 25, -1, 21, -1, 21, -1, 17, -1, 17, -1, 13, -1,
13, -1, 9, -1, 9, -1, 5, -1, 5, -1, 1, -1, 1, -1);
int i;
for (i = 0; i + 8 <= num_pixels; i += 8) {
const __m256i in = _mm256_loadu_si256((__m256i*)&argb_data[i]); // argb
const __m256i A = _mm256_shuffle_epi8(in, kCstShuffle); // g0g0
const __m256i B = _mm256_mulhi_epi16(A, mults_rb); // x dr x db1
const __m256i C = _mm256_slli_epi16(in, 8); // r 0 b 0
const __m256i D = _mm256_mulhi_epi16(C, mults_b2); // x db2 0 0
const __m256i E = _mm256_srli_epi32(D, 16); // 0 0 x db2
const __m256i F = _mm256_add_epi8(E, B); // x dr x db
const __m256i G = _mm256_and_si256(F, mask_rb); // 0 dr 0 db
const __m256i out = _mm256_sub_epi8(in, G);
_mm256_storeu_si256((__m256i*)&argb_data[i], out);
}
// fallthrough and finish off with plain-C
if (i != num_pixels) {
VP8LTransformColor_SSE(m, argb_data + i, num_pixels - i);
}
}
//------------------------------------------------------------------------------
#define SPAN 16
static void CollectColorBlueTransforms_AVX2(const uint32_t* WEBP_RESTRICT argb,
int stride, int tile_width,
int tile_height, int green_to_blue,
int red_to_blue, uint32_t histo[]) {
const __m256i mult =
MK_CST_16(CST_5b(red_to_blue) + 256, CST_5b(green_to_blue));
const __m256i perm = _mm256_setr_epi8(
-1, 1, -1, 2, -1, 5, -1, 6, -1, 9, -1, 10, -1, 13, -1, 14, -1, 17, -1, 18,
-1, 21, -1, 22, -1, 25, -1, 26, -1, 29, -1, 30);
if (tile_width >= 8) {
int y, i;
for (y = 0; y < tile_height; ++y) {
uint8_t values[32];
const uint32_t* const src = argb + y * stride;
const __m256i A1 = _mm256_loadu_si256((const __m256i*)src);
const __m256i B1 = _mm256_shuffle_epi8(A1, perm);
const __m256i C1 = _mm256_mulhi_epi16(B1, mult);
const __m256i D1 = _mm256_sub_epi16(A1, C1);
__m256i E = _mm256_add_epi16(_mm256_srli_epi32(D1, 16), D1);
int x;
for (x = 8; x + 8 <= tile_width; x += 8) {
const __m256i A2 = _mm256_loadu_si256((const __m256i*)(src + x));
__m256i B2, C2, D2;
_mm256_storeu_si256((__m256i*)values, E);
for (i = 0; i < 32; i += 4) ++histo[values[i]];
B2 = _mm256_shuffle_epi8(A2, perm);
C2 = _mm256_mulhi_epi16(B2, mult);
D2 = _mm256_sub_epi16(A2, C2);
E = _mm256_add_epi16(_mm256_srli_epi32(D2, 16), D2);
}
_mm256_storeu_si256((__m256i*)values, E);
for (i = 0; i < 32; i += 4) ++histo[values[i]];
}
}
{
const int left_over = tile_width & 7;
if (left_over > 0) {
VP8LCollectColorBlueTransforms_SSE(argb + tile_width - left_over, stride,
left_over, tile_height, green_to_blue,
red_to_blue, histo);
}
}
}
static void CollectColorRedTransforms_AVX2(const uint32_t* WEBP_RESTRICT argb,
int stride, int tile_width,
int tile_height, int green_to_red,
uint32_t histo[]) {
const __m256i mult = MK_CST_16(0, CST_5b(green_to_red));
const __m256i mask_g = _mm256_set1_epi32(0x0000ff00);
if (tile_width >= 8) {
int y, i;
for (y = 0; y < tile_height; ++y) {
uint8_t values[32];
const uint32_t* const src = argb + y * stride;
const __m256i A1 = _mm256_loadu_si256((const __m256i*)src);
const __m256i B1 = _mm256_and_si256(A1, mask_g);
const __m256i C1 = _mm256_madd_epi16(B1, mult);
__m256i D = _mm256_sub_epi16(A1, C1);
int x;
for (x = 8; x + 8 <= tile_width; x += 8) {
const __m256i A2 = _mm256_loadu_si256((const __m256i*)(src + x));
__m256i B2, C2;
_mm256_storeu_si256((__m256i*)values, D);
for (i = 2; i < 32; i += 4) ++histo[values[i]];
B2 = _mm256_and_si256(A2, mask_g);
C2 = _mm256_madd_epi16(B2, mult);
D = _mm256_sub_epi16(A2, C2);
}
_mm256_storeu_si256((__m256i*)values, D);
for (i = 2; i < 32; i += 4) ++histo[values[i]];
}
}
{
const int left_over = tile_width & 7;
if (left_over > 0) {
VP8LCollectColorRedTransforms_SSE(argb + tile_width - left_over, stride,
left_over, tile_height, green_to_red,
histo);
}
}
}
#undef SPAN
#undef MK_CST_16
//------------------------------------------------------------------------------
// Note we are adding uint32_t's as *signed* int32's (using _mm256_add_epi32).
// But that's ok since the histogram values are less than 1<<28 (max picture
// size).
static void AddVector_AVX2(const uint32_t* WEBP_RESTRICT a,
const uint32_t* WEBP_RESTRICT b,
uint32_t* WEBP_RESTRICT out, int size) {
int i = 0;
int aligned_size = size & ~31;
// Size is, at minimum, NUM_DISTANCE_CODES (40) and may be as large as
// NUM_LITERAL_CODES (256) + NUM_LENGTH_CODES (24) + (0 or a non-zero power of
// 2). See the usage in VP8LHistogramAdd().
assert(size >= 32);
assert(size % 2 == 0);
do {
const __m256i a0 = _mm256_loadu_si256((const __m256i*)&a[i + 0]);
const __m256i a1 = _mm256_loadu_si256((const __m256i*)&a[i + 8]);
const __m256i a2 = _mm256_loadu_si256((const __m256i*)&a[i + 16]);
const __m256i a3 = _mm256_loadu_si256((const __m256i*)&a[i + 24]);
const __m256i b0 = _mm256_loadu_si256((const __m256i*)&b[i + 0]);
const __m256i b1 = _mm256_loadu_si256((const __m256i*)&b[i + 8]);
const __m256i b2 = _mm256_loadu_si256((const __m256i*)&b[i + 16]);
const __m256i b3 = _mm256_loadu_si256((const __m256i*)&b[i + 24]);
_mm256_storeu_si256((__m256i*)&out[i + 0], _mm256_add_epi32(a0, b0));
_mm256_storeu_si256((__m256i*)&out[i + 8], _mm256_add_epi32(a1, b1));
_mm256_storeu_si256((__m256i*)&out[i + 16], _mm256_add_epi32(a2, b2));
_mm256_storeu_si256((__m256i*)&out[i + 24], _mm256_add_epi32(a3, b3));
i += 32;
} while (i != aligned_size);
if ((size & 16) != 0) {
const __m256i a0 = _mm256_loadu_si256((const __m256i*)&a[i + 0]);
const __m256i a1 = _mm256_loadu_si256((const __m256i*)&a[i + 8]);
const __m256i b0 = _mm256_loadu_si256((const __m256i*)&b[i + 0]);
const __m256i b1 = _mm256_loadu_si256((const __m256i*)&b[i + 8]);
_mm256_storeu_si256((__m256i*)&out[i + 0], _mm256_add_epi32(a0, b0));
_mm256_storeu_si256((__m256i*)&out[i + 8], _mm256_add_epi32(a1, b1));
i += 16;
}
size &= 15;
if (size == 8) {
const __m256i a0 = _mm256_loadu_si256((const __m256i*)&a[i]);
const __m256i b0 = _mm256_loadu_si256((const __m256i*)&b[i]);
_mm256_storeu_si256((__m256i*)&out[i], _mm256_add_epi32(a0, b0));
} else {
for (; size--; ++i) {
out[i] = a[i] + b[i];
}
}
}
static void AddVectorEq_AVX2(const uint32_t* WEBP_RESTRICT a,
uint32_t* WEBP_RESTRICT out, int size) {
int i = 0;
int aligned_size = size & ~31;
// Size is, at minimum, NUM_DISTANCE_CODES (40) and may be as large as
// NUM_LITERAL_CODES (256) + NUM_LENGTH_CODES (24) + (0 or a non-zero power of
// 2). See the usage in VP8LHistogramAdd().
assert(size >= 32);
assert(size % 2 == 0);
do {
const __m256i a0 = _mm256_loadu_si256((const __m256i*)&a[i + 0]);
const __m256i a1 = _mm256_loadu_si256((const __m256i*)&a[i + 8]);
const __m256i a2 = _mm256_loadu_si256((const __m256i*)&a[i + 16]);
const __m256i a3 = _mm256_loadu_si256((const __m256i*)&a[i + 24]);
const __m256i b0 = _mm256_loadu_si256((const __m256i*)&out[i + 0]);
const __m256i b1 = _mm256_loadu_si256((const __m256i*)&out[i + 8]);
const __m256i b2 = _mm256_loadu_si256((const __m256i*)&out[i + 16]);
const __m256i b3 = _mm256_loadu_si256((const __m256i*)&out[i + 24]);
_mm256_storeu_si256((__m256i*)&out[i + 0], _mm256_add_epi32(a0, b0));
_mm256_storeu_si256((__m256i*)&out[i + 8], _mm256_add_epi32(a1, b1));
_mm256_storeu_si256((__m256i*)&out[i + 16], _mm256_add_epi32(a2, b2));
_mm256_storeu_si256((__m256i*)&out[i + 24], _mm256_add_epi32(a3, b3));
i += 32;
} while (i != aligned_size);
if ((size & 16) != 0) {
const __m256i a0 = _mm256_loadu_si256((const __m256i*)&a[i + 0]);
const __m256i a1 = _mm256_loadu_si256((const __m256i*)&a[i + 8]);
const __m256i b0 = _mm256_loadu_si256((const __m256i*)&out[i + 0]);
const __m256i b1 = _mm256_loadu_si256((const __m256i*)&out[i + 8]);
_mm256_storeu_si256((__m256i*)&out[i + 0], _mm256_add_epi32(a0, b0));
_mm256_storeu_si256((__m256i*)&out[i + 8], _mm256_add_epi32(a1, b1));
i += 16;
}
size &= 15;
if (size == 8) {
const __m256i a0 = _mm256_loadu_si256((const __m256i*)&a[i]);
const __m256i b0 = _mm256_loadu_si256((const __m256i*)&out[i]);
_mm256_storeu_si256((__m256i*)&out[i], _mm256_add_epi32(a0, b0));
} else {
for (; size--; ++i) {
out[i] += a[i];
}
}
}
//------------------------------------------------------------------------------
// Entropy
#if !defined(WEBP_HAVE_SLOW_CLZ_CTZ)
static uint64_t CombinedShannonEntropy_AVX2(const uint32_t X[256],
const uint32_t Y[256]) {
int i;
uint64_t retval = 0;
uint32_t sumX = 0, sumXY = 0;
const __m256i zero = _mm256_setzero_si256();
for (i = 0; i < 256; i += 32) {
const __m256i x0 = _mm256_loadu_si256((const __m256i*)(X + i + 0));
const __m256i y0 = _mm256_loadu_si256((const __m256i*)(Y + i + 0));
const __m256i x1 = _mm256_loadu_si256((const __m256i*)(X + i + 8));
const __m256i y1 = _mm256_loadu_si256((const __m256i*)(Y + i + 8));
const __m256i x2 = _mm256_loadu_si256((const __m256i*)(X + i + 16));
const __m256i y2 = _mm256_loadu_si256((const __m256i*)(Y + i + 16));
const __m256i x3 = _mm256_loadu_si256((const __m256i*)(X + i + 24));
const __m256i y3 = _mm256_loadu_si256((const __m256i*)(Y + i + 24));
const __m256i x4 = _mm256_packs_epi16(_mm256_packs_epi32(x0, x1),
_mm256_packs_epi32(x2, x3));
const __m256i y4 = _mm256_packs_epi16(_mm256_packs_epi32(y0, y1),
_mm256_packs_epi32(y2, y3));
// Packed pixels are actually in order: ... 17 16 12 11 10 9 8 3 2 1 0
const __m256i x5 = _mm256_permutevar8x32_epi32(
x4, _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0));
const __m256i y5 = _mm256_permutevar8x32_epi32(
y4, _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0));
const uint32_t mx =
(uint32_t)_mm256_movemask_epi8(_mm256_cmpgt_epi8(x5, zero));
uint32_t my =
(uint32_t)_mm256_movemask_epi8(_mm256_cmpgt_epi8(y5, zero)) | mx;
while (my) {
const int32_t j = BitsCtz(my);
uint32_t xy;
if ((mx >> j) & 1) {
const int x = X[i + j];
sumXY += x;
retval += VP8LFastSLog2(x);
}
xy = X[i + j] + Y[i + j];
sumX += xy;
retval += VP8LFastSLog2(xy);
my &= my - 1;
}
}
retval = VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY) - retval;
return retval;
}
#else
#define DONT_USE_COMBINED_SHANNON_ENTROPY_SSE2_FUNC // won't be faster
#endif
//------------------------------------------------------------------------------
static int VectorMismatch_AVX2(const uint32_t* const array1,
const uint32_t* const array2, int length) {
int match_len;
if (length >= 24) {
__m256i A0 = _mm256_loadu_si256((const __m256i*)&array1[0]);
__m256i A1 = _mm256_loadu_si256((const __m256i*)&array2[0]);
match_len = 0;
do {
// Loop unrolling and early load both provide a speedup of 10% for the
// current function. Also, max_limit can be MAX_LENGTH=4096 at most.
const __m256i cmpA = _mm256_cmpeq_epi32(A0, A1);
const __m256i B0 =
_mm256_loadu_si256((const __m256i*)&array1[match_len + 8]);
const __m256i B1 =
_mm256_loadu_si256((const __m256i*)&array2[match_len + 8]);
if ((uint32_t)_mm256_movemask_epi8(cmpA) != 0xffffffff) break;
match_len += 8;
{
const __m256i cmpB = _mm256_cmpeq_epi32(B0, B1);
A0 = _mm256_loadu_si256((const __m256i*)&array1[match_len + 8]);
A1 = _mm256_loadu_si256((const __m256i*)&array2[match_len + 8]);
if ((uint32_t)_mm256_movemask_epi8(cmpB) != 0xffffffff) break;
match_len += 8;
}
} while (match_len + 24 < length);
} else {
match_len = 0;
// Unroll the potential first two loops.
if (length >= 8 &&
(uint32_t)_mm256_movemask_epi8(_mm256_cmpeq_epi32(
_mm256_loadu_si256((const __m256i*)&array1[0]),
_mm256_loadu_si256((const __m256i*)&array2[0]))) == 0xffffffff) {
match_len = 8;
if (length >= 16 &&
(uint32_t)_mm256_movemask_epi8(_mm256_cmpeq_epi32(
_mm256_loadu_si256((const __m256i*)&array1[8]),
_mm256_loadu_si256((const __m256i*)&array2[8]))) == 0xffffffff) {
match_len = 16;
}
}
}
while (match_len < length && array1[match_len] == array2[match_len]) {
++match_len;
}
return match_len;
}
// Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
static void BundleColorMap_AVX2(const uint8_t* WEBP_RESTRICT const row,
int width, int xbits,
uint32_t* WEBP_RESTRICT dst) {
int x = 0;
assert(xbits >= 0);
assert(xbits <= 3);
switch (xbits) {
case 0: {
const __m256i ff = _mm256_set1_epi16((short)0xff00);
const __m256i zero = _mm256_setzero_si256();
// Store 0xff000000 | (row[x] << 8).
for (x = 0; x + 32 <= width; x += 32, dst += 32) {
const __m256i in = _mm256_loadu_si256((const __m256i*)&row[x]);
const __m256i in_lo = _mm256_unpacklo_epi8(zero, in);
const __m256i dst0 = _mm256_unpacklo_epi16(in_lo, ff);
const __m256i dst1 = _mm256_unpackhi_epi16(in_lo, ff);
const __m256i in_hi = _mm256_unpackhi_epi8(zero, in);
const __m256i dst2 = _mm256_unpacklo_epi16(in_hi, ff);
const __m256i dst3 = _mm256_unpackhi_epi16(in_hi, ff);
_mm256_storeu2_m128i((__m128i*)&dst[16], (__m128i*)&dst[0], dst0);
_mm256_storeu2_m128i((__m128i*)&dst[20], (__m128i*)&dst[4], dst1);
_mm256_storeu2_m128i((__m128i*)&dst[24], (__m128i*)&dst[8], dst2);
_mm256_storeu2_m128i((__m128i*)&dst[28], (__m128i*)&dst[12], dst3);
}
break;
}
case 1: {
const __m256i ff = _mm256_set1_epi16((short)0xff00);
const __m256i mul = _mm256_set1_epi16(0x110);
for (x = 0; x + 32 <= width; x += 32, dst += 16) {
// 0a0b | (where a/b are 4 bits).
const __m256i in = _mm256_loadu_si256((const __m256i*)&row[x]);
const __m256i tmp = _mm256_mullo_epi16(in, mul); // aba0
const __m256i pack = _mm256_and_si256(tmp, ff); // ab00
const __m256i dst0 = _mm256_unpacklo_epi16(pack, ff);
const __m256i dst1 = _mm256_unpackhi_epi16(pack, ff);
_mm256_storeu2_m128i((__m128i*)&dst[8], (__m128i*)&dst[0], dst0);
_mm256_storeu2_m128i((__m128i*)&dst[12], (__m128i*)&dst[4], dst1);
}
break;
}
case 2: {
const __m256i mask_or = _mm256_set1_epi32((int)0xff000000);
const __m256i mul_cst = _mm256_set1_epi16(0x0104);
const __m256i mask_mul = _mm256_set1_epi16(0x0f00);
for (x = 0; x + 32 <= width; x += 32, dst += 8) {
// 000a000b000c000d | (where a/b/c/d are 2 bits).
const __m256i in = _mm256_loadu_si256((const __m256i*)&row[x]);
const __m256i mul =
_mm256_mullo_epi16(in, mul_cst); // 00ab00b000cd00d0
const __m256i tmp =
_mm256_and_si256(mul, mask_mul); // 00ab000000cd0000
const __m256i shift = _mm256_srli_epi32(tmp, 12); // 00000000ab000000
const __m256i pack = _mm256_or_si256(shift, tmp); // 00000000abcd0000
// Convert to 0xff00**00.
const __m256i res = _mm256_or_si256(pack, mask_or);
_mm256_storeu_si256((__m256i*)dst, res);
}
break;
}
default: {
assert(xbits == 3);
for (x = 0; x + 32 <= width; x += 32, dst += 4) {
// 0000000a00000000b... | (where a/b are 1 bit).
const __m256i in = _mm256_loadu_si256((const __m256i*)&row[x]);
const __m256i shift = _mm256_slli_epi64(in, 7);
const uint32_t move = _mm256_movemask_epi8(shift);
dst[0] = 0xff000000 | ((move & 0xff) << 8);
dst[1] = 0xff000000 | (move & 0xff00);
dst[2] = 0xff000000 | ((move & 0xff0000) >> 8);
dst[3] = 0xff000000 | ((move & 0xff000000) >> 16);
}
break;
}
}
if (x != width) {
VP8LBundleColorMap_SSE(row + x, width - x, xbits, dst);
}
}
//------------------------------------------------------------------------------
// Batch version of Predictor Transform subtraction
static WEBP_INLINE void Average2_m256i(const __m256i* const a0,
const __m256i* const a1,
__m256i* const avg) {
// (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
const __m256i ones = _mm256_set1_epi8(1);
const __m256i avg1 = _mm256_avg_epu8(*a0, *a1);
const __m256i one = _mm256_and_si256(_mm256_xor_si256(*a0, *a1), ones);
*avg = _mm256_sub_epi8(avg1, one);
}
// Predictor0: ARGB_BLACK.
static void PredictorSub0_AVX2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* WEBP_RESTRICT out) {
int i;
const __m256i black = _mm256_set1_epi32((int)ARGB_BLACK);
for (i = 0; i + 8 <= num_pixels; i += 8) {
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]);
const __m256i res = _mm256_sub_epi8(src, black);
_mm256_storeu_si256((__m256i*)&out[i], res);
}
if (i != num_pixels) {
VP8LPredictorsSub_SSE[0](in + i, NULL, num_pixels - i, out + i);
}
(void)upper;
}
#define GENERATE_PREDICTOR_1(X, IN) \
static void PredictorSub##X##_AVX2( \
const uint32_t* const in, const uint32_t* const upper, int num_pixels, \
uint32_t* WEBP_RESTRICT const out) { \
int i; \
for (i = 0; i + 8 <= num_pixels; i += 8) { \
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]); \
const __m256i pred = _mm256_loadu_si256((const __m256i*)&(IN)); \
const __m256i res = _mm256_sub_epi8(src, pred); \
_mm256_storeu_si256((__m256i*)&out[i], res); \
} \
if (i != num_pixels) { \
VP8LPredictorsSub_SSE[(X)](in + i, WEBP_OFFSET_PTR(upper, i), \
num_pixels - i, out + i); \
} \
}
GENERATE_PREDICTOR_1(1, in[i - 1]) // Predictor1: L
GENERATE_PREDICTOR_1(2, upper[i]) // Predictor2: T
GENERATE_PREDICTOR_1(3, upper[i + 1]) // Predictor3: TR
GENERATE_PREDICTOR_1(4, upper[i - 1]) // Predictor4: TL
#undef GENERATE_PREDICTOR_1
// Predictor5: avg2(avg2(L, TR), T)
static void PredictorSub5_AVX2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* WEBP_RESTRICT out) {
int i;
for (i = 0; i + 8 <= num_pixels; i += 8) {
const __m256i L = _mm256_loadu_si256((const __m256i*)&in[i - 1]);
const __m256i T = _mm256_loadu_si256((const __m256i*)&upper[i]);
const __m256i TR = _mm256_loadu_si256((const __m256i*)&upper[i + 1]);
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]);
__m256i avg, pred, res;
Average2_m256i(&L, &TR, &avg);
Average2_m256i(&avg, &T, &pred);
res = _mm256_sub_epi8(src, pred);
_mm256_storeu_si256((__m256i*)&out[i], res);
}
if (i != num_pixels) {
VP8LPredictorsSub_SSE[5](in + i, upper + i, num_pixels - i, out + i);
}
}
#define GENERATE_PREDICTOR_2(X, A, B) \
static void PredictorSub##X##_AVX2(const uint32_t* in, \
const uint32_t* upper, int num_pixels, \
uint32_t* WEBP_RESTRICT out) { \
int i; \
for (i = 0; i + 8 <= num_pixels; i += 8) { \
const __m256i tA = _mm256_loadu_si256((const __m256i*)&(A)); \
const __m256i tB = _mm256_loadu_si256((const __m256i*)&(B)); \
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]); \
__m256i pred, res; \
Average2_m256i(&tA, &tB, &pred); \
res = _mm256_sub_epi8(src, pred); \
_mm256_storeu_si256((__m256i*)&out[i], res); \
} \
if (i != num_pixels) { \
VP8LPredictorsSub_SSE[(X)](in + i, upper + i, num_pixels - i, out + i); \
} \
}
GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1]) // Predictor6: avg(L, TL)
GENERATE_PREDICTOR_2(7, in[i - 1], upper[i]) // Predictor7: avg(L, T)
GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i]) // Predictor8: avg(TL, T)
GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1]) // Predictor9: average(T, TR)
#undef GENERATE_PREDICTOR_2
// Predictor10: avg(avg(L,TL), avg(T, TR)).
static void PredictorSub10_AVX2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* WEBP_RESTRICT out) {
int i;
for (i = 0; i + 8 <= num_pixels; i += 8) {
const __m256i L = _mm256_loadu_si256((const __m256i*)&in[i - 1]);
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]);
const __m256i TL = _mm256_loadu_si256((const __m256i*)&upper[i - 1]);
const __m256i T = _mm256_loadu_si256((const __m256i*)&upper[i]);
const __m256i TR = _mm256_loadu_si256((const __m256i*)&upper[i + 1]);
__m256i avgTTR, avgLTL, avg, res;
Average2_m256i(&T, &TR, &avgTTR);
Average2_m256i(&L, &TL, &avgLTL);
Average2_m256i(&avgTTR, &avgLTL, &avg);
res = _mm256_sub_epi8(src, avg);
_mm256_storeu_si256((__m256i*)&out[i], res);
}
if (i != num_pixels) {
VP8LPredictorsSub_SSE[10](in + i, upper + i, num_pixels - i, out + i);
}
}
// Predictor11: select.
static void GetSumAbsDiff32_AVX2(const __m256i* const A, const __m256i* const B,
__m256i* const out) {
// We can unpack with any value on the upper 32 bits, provided it's the same
// on both operands (to that their sum of abs diff is zero). Here we use *A.
const __m256i A_lo = _mm256_unpacklo_epi32(*A, *A);
const __m256i B_lo = _mm256_unpacklo_epi32(*B, *A);
const __m256i A_hi = _mm256_unpackhi_epi32(*A, *A);
const __m256i B_hi = _mm256_unpackhi_epi32(*B, *A);
const __m256i s_lo = _mm256_sad_epu8(A_lo, B_lo);
const __m256i s_hi = _mm256_sad_epu8(A_hi, B_hi);
*out = _mm256_packs_epi32(s_lo, s_hi);
}
static void PredictorSub11_AVX2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* WEBP_RESTRICT out) {
int i;
for (i = 0; i + 8 <= num_pixels; i += 8) {
const __m256i L = _mm256_loadu_si256((const __m256i*)&in[i - 1]);
const __m256i T = _mm256_loadu_si256((const __m256i*)&upper[i]);
const __m256i TL = _mm256_loadu_si256((const __m256i*)&upper[i - 1]);
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]);
__m256i pa, pb;
GetSumAbsDiff32_AVX2(&T, &TL, &pa); // pa = sum |T-TL|
GetSumAbsDiff32_AVX2(&L, &TL, &pb); // pb = sum |L-TL|
{
const __m256i mask = _mm256_cmpgt_epi32(pb, pa);
const __m256i A = _mm256_and_si256(mask, L);
const __m256i B = _mm256_andnot_si256(mask, T);
const __m256i pred = _mm256_or_si256(A, B); // pred = (L > T)? L : T
const __m256i res = _mm256_sub_epi8(src, pred);
_mm256_storeu_si256((__m256i*)&out[i], res);
}
}
if (i != num_pixels) {
VP8LPredictorsSub_SSE[11](in + i, upper + i, num_pixels - i, out + i);
}
}
// Predictor12: ClampedSubSubtractFull.
static void PredictorSub12_AVX2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* WEBP_RESTRICT out) {
int i;
const __m256i zero = _mm256_setzero_si256();
for (i = 0; i + 8 <= num_pixels; i += 8) {
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]);
const __m256i L = _mm256_loadu_si256((const __m256i*)&in[i - 1]);
const __m256i L_lo = _mm256_unpacklo_epi8(L, zero);
const __m256i L_hi = _mm256_unpackhi_epi8(L, zero);
const __m256i T = _mm256_loadu_si256((const __m256i*)&upper[i]);
const __m256i T_lo = _mm256_unpacklo_epi8(T, zero);
const __m256i T_hi = _mm256_unpackhi_epi8(T, zero);
const __m256i TL = _mm256_loadu_si256((const __m256i*)&upper[i - 1]);
const __m256i TL_lo = _mm256_unpacklo_epi8(TL, zero);
const __m256i TL_hi = _mm256_unpackhi_epi8(TL, zero);
const __m256i diff_lo = _mm256_sub_epi16(T_lo, TL_lo);
const __m256i diff_hi = _mm256_sub_epi16(T_hi, TL_hi);
const __m256i pred_lo = _mm256_add_epi16(L_lo, diff_lo);
const __m256i pred_hi = _mm256_add_epi16(L_hi, diff_hi);
const __m256i pred = _mm256_packus_epi16(pred_lo, pred_hi);
const __m256i res = _mm256_sub_epi8(src, pred);
_mm256_storeu_si256((__m256i*)&out[i], res);
}
if (i != num_pixels) {
VP8LPredictorsSub_SSE[12](in + i, upper + i, num_pixels - i, out + i);
}
}
// Predictors13: ClampedAddSubtractHalf
static void PredictorSub13_AVX2(const uint32_t* in, const uint32_t* upper,
int num_pixels, uint32_t* WEBP_RESTRICT out) {
int i;
const __m256i zero = _mm256_setzero_si256();
for (i = 0; i + 8 <= num_pixels; i += 8) {
const __m256i L = _mm256_loadu_si256((const __m256i*)&in[i - 1]);
const __m256i src = _mm256_loadu_si256((const __m256i*)&in[i]);
const __m256i T = _mm256_loadu_si256((const __m256i*)&upper[i]);
const __m256i TL = _mm256_loadu_si256((const __m256i*)&upper[i - 1]);
// lo.
const __m256i L_lo = _mm256_unpacklo_epi8(L, zero);
const __m256i T_lo = _mm256_unpacklo_epi8(T, zero);
const __m256i TL_lo = _mm256_unpacklo_epi8(TL, zero);
const __m256i sum_lo = _mm256_add_epi16(T_lo, L_lo);
const __m256i avg_lo = _mm256_srli_epi16(sum_lo, 1);
const __m256i A1_lo = _mm256_sub_epi16(avg_lo, TL_lo);
const __m256i bit_fix_lo = _mm256_cmpgt_epi16(TL_lo, avg_lo);
const __m256i A2_lo = _mm256_sub_epi16(A1_lo, bit_fix_lo);
const __m256i A3_lo = _mm256_srai_epi16(A2_lo, 1);
const __m256i A4_lo = _mm256_add_epi16(avg_lo, A3_lo);
// hi.
const __m256i L_hi = _mm256_unpackhi_epi8(L, zero);
const __m256i T_hi = _mm256_unpackhi_epi8(T, zero);
const __m256i TL_hi = _mm256_unpackhi_epi8(TL, zero);
const __m256i sum_hi = _mm256_add_epi16(T_hi, L_hi);
const __m256i avg_hi = _mm256_srli_epi16(sum_hi, 1);
const __m256i A1_hi = _mm256_sub_epi16(avg_hi, TL_hi);
const __m256i bit_fix_hi = _mm256_cmpgt_epi16(TL_hi, avg_hi);
const __m256i A2_hi = _mm256_sub_epi16(A1_hi, bit_fix_hi);
const __m256i A3_hi = _mm256_srai_epi16(A2_hi, 1);
const __m256i A4_hi = _mm256_add_epi16(avg_hi, A3_hi);
const __m256i pred = _mm256_packus_epi16(A4_lo, A4_hi);
const __m256i res = _mm256_sub_epi8(src, pred);
_mm256_storeu_si256((__m256i*)&out[i], res);
}
if (i != num_pixels) {
VP8LPredictorsSub_SSE[13](in + i, upper + i, num_pixels - i, out + i);
}
}
//------------------------------------------------------------------------------
// Entry point
extern void VP8LEncDspInitAVX2(void);
WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitAVX2(void) {
VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_AVX2;
VP8LTransformColor = TransformColor_AVX2;
VP8LCollectColorBlueTransforms = CollectColorBlueTransforms_AVX2;
VP8LCollectColorRedTransforms = CollectColorRedTransforms_AVX2;
VP8LAddVector = AddVector_AVX2;
VP8LAddVectorEq = AddVectorEq_AVX2;
VP8LCombinedShannonEntropy = CombinedShannonEntropy_AVX2;
VP8LVectorMismatch = VectorMismatch_AVX2;
VP8LBundleColorMap = BundleColorMap_AVX2;
VP8LPredictorsSub[0] = PredictorSub0_AVX2;
VP8LPredictorsSub[1] = PredictorSub1_AVX2;
VP8LPredictorsSub[2] = PredictorSub2_AVX2;
VP8LPredictorsSub[3] = PredictorSub3_AVX2;
VP8LPredictorsSub[4] = PredictorSub4_AVX2;
VP8LPredictorsSub[5] = PredictorSub5_AVX2;
VP8LPredictorsSub[6] = PredictorSub6_AVX2;
VP8LPredictorsSub[7] = PredictorSub7_AVX2;
VP8LPredictorsSub[8] = PredictorSub8_AVX2;
VP8LPredictorsSub[9] = PredictorSub9_AVX2;
VP8LPredictorsSub[10] = PredictorSub10_AVX2;
VP8LPredictorsSub[11] = PredictorSub11_AVX2;
VP8LPredictorsSub[12] = PredictorSub12_AVX2;
VP8LPredictorsSub[13] = PredictorSub13_AVX2;
VP8LPredictorsSub[14] = PredictorSub0_AVX2; // <- padding security sentinels
VP8LPredictorsSub[15] = PredictorSub0_AVX2;
}
#else // !WEBP_USE_AVX2
WEBP_DSP_INIT_STUB(VP8LEncDspInitAVX2)
#endif // WEBP_USE_AVX2
|