aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/libwebp/dsp/lossless.c
blob: 85434ffc7ddd263a0acda5ce579173805b814247 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Image transforms and color space conversion methods for lossless decoder.
//
// Authors: Vikas Arora (vikaas.arora@gmail.com)
//          Jyrki Alakuijala (jyrki@google.com)
//          Urvang Joshi (urvang@google.com)

#include "./dsp.h"

#include <assert.h>
#include <math.h>
#include <stdlib.h>
#include "../dec/vp8li_dec.h"
#include "../utils/endian_inl_utils.h"
#include "./lossless.h"
#include "./lossless_common.h"

//------------------------------------------------------------------------------
// Image transforms.

static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) {
  return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1);
}

static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) {
  return Average2(Average2(a0, a2), a1);
}

static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1,
                                     uint32_t a2, uint32_t a3) {
  return Average2(Average2(a0, a1), Average2(a2, a3));
}

static WEBP_INLINE uint32_t Clip255(uint32_t a) {
  if (a < 256) {
    return a;
  }
  // return 0, when a is a negative integer.
  // return 255, when a is positive.
  return ~a >> 24;
}

static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) {
  return Clip255(a + b - c);
}

static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1,
                                                   uint32_t c2) {
  const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24);
  const int r = AddSubtractComponentFull((c0 >> 16) & 0xff,
                                         (c1 >> 16) & 0xff,
                                         (c2 >> 16) & 0xff);
  const int g = AddSubtractComponentFull((c0 >> 8) & 0xff,
                                         (c1 >> 8) & 0xff,
                                         (c2 >> 8) & 0xff);
  const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff);
  return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
}

static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) {
  return Clip255(a + (a - b) / 2);
}

static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1,
                                                   uint32_t c2) {
  const uint32_t ave = Average2(c0, c1);
  const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24);
  const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff);
  const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff);
  const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff);
  return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
}

// gcc <= 4.9 on ARM generates incorrect code in Select() when Sub3() is
// inlined.
#if defined(__arm__) && defined(__GNUC__) && LOCAL_GCC_VERSION <= 0x409
# define LOCAL_INLINE __attribute__ ((noinline))
#else
# define LOCAL_INLINE WEBP_INLINE
#endif

static LOCAL_INLINE int Sub3(int a, int b, int c) {
  const int pb = b - c;
  const int pa = a - c;
  return abs(pb) - abs(pa);
}

#undef LOCAL_INLINE

static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) {
  const int pa_minus_pb =
      Sub3((a >> 24)       , (b >> 24)       , (c >> 24)       ) +
      Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) +
      Sub3((a >>  8) & 0xff, (b >>  8) & 0xff, (c >>  8) & 0xff) +
      Sub3((a      ) & 0xff, (b      ) & 0xff, (c      ) & 0xff);
  return (pa_minus_pb <= 0) ? a : b;
}

//------------------------------------------------------------------------------
// Predictors

uint32_t VP8LPredictor0_C(const uint32_t* const left,
                          const uint32_t* const top) {
  (void)top;
  (void)left;
  return ARGB_BLACK;
}
uint32_t VP8LPredictor1_C(const uint32_t* const left,
                          const uint32_t* const top) {
  (void)top;
  return *left;
}
uint32_t VP8LPredictor2_C(const uint32_t* const left,
                          const uint32_t* const top) {
  (void)left;
  return top[0];
}
uint32_t VP8LPredictor3_C(const uint32_t* const left,
                          const uint32_t* const top) {
  (void)left;
  return top[1];
}
uint32_t VP8LPredictor4_C(const uint32_t* const left,
                          const uint32_t* const top) {
  (void)left;
  return top[-1];
}
uint32_t VP8LPredictor5_C(const uint32_t* const left,
                          const uint32_t* const top) {
  const uint32_t pred = Average3(*left, top[0], top[1]);
  return pred;
}
uint32_t VP8LPredictor6_C(const uint32_t* const left,
                          const uint32_t* const top) {
  const uint32_t pred = Average2(*left, top[-1]);
  return pred;
}
uint32_t VP8LPredictor7_C(const uint32_t* const left,
                          const uint32_t* const top) {
  const uint32_t pred = Average2(*left, top[0]);
  return pred;
}
uint32_t VP8LPredictor8_C(const uint32_t* const left,
                          const uint32_t* const top) {
  const uint32_t pred = Average2(top[-1], top[0]);
  (void)left;
  return pred;
}
uint32_t VP8LPredictor9_C(const uint32_t* const left,
                          const uint32_t* const top) {
  const uint32_t pred = Average2(top[0], top[1]);
  (void)left;
  return pred;
}
uint32_t VP8LPredictor10_C(const uint32_t* const left,
                           const uint32_t* const top) {
  const uint32_t pred = Average4(*left, top[-1], top[0], top[1]);
  return pred;
}
uint32_t VP8LPredictor11_C(const uint32_t* const left,
                           const uint32_t* const top) {
  const uint32_t pred = Select(top[0], *left, top[-1]);
  return pred;
}
uint32_t VP8LPredictor12_C(const uint32_t* const left,
                           const uint32_t* const top) {
  const uint32_t pred = ClampedAddSubtractFull(*left, top[0], top[-1]);
  return pred;
}
uint32_t VP8LPredictor13_C(const uint32_t* const left,
                           const uint32_t* const top) {
  const uint32_t pred = ClampedAddSubtractHalf(*left, top[0], top[-1]);
  return pred;
}

static void PredictorAdd0_C(const uint32_t* in, const uint32_t* upper,
                            int num_pixels, uint32_t* out) {
  int x;
  (void)upper;
  for (x = 0; x < num_pixels; ++x) out[x] = VP8LAddPixels(in[x], ARGB_BLACK);
}
static void PredictorAdd1_C(const uint32_t* in, const uint32_t* upper,
                            int num_pixels, uint32_t* out) {
  int i;
  uint32_t left = out[-1];
  (void)upper;
  for (i = 0; i < num_pixels; ++i) {
    out[i] = left = VP8LAddPixels(in[i], left);
  }
}
GENERATE_PREDICTOR_ADD(VP8LPredictor2_C, PredictorAdd2_C)
GENERATE_PREDICTOR_ADD(VP8LPredictor3_C, PredictorAdd3_C)
GENERATE_PREDICTOR_ADD(VP8LPredictor4_C, PredictorAdd4_C)
GENERATE_PREDICTOR_ADD(VP8LPredictor5_C, PredictorAdd5_C)
GENERATE_PREDICTOR_ADD(VP8LPredictor6_C, PredictorAdd6_C)
GENERATE_PREDICTOR_ADD(VP8LPredictor7_C, PredictorAdd7_C)
GENERATE_PREDICTOR_ADD(VP8LPredictor8_C, PredictorAdd8_C)
GENERATE_PREDICTOR_ADD(VP8LPredictor9_C, PredictorAdd9_C)
GENERATE_PREDICTOR_ADD(VP8LPredictor10_C, PredictorAdd10_C)
GENERATE_PREDICTOR_ADD(VP8LPredictor11_C, PredictorAdd11_C)
GENERATE_PREDICTOR_ADD(VP8LPredictor12_C, PredictorAdd12_C)
GENERATE_PREDICTOR_ADD(VP8LPredictor13_C, PredictorAdd13_C)

//------------------------------------------------------------------------------

// Inverse prediction.
static void PredictorInverseTransform_C(const VP8LTransform* const transform,
                                        int y_start, int y_end,
                                        const uint32_t* in, uint32_t* out) {
  const int width = transform->xsize_;
  if (y_start == 0) {  // First Row follows the L (mode=1) mode.
    PredictorAdd0_C(in, NULL, 1, out);
    PredictorAdd1_C(in + 1, NULL, width - 1, out + 1);
    in += width;
    out += width;
    ++y_start;
  }

  {
    int y = y_start;
    const int tile_width = 1 << transform->bits_;
    const int mask = tile_width - 1;
    const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
    const uint32_t* pred_mode_base =
        transform->data_ + (y >> transform->bits_) * tiles_per_row;

    while (y < y_end) {
      const uint32_t* pred_mode_src = pred_mode_base;
      int x = 1;
      // First pixel follows the T (mode=2) mode.
      PredictorAdd2_C(in, out - width, 1, out);
      // .. the rest:
      while (x < width) {
        const VP8LPredictorAddSubFunc pred_func =
            VP8LPredictorsAdd[((*pred_mode_src++) >> 8) & 0xf];
        int x_end = (x & ~mask) + tile_width;
        if (x_end > width) x_end = width;
        pred_func(in + x, out + x - width, x_end - x, out + x);
        x = x_end;
      }
      in += width;
      out += width;
      ++y;
      if ((y & mask) == 0) {   // Use the same mask, since tiles are squares.
        pred_mode_base += tiles_per_row;
      }
    }
  }
}

// Add green to blue and red channels (i.e. perform the inverse transform of
// 'subtract green').
void VP8LAddGreenToBlueAndRed_C(const uint32_t* src, int num_pixels,
                                uint32_t* dst) {
  int i;
  for (i = 0; i < num_pixels; ++i) {
    const uint32_t argb = src[i];
    const uint32_t green = ((argb >> 8) & 0xff);
    uint32_t red_blue = (argb & 0x00ff00ffu);
    red_blue += (green << 16) | green;
    red_blue &= 0x00ff00ffu;
    dst[i] = (argb & 0xff00ff00u) | red_blue;
  }
}

static WEBP_INLINE int ColorTransformDelta(int8_t color_pred,
                                           int8_t color) {
  return ((int)color_pred * color) >> 5;
}

static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
                                               VP8LMultipliers* const m) {
  m->green_to_red_  = (color_code >>  0) & 0xff;
  m->green_to_blue_ = (color_code >>  8) & 0xff;
  m->red_to_blue_   = (color_code >> 16) & 0xff;
}

void VP8LTransformColorInverse_C(const VP8LMultipliers* const m,
                                 const uint32_t* src, int num_pixels,
                                 uint32_t* dst) {
  int i;
  for (i = 0; i < num_pixels; ++i) {
    const uint32_t argb = src[i];
    const int8_t green = (int8_t)(argb >> 8);
    const uint32_t red = argb >> 16;
    int new_red = red & 0xff;
    int new_blue = argb & 0xff;
    new_red += ColorTransformDelta(m->green_to_red_, green);
    new_red &= 0xff;
    new_blue += ColorTransformDelta(m->green_to_blue_, green);
    new_blue += ColorTransformDelta(m->red_to_blue_, (int8_t)new_red);
    new_blue &= 0xff;
    dst[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue);
  }
}

// Color space inverse transform.
static void ColorSpaceInverseTransform_C(const VP8LTransform* const transform,
                                         int y_start, int y_end,
                                         const uint32_t* src, uint32_t* dst) {
  const int width = transform->xsize_;
  const int tile_width = 1 << transform->bits_;
  const int mask = tile_width - 1;
  const int safe_width = width & ~mask;
  const int remaining_width = width - safe_width;
  const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
  int y = y_start;
  const uint32_t* pred_row =
      transform->data_ + (y >> transform->bits_) * tiles_per_row;

  while (y < y_end) {
    const uint32_t* pred = pred_row;
    VP8LMultipliers m = { 0, 0, 0 };
    const uint32_t* const src_safe_end = src + safe_width;
    const uint32_t* const src_end = src + width;
    while (src < src_safe_end) {
      ColorCodeToMultipliers(*pred++, &m);
      VP8LTransformColorInverse(&m, src, tile_width, dst);
      src += tile_width;
      dst += tile_width;
    }
    if (src < src_end) {  // Left-overs using C-version.
      ColorCodeToMultipliers(*pred++, &m);
      VP8LTransformColorInverse(&m, src, remaining_width, dst);
      src += remaining_width;
      dst += remaining_width;
    }
    ++y;
    if ((y & mask) == 0) pred_row += tiles_per_row;
  }
}

// Separate out pixels packed together using pixel-bundling.
// We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t).
#define COLOR_INDEX_INVERSE(FUNC_NAME, F_NAME, STATIC_DECL, TYPE, BIT_SUFFIX,  \
                            GET_INDEX, GET_VALUE)                              \
static void F_NAME(const TYPE* src, const uint32_t* const color_map,           \
                   TYPE* dst, int y_start, int y_end, int width) {             \
  int y;                                                                       \
  for (y = y_start; y < y_end; ++y) {                                          \
    int x;                                                                     \
    for (x = 0; x < width; ++x) {                                              \
      *dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]);                        \
    }                                                                          \
  }                                                                            \
}                                                                              \
STATIC_DECL void FUNC_NAME(const VP8LTransform* const transform,               \
                           int y_start, int y_end, const TYPE* src,            \
                           TYPE* dst) {                                        \
  int y;                                                                       \
  const int bits_per_pixel = 8 >> transform->bits_;                            \
  const int width = transform->xsize_;                                         \
  const uint32_t* const color_map = transform->data_;                          \
  if (bits_per_pixel < 8) {                                                    \
    const int pixels_per_byte = 1 << transform->bits_;                         \
    const int count_mask = pixels_per_byte - 1;                                \
    const uint32_t bit_mask = (1 << bits_per_pixel) - 1;                       \
    for (y = y_start; y < y_end; ++y) {                                        \
      uint32_t packed_pixels = 0;                                              \
      int x;                                                                   \
      for (x = 0; x < width; ++x) {                                            \
        /* We need to load fresh 'packed_pixels' once every                */  \
        /* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */  \
        /* is a power of 2, so can just use a mask for that, instead of    */  \
        /* decrementing a counter.                                         */  \
        if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++);          \
        *dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]);               \
        packed_pixels >>= bits_per_pixel;                                      \
      }                                                                        \
    }                                                                          \
  } else {                                                                     \
    VP8LMapColor##BIT_SUFFIX(src, color_map, dst, y_start, y_end, width);      \
  }                                                                            \
}

COLOR_INDEX_INVERSE(ColorIndexInverseTransform_C, MapARGB_C, static,
                    uint32_t, 32b, VP8GetARGBIndex, VP8GetARGBValue)
COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, MapAlpha_C, ,
                    uint8_t, 8b, VP8GetAlphaIndex, VP8GetAlphaValue)

#undef COLOR_INDEX_INVERSE

void VP8LInverseTransform(const VP8LTransform* const transform,
                          int row_start, int row_end,
                          const uint32_t* const in, uint32_t* const out) {
  const int width = transform->xsize_;
  assert(row_start < row_end);
  assert(row_end <= transform->ysize_);
  switch (transform->type_) {
    case SUBTRACT_GREEN:
      VP8LAddGreenToBlueAndRed(in, (row_end - row_start) * width, out);
      break;
    case PREDICTOR_TRANSFORM:
      PredictorInverseTransform_C(transform, row_start, row_end, in, out);
      if (row_end != transform->ysize_) {
        // The last predicted row in this iteration will be the top-pred row
        // for the first row in next iteration.
        memcpy(out - width, out + (row_end - row_start - 1) * width,
               width * sizeof(*out));
      }
      break;
    case CROSS_COLOR_TRANSFORM:
      ColorSpaceInverseTransform_C(transform, row_start, row_end, in, out);
      break;
    case COLOR_INDEXING_TRANSFORM:
      if (in == out && transform->bits_ > 0) {
        // Move packed pixels to the end of unpacked region, so that unpacking
        // can occur seamlessly.
        // Also, note that this is the only transform that applies on
        // the effective width of VP8LSubSampleSize(xsize_, bits_). All other
        // transforms work on effective width of xsize_.
        const int out_stride = (row_end - row_start) * width;
        const int in_stride = (row_end - row_start) *
            VP8LSubSampleSize(transform->xsize_, transform->bits_);
        uint32_t* const src = out + out_stride - in_stride;
        memmove(src, out, in_stride * sizeof(*src));
        ColorIndexInverseTransform_C(transform, row_start, row_end, src, out);
      } else {
        ColorIndexInverseTransform_C(transform, row_start, row_end, in, out);
      }
      break;
  }
}

//------------------------------------------------------------------------------
// Color space conversion.

static int is_big_endian(void) {
  static const union {
    uint16_t w;
    uint8_t b[2];
  } tmp = { 1 };
  return (tmp.b[0] != 1);
}

void VP8LConvertBGRAToRGB_C(const uint32_t* src,
                            int num_pixels, uint8_t* dst) {
  const uint32_t* const src_end = src + num_pixels;
  while (src < src_end) {
    const uint32_t argb = *src++;
    *dst++ = (argb >> 16) & 0xff;
    *dst++ = (argb >>  8) & 0xff;
    *dst++ = (argb >>  0) & 0xff;
  }
}

void VP8LConvertBGRAToRGBA_C(const uint32_t* src,
                             int num_pixels, uint8_t* dst) {
  const uint32_t* const src_end = src + num_pixels;
  while (src < src_end) {
    const uint32_t argb = *src++;
    *dst++ = (argb >> 16) & 0xff;
    *dst++ = (argb >>  8) & 0xff;
    *dst++ = (argb >>  0) & 0xff;
    *dst++ = (argb >> 24) & 0xff;
  }
}

void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src,
                                 int num_pixels, uint8_t* dst) {
  const uint32_t* const src_end = src + num_pixels;
  while (src < src_end) {
    const uint32_t argb = *src++;
    const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf);
    const uint8_t ba = ((argb >>  0) & 0xf0) | ((argb >> 28) & 0xf);
#if (WEBP_SWAP_16BIT_CSP == 1)
    *dst++ = ba;
    *dst++ = rg;
#else
    *dst++ = rg;
    *dst++ = ba;
#endif
  }
}

void VP8LConvertBGRAToRGB565_C(const uint32_t* src,
                               int num_pixels, uint8_t* dst) {
  const uint32_t* const src_end = src + num_pixels;
  while (src < src_end) {
    const uint32_t argb = *src++;
    const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7);
    const uint8_t gb = ((argb >>  5) & 0xe0) | ((argb >>  3) & 0x1f);
#if (WEBP_SWAP_16BIT_CSP == 1)
    *dst++ = gb;
    *dst++ = rg;
#else
    *dst++ = rg;
    *dst++ = gb;
#endif
  }
}

void VP8LConvertBGRAToBGR_C(const uint32_t* src,
                            int num_pixels, uint8_t* dst) {
  const uint32_t* const src_end = src + num_pixels;
  while (src < src_end) {
    const uint32_t argb = *src++;
    *dst++ = (argb >>  0) & 0xff;
    *dst++ = (argb >>  8) & 0xff;
    *dst++ = (argb >> 16) & 0xff;
  }
}

static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst,
                       int swap_on_big_endian) {
  if (is_big_endian() == swap_on_big_endian) {
    const uint32_t* const src_end = src + num_pixels;
    while (src < src_end) {
      const uint32_t argb = *src++;
      WebPUint32ToMem(dst, BSwap32(argb));
      dst += sizeof(argb);
    }
  } else {
    memcpy(dst, src, num_pixels * sizeof(*src));
  }
}

void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
                         WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) {
  switch (out_colorspace) {
    case MODE_RGB:
      VP8LConvertBGRAToRGB(in_data, num_pixels, rgba);
      break;
    case MODE_RGBA:
      VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba);
      break;
    case MODE_rgbA:
      VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba);
      WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
      break;
    case MODE_BGR:
      VP8LConvertBGRAToBGR(in_data, num_pixels, rgba);
      break;
    case MODE_BGRA:
      CopyOrSwap(in_data, num_pixels, rgba, 1);
      break;
    case MODE_bgrA:
      CopyOrSwap(in_data, num_pixels, rgba, 1);
      WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
      break;
    case MODE_ARGB:
      CopyOrSwap(in_data, num_pixels, rgba, 0);
      break;
    case MODE_Argb:
      CopyOrSwap(in_data, num_pixels, rgba, 0);
      WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0);
      break;
    case MODE_RGBA_4444:
      VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
      break;
    case MODE_rgbA_4444:
      VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
      WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0);
      break;
    case MODE_RGB_565:
      VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba);
      break;
    default:
      assert(0);          // Code flow should not reach here.
  }
}

//------------------------------------------------------------------------------

VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed;
VP8LPredictorAddSubFunc VP8LPredictorsAdd[16];
VP8LPredictorFunc VP8LPredictors[16];

// exposed plain-C implementations
VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16];

VP8LTransformColorInverseFunc VP8LTransformColorInverse;

VP8LConvertFunc VP8LConvertBGRAToRGB;
VP8LConvertFunc VP8LConvertBGRAToRGBA;
VP8LConvertFunc VP8LConvertBGRAToRGBA4444;
VP8LConvertFunc VP8LConvertBGRAToRGB565;
VP8LConvertFunc VP8LConvertBGRAToBGR;

VP8LMapARGBFunc VP8LMapColor32b;
VP8LMapAlphaFunc VP8LMapColor8b;

extern void VP8LDspInitSSE2(void);
extern void VP8LDspInitSSE41(void);
extern void VP8LDspInitNEON(void);
extern void VP8LDspInitMIPSdspR2(void);
extern void VP8LDspInitMSA(void);

#define COPY_PREDICTOR_ARRAY(IN, OUT) do {                \
  (OUT)[0] = IN##0_C;                                     \
  (OUT)[1] = IN##1_C;                                     \
  (OUT)[2] = IN##2_C;                                     \
  (OUT)[3] = IN##3_C;                                     \
  (OUT)[4] = IN##4_C;                                     \
  (OUT)[5] = IN##5_C;                                     \
  (OUT)[6] = IN##6_C;                                     \
  (OUT)[7] = IN##7_C;                                     \
  (OUT)[8] = IN##8_C;                                     \
  (OUT)[9] = IN##9_C;                                     \
  (OUT)[10] = IN##10_C;                                   \
  (OUT)[11] = IN##11_C;                                   \
  (OUT)[12] = IN##12_C;                                   \
  (OUT)[13] = IN##13_C;                                   \
  (OUT)[14] = IN##0_C; /* <- padding security sentinels*/ \
  (OUT)[15] = IN##0_C;                                    \
} while (0);

WEBP_DSP_INIT_FUNC(VP8LDspInit) {
  COPY_PREDICTOR_ARRAY(VP8LPredictor, VP8LPredictors)
  COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd)
  COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd_C)

#if !WEBP_NEON_OMIT_C_CODE
  VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C;

  VP8LTransformColorInverse = VP8LTransformColorInverse_C;

  VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C;
  VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C;
  VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C;
#endif

  VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C;
  VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C;

  VP8LMapColor32b = MapARGB_C;
  VP8LMapColor8b = MapAlpha_C;

  // If defined, use CPUInfo() to overwrite some pointers with faster versions.
  if (VP8GetCPUInfo != NULL) {
#if defined(WEBP_HAVE_SSE2)
    if (VP8GetCPUInfo(kSSE2)) {
      VP8LDspInitSSE2();
#if defined(WEBP_HAVE_SSE41)
      if (VP8GetCPUInfo(kSSE4_1)) {
        VP8LDspInitSSE41();
      }
#endif
    }
#endif
#if defined(WEBP_USE_MIPS_DSP_R2)
    if (VP8GetCPUInfo(kMIPSdspR2)) {
      VP8LDspInitMIPSdspR2();
    }
#endif
#if defined(WEBP_USE_MSA)
    if (VP8GetCPUInfo(kMSA)) {
      VP8LDspInitMSA();
    }
#endif
  }

#if defined(WEBP_HAVE_NEON)
  if (WEBP_NEON_OMIT_C_CODE ||
      (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) {
    VP8LDspInitNEON();
  }
#endif

  assert(VP8LAddGreenToBlueAndRed != NULL);
  assert(VP8LTransformColorInverse != NULL);
  assert(VP8LConvertBGRAToRGBA != NULL);
  assert(VP8LConvertBGRAToRGB != NULL);
  assert(VP8LConvertBGRAToBGR != NULL);
  assert(VP8LConvertBGRAToRGBA4444 != NULL);
  assert(VP8LConvertBGRAToRGB565 != NULL);
  assert(VP8LMapColor32b != NULL);
  assert(VP8LMapColor8b != NULL);
}
#undef COPY_PREDICTOR_ARRAY

//------------------------------------------------------------------------------