1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
// Copyright 2015 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// SSE2 Rescaling functions
//
// Author: Skal (pascal.massimino@gmail.com)
#include "./dsp.h"
#if defined(WEBP_USE_SSE2) && !defined(WEBP_REDUCE_SIZE)
#include <emmintrin.h>
#include <assert.h>
#include "../utils/rescaler_utils.h"
#include "../utils/utils.h"
//------------------------------------------------------------------------------
// Implementations of critical functions ImportRow / ExportRow
#define ROUNDER (WEBP_RESCALER_ONE >> 1)
#define MULT_FIX(x, y) (((uint64_t)(x) * (y) + ROUNDER) >> WEBP_RESCALER_RFIX)
#define MULT_FIX_FLOOR(x, y) (((uint64_t)(x) * (y)) >> WEBP_RESCALER_RFIX)
// input: 8 bytes ABCDEFGH -> output: A0E0B0F0C0G0D0H0
static void LoadTwoPixels_SSE2(const uint8_t* const src, __m128i* out) {
const __m128i zero = _mm_setzero_si128();
const __m128i A = _mm_loadl_epi64((const __m128i*)(src)); // ABCDEFGH
const __m128i B = _mm_unpacklo_epi8(A, zero); // A0B0C0D0E0F0G0H0
const __m128i C = _mm_srli_si128(B, 8); // E0F0G0H0
*out = _mm_unpacklo_epi16(B, C);
}
// input: 8 bytes ABCDEFGH -> output: A0B0C0D0E0F0G0H0
static void LoadEightPixels_SSE2(const uint8_t* const src, __m128i* out) {
const __m128i zero = _mm_setzero_si128();
const __m128i A = _mm_loadl_epi64((const __m128i*)(src)); // ABCDEFGH
*out = _mm_unpacklo_epi8(A, zero);
}
static void RescalerImportRowExpand_SSE2(WebPRescaler* const wrk,
const uint8_t* src) {
rescaler_t* frow = wrk->frow;
const rescaler_t* const frow_end = frow + wrk->dst_width * wrk->num_channels;
const int x_add = wrk->x_add;
int accum = x_add;
__m128i cur_pixels;
// SSE2 implementation only works with 16b signed arithmetic at max.
if (wrk->src_width < 8 || accum >= (1 << 15)) {
WebPRescalerImportRowExpand_C(wrk, src);
return;
}
assert(!WebPRescalerInputDone(wrk));
assert(wrk->x_expand);
if (wrk->num_channels == 4) {
LoadTwoPixels_SSE2(src, &cur_pixels);
src += 4;
while (1) {
const __m128i mult = _mm_set1_epi32(((x_add - accum) << 16) | accum);
const __m128i out = _mm_madd_epi16(cur_pixels, mult);
_mm_storeu_si128((__m128i*)frow, out);
frow += 4;
if (frow >= frow_end) break;
accum -= wrk->x_sub;
if (accum < 0) {
LoadTwoPixels_SSE2(src, &cur_pixels);
src += 4;
accum += x_add;
}
}
} else {
int left;
const uint8_t* const src_limit = src + wrk->src_width - 8;
LoadEightPixels_SSE2(src, &cur_pixels);
src += 7;
left = 7;
while (1) {
const __m128i mult = _mm_cvtsi32_si128(((x_add - accum) << 16) | accum);
const __m128i out = _mm_madd_epi16(cur_pixels, mult);
assert(sizeof(*frow) == sizeof(uint32_t));
WebPUint32ToMem((uint8_t*)frow, _mm_cvtsi128_si32(out));
frow += 1;
if (frow >= frow_end) break;
accum -= wrk->x_sub;
if (accum < 0) {
if (--left) {
cur_pixels = _mm_srli_si128(cur_pixels, 2);
} else if (src <= src_limit) {
LoadEightPixels_SSE2(src, &cur_pixels);
src += 7;
left = 7;
} else { // tail
cur_pixels = _mm_srli_si128(cur_pixels, 2);
cur_pixels = _mm_insert_epi16(cur_pixels, src[1], 1);
src += 1;
left = 1;
}
accum += x_add;
}
}
}
assert(accum == 0);
}
static void RescalerImportRowShrink_SSE2(WebPRescaler* const wrk,
const uint8_t* src) {
const int x_sub = wrk->x_sub;
int accum = 0;
const __m128i zero = _mm_setzero_si128();
const __m128i mult0 = _mm_set1_epi16(x_sub);
const __m128i mult1 = _mm_set1_epi32(wrk->fx_scale);
const __m128i rounder = _mm_set_epi32(0, ROUNDER, 0, ROUNDER);
__m128i sum = zero;
rescaler_t* frow = wrk->frow;
const rescaler_t* const frow_end = wrk->frow + 4 * wrk->dst_width;
if (wrk->num_channels != 4 || wrk->x_add > (x_sub << 7)) {
WebPRescalerImportRowShrink_C(wrk, src);
return;
}
assert(!WebPRescalerInputDone(wrk));
assert(!wrk->x_expand);
for (; frow < frow_end; frow += 4) {
__m128i base = zero;
accum += wrk->x_add;
while (accum > 0) {
const __m128i A = _mm_cvtsi32_si128(WebPMemToUint32(src));
src += 4;
base = _mm_unpacklo_epi8(A, zero);
// To avoid overflow, we need: base * x_add / x_sub < 32768
// => x_add < x_sub << 7. That's a 1/128 reduction ratio limit.
sum = _mm_add_epi16(sum, base);
accum -= x_sub;
}
{ // Emit next horizontal pixel.
const __m128i mult = _mm_set1_epi16(-accum);
const __m128i frac0 = _mm_mullo_epi16(base, mult); // 16b x 16b -> 32b
const __m128i frac1 = _mm_mulhi_epu16(base, mult);
const __m128i frac = _mm_unpacklo_epi16(frac0, frac1); // frac is 32b
const __m128i A0 = _mm_mullo_epi16(sum, mult0);
const __m128i A1 = _mm_mulhi_epu16(sum, mult0);
const __m128i B0 = _mm_unpacklo_epi16(A0, A1); // sum * x_sub
const __m128i frow_out = _mm_sub_epi32(B0, frac); // sum * x_sub - frac
const __m128i D0 = _mm_srli_epi64(frac, 32);
const __m128i D1 = _mm_mul_epu32(frac, mult1); // 32b x 16b -> 64b
const __m128i D2 = _mm_mul_epu32(D0, mult1);
const __m128i E1 = _mm_add_epi64(D1, rounder);
const __m128i E2 = _mm_add_epi64(D2, rounder);
const __m128i F1 = _mm_shuffle_epi32(E1, 1 | (3 << 2));
const __m128i F2 = _mm_shuffle_epi32(E2, 1 | (3 << 2));
const __m128i G = _mm_unpacklo_epi32(F1, F2);
sum = _mm_packs_epi32(G, zero);
_mm_storeu_si128((__m128i*)frow, frow_out);
}
}
assert(accum == 0);
}
//------------------------------------------------------------------------------
// Row export
// load *src as epi64, multiply by mult and store result in [out0 ... out3]
static WEBP_INLINE void LoadDispatchAndMult_SSE2(const rescaler_t* const src,
const __m128i* const mult,
__m128i* const out0,
__m128i* const out1,
__m128i* const out2,
__m128i* const out3) {
const __m128i A0 = _mm_loadu_si128((const __m128i*)(src + 0));
const __m128i A1 = _mm_loadu_si128((const __m128i*)(src + 4));
const __m128i A2 = _mm_srli_epi64(A0, 32);
const __m128i A3 = _mm_srli_epi64(A1, 32);
if (mult != NULL) {
*out0 = _mm_mul_epu32(A0, *mult);
*out1 = _mm_mul_epu32(A1, *mult);
*out2 = _mm_mul_epu32(A2, *mult);
*out3 = _mm_mul_epu32(A3, *mult);
} else {
*out0 = A0;
*out1 = A1;
*out2 = A2;
*out3 = A3;
}
}
static WEBP_INLINE void ProcessRow_SSE2(const __m128i* const A0,
const __m128i* const A1,
const __m128i* const A2,
const __m128i* const A3,
const __m128i* const mult,
uint8_t* const dst) {
const __m128i rounder = _mm_set_epi32(0, ROUNDER, 0, ROUNDER);
const __m128i mask = _mm_set_epi32(0xffffffffu, 0, 0xffffffffu, 0);
const __m128i B0 = _mm_mul_epu32(*A0, *mult);
const __m128i B1 = _mm_mul_epu32(*A1, *mult);
const __m128i B2 = _mm_mul_epu32(*A2, *mult);
const __m128i B3 = _mm_mul_epu32(*A3, *mult);
const __m128i C0 = _mm_add_epi64(B0, rounder);
const __m128i C1 = _mm_add_epi64(B1, rounder);
const __m128i C2 = _mm_add_epi64(B2, rounder);
const __m128i C3 = _mm_add_epi64(B3, rounder);
const __m128i D0 = _mm_srli_epi64(C0, WEBP_RESCALER_RFIX);
const __m128i D1 = _mm_srli_epi64(C1, WEBP_RESCALER_RFIX);
#if (WEBP_RESCALER_RFIX < 32)
const __m128i D2 =
_mm_and_si128(_mm_slli_epi64(C2, 32 - WEBP_RESCALER_RFIX), mask);
const __m128i D3 =
_mm_and_si128(_mm_slli_epi64(C3, 32 - WEBP_RESCALER_RFIX), mask);
#else
const __m128i D2 = _mm_and_si128(C2, mask);
const __m128i D3 = _mm_and_si128(C3, mask);
#endif
const __m128i E0 = _mm_or_si128(D0, D2);
const __m128i E1 = _mm_or_si128(D1, D3);
const __m128i F = _mm_packs_epi32(E0, E1);
const __m128i G = _mm_packus_epi16(F, F);
_mm_storel_epi64((__m128i*)dst, G);
}
static void RescalerExportRowExpand_SSE2(WebPRescaler* const wrk) {
int x_out;
uint8_t* const dst = wrk->dst;
rescaler_t* const irow = wrk->irow;
const int x_out_max = wrk->dst_width * wrk->num_channels;
const rescaler_t* const frow = wrk->frow;
const __m128i mult = _mm_set_epi32(0, wrk->fy_scale, 0, wrk->fy_scale);
assert(!WebPRescalerOutputDone(wrk));
assert(wrk->y_accum <= 0 && wrk->y_sub + wrk->y_accum >= 0);
assert(wrk->y_expand);
if (wrk->y_accum == 0) {
for (x_out = 0; x_out + 8 <= x_out_max; x_out += 8) {
__m128i A0, A1, A2, A3;
LoadDispatchAndMult_SSE2(frow + x_out, NULL, &A0, &A1, &A2, &A3);
ProcessRow_SSE2(&A0, &A1, &A2, &A3, &mult, dst + x_out);
}
for (; x_out < x_out_max; ++x_out) {
const uint32_t J = frow[x_out];
const int v = (int)MULT_FIX(J, wrk->fy_scale);
dst[x_out] = (v > 255) ? 255u : (uint8_t)v;
}
} else {
const uint32_t B = WEBP_RESCALER_FRAC(-wrk->y_accum, wrk->y_sub);
const uint32_t A = (uint32_t)(WEBP_RESCALER_ONE - B);
const __m128i mA = _mm_set_epi32(0, A, 0, A);
const __m128i mB = _mm_set_epi32(0, B, 0, B);
const __m128i rounder = _mm_set_epi32(0, ROUNDER, 0, ROUNDER);
for (x_out = 0; x_out + 8 <= x_out_max; x_out += 8) {
__m128i A0, A1, A2, A3, B0, B1, B2, B3;
LoadDispatchAndMult_SSE2(frow + x_out, &mA, &A0, &A1, &A2, &A3);
LoadDispatchAndMult_SSE2(irow + x_out, &mB, &B0, &B1, &B2, &B3);
{
const __m128i C0 = _mm_add_epi64(A0, B0);
const __m128i C1 = _mm_add_epi64(A1, B1);
const __m128i C2 = _mm_add_epi64(A2, B2);
const __m128i C3 = _mm_add_epi64(A3, B3);
const __m128i D0 = _mm_add_epi64(C0, rounder);
const __m128i D1 = _mm_add_epi64(C1, rounder);
const __m128i D2 = _mm_add_epi64(C2, rounder);
const __m128i D3 = _mm_add_epi64(C3, rounder);
const __m128i E0 = _mm_srli_epi64(D0, WEBP_RESCALER_RFIX);
const __m128i E1 = _mm_srli_epi64(D1, WEBP_RESCALER_RFIX);
const __m128i E2 = _mm_srli_epi64(D2, WEBP_RESCALER_RFIX);
const __m128i E3 = _mm_srli_epi64(D3, WEBP_RESCALER_RFIX);
ProcessRow_SSE2(&E0, &E1, &E2, &E3, &mult, dst + x_out);
}
}
for (; x_out < x_out_max; ++x_out) {
const uint64_t I = (uint64_t)A * frow[x_out]
+ (uint64_t)B * irow[x_out];
const uint32_t J = (uint32_t)((I + ROUNDER) >> WEBP_RESCALER_RFIX);
const int v = (int)MULT_FIX(J, wrk->fy_scale);
dst[x_out] = (v > 255) ? 255u : (uint8_t)v;
}
}
}
static void RescalerExportRowShrink_SSE2(WebPRescaler* const wrk) {
int x_out;
uint8_t* const dst = wrk->dst;
rescaler_t* const irow = wrk->irow;
const int x_out_max = wrk->dst_width * wrk->num_channels;
const rescaler_t* const frow = wrk->frow;
const uint32_t yscale = wrk->fy_scale * (-wrk->y_accum);
assert(!WebPRescalerOutputDone(wrk));
assert(wrk->y_accum <= 0);
assert(!wrk->y_expand);
if (yscale) {
const int scale_xy = wrk->fxy_scale;
const __m128i mult_xy = _mm_set_epi32(0, scale_xy, 0, scale_xy);
const __m128i mult_y = _mm_set_epi32(0, yscale, 0, yscale);
for (x_out = 0; x_out + 8 <= x_out_max; x_out += 8) {
__m128i A0, A1, A2, A3, B0, B1, B2, B3;
LoadDispatchAndMult_SSE2(irow + x_out, NULL, &A0, &A1, &A2, &A3);
LoadDispatchAndMult_SSE2(frow + x_out, &mult_y, &B0, &B1, &B2, &B3);
{
const __m128i D0 = _mm_srli_epi64(B0, WEBP_RESCALER_RFIX); // = frac
const __m128i D1 = _mm_srli_epi64(B1, WEBP_RESCALER_RFIX);
const __m128i D2 = _mm_srli_epi64(B2, WEBP_RESCALER_RFIX);
const __m128i D3 = _mm_srli_epi64(B3, WEBP_RESCALER_RFIX);
const __m128i E0 = _mm_sub_epi64(A0, D0); // irow[x] - frac
const __m128i E1 = _mm_sub_epi64(A1, D1);
const __m128i E2 = _mm_sub_epi64(A2, D2);
const __m128i E3 = _mm_sub_epi64(A3, D3);
const __m128i F2 = _mm_slli_epi64(D2, 32);
const __m128i F3 = _mm_slli_epi64(D3, 32);
const __m128i G0 = _mm_or_si128(D0, F2);
const __m128i G1 = _mm_or_si128(D1, F3);
_mm_storeu_si128((__m128i*)(irow + x_out + 0), G0);
_mm_storeu_si128((__m128i*)(irow + x_out + 4), G1);
ProcessRow_SSE2(&E0, &E1, &E2, &E3, &mult_xy, dst + x_out);
}
}
for (; x_out < x_out_max; ++x_out) {
const uint32_t frac = (int)MULT_FIX_FLOOR(frow[x_out], yscale);
const int v = (int)MULT_FIX(irow[x_out] - frac, wrk->fxy_scale);
dst[x_out] = (v > 255) ? 255u : (uint8_t)v;
irow[x_out] = frac; // new fractional start
}
} else {
const uint32_t scale = wrk->fxy_scale;
const __m128i mult = _mm_set_epi32(0, scale, 0, scale);
const __m128i zero = _mm_setzero_si128();
for (x_out = 0; x_out + 8 <= x_out_max; x_out += 8) {
__m128i A0, A1, A2, A3;
LoadDispatchAndMult_SSE2(irow + x_out, NULL, &A0, &A1, &A2, &A3);
_mm_storeu_si128((__m128i*)(irow + x_out + 0), zero);
_mm_storeu_si128((__m128i*)(irow + x_out + 4), zero);
ProcessRow_SSE2(&A0, &A1, &A2, &A3, &mult, dst + x_out);
}
for (; x_out < x_out_max; ++x_out) {
const int v = (int)MULT_FIX(irow[x_out], scale);
dst[x_out] = (v > 255) ? 255u : (uint8_t)v;
irow[x_out] = 0;
}
}
}
#undef MULT_FIX_FLOOR
#undef MULT_FIX
#undef ROUNDER
//------------------------------------------------------------------------------
extern void WebPRescalerDspInitSSE2(void);
WEBP_TSAN_IGNORE_FUNCTION void WebPRescalerDspInitSSE2(void) {
WebPRescalerImportRowExpand = RescalerImportRowExpand_SSE2;
WebPRescalerImportRowShrink = RescalerImportRowShrink_SSE2;
WebPRescalerExportRowExpand = RescalerExportRowExpand_SSE2;
WebPRescalerExportRowShrink = RescalerExportRowShrink_SSE2;
}
#else // !WEBP_USE_SSE2
WEBP_DSP_INIT_STUB(WebPRescalerDspInitSSE2)
#endif // WEBP_USE_SSE2
|