aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/libunwind/src/UnwindCursor.hpp
blob: e251e13520324bb9971661f388281c3eb671482e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//
// C++ interface to lower levels of libunwind
//===----------------------------------------------------------------------===//

#ifndef __UNWINDCURSOR_HPP__
#define __UNWINDCURSOR_HPP__

#include "cet_unwind.h"
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unwind.h>

#ifdef _WIN32
  #include <windows.h>
  #include <ntverp.h>
#endif
#ifdef __APPLE__
  #include <mach-o/dyld.h>
#endif
#ifdef _AIX
#include <dlfcn.h>
#error #include <sys/debug.h>
#error #include <sys/pseg.h>
#endif

#if defined(_LIBUNWIND_TARGET_LINUX) &&                                        \
    (defined(_LIBUNWIND_TARGET_AARCH64) || defined(_LIBUNWIND_TARGET_RISCV) || \
     defined(_LIBUNWIND_TARGET_S390X))
#include <errno.h>
#include <signal.h>
#include <sys/syscall.h>
#include <sys/uio.h>
#include <unistd.h>
#define _LIBUNWIND_CHECK_LINUX_SIGRETURN 1
#endif

#include "AddressSpace.hpp"
#include "CompactUnwinder.hpp"
#include "config.h"
#include "DwarfInstructions.hpp"
#include "EHHeaderParser.hpp"
#include "libunwind.h"
#include "libunwind_ext.h"
#include "Registers.hpp"
#include "RWMutex.hpp"
#include "Unwind-EHABI.h"

#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
// Provide a definition for the DISPATCHER_CONTEXT struct for old (Win7 and
// earlier) SDKs.
// MinGW-w64 has always provided this struct.
  #if defined(_WIN32) && defined(_LIBUNWIND_TARGET_X86_64) && \
      !defined(__MINGW32__) && VER_PRODUCTBUILD < 8000
struct _DISPATCHER_CONTEXT {
  ULONG64 ControlPc;
  ULONG64 ImageBase;
  PRUNTIME_FUNCTION FunctionEntry;
  ULONG64 EstablisherFrame;
  ULONG64 TargetIp;
  PCONTEXT ContextRecord;
  PEXCEPTION_ROUTINE LanguageHandler;
  PVOID HandlerData;
  PUNWIND_HISTORY_TABLE HistoryTable;
  ULONG ScopeIndex;
  ULONG Fill0;
};
  #endif

struct UNWIND_INFO {
  uint8_t Version : 3;
  uint8_t Flags : 5;
  uint8_t SizeOfProlog;
  uint8_t CountOfCodes;
  uint8_t FrameRegister : 4;
  uint8_t FrameOffset : 4;
  uint16_t UnwindCodes[2];
};

extern "C" _Unwind_Reason_Code __libunwind_seh_personality(
    int, _Unwind_Action, uint64_t, _Unwind_Exception *,
    struct _Unwind_Context *);

#endif

namespace libunwind {

#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
/// Cache of recently found FDEs.
template <typename A>
class _LIBUNWIND_HIDDEN DwarfFDECache {
  typedef typename A::pint_t pint_t;
public:
  static constexpr pint_t kSearchAll = static_cast<pint_t>(-1);
  static pint_t findFDE(pint_t mh, pint_t pc);
  static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde);
  static void removeAllIn(pint_t mh);
  static void iterateCacheEntries(void (*func)(unw_word_t ip_start,
                                               unw_word_t ip_end,
                                               unw_word_t fde, unw_word_t mh));

private:

  struct entry {
    pint_t mh;
    pint_t ip_start;
    pint_t ip_end;
    pint_t fde;
  };

  // These fields are all static to avoid needing an initializer.
  // There is only one instance of this class per process.
  static RWMutex _lock;
#ifdef __APPLE__
  static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide);
  static bool _registeredForDyldUnloads;
#endif
  static entry *_buffer;
  static entry *_bufferUsed;
  static entry *_bufferEnd;
  static entry _initialBuffer[64];
};

template <typename A>
typename DwarfFDECache<A>::entry *
DwarfFDECache<A>::_buffer = _initialBuffer;

template <typename A>
typename DwarfFDECache<A>::entry *
DwarfFDECache<A>::_bufferUsed = _initialBuffer;

template <typename A>
typename DwarfFDECache<A>::entry *
DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64];

template <typename A>
typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64];

template <typename A>
RWMutex DwarfFDECache<A>::_lock;

#ifdef __APPLE__
template <typename A>
bool DwarfFDECache<A>::_registeredForDyldUnloads = false;
#endif

template <typename A>
typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) {
  pint_t result = 0;
  _LIBUNWIND_LOG_IF_FALSE(_lock.lock_shared());
  for (entry *p = _buffer; p < _bufferUsed; ++p) {
    if ((mh == p->mh) || (mh == kSearchAll)) {
      if ((p->ip_start <= pc) && (pc < p->ip_end)) {
        result = p->fde;
        break;
      }
    }
  }
  _LIBUNWIND_LOG_IF_FALSE(_lock.unlock_shared());
  return result;
}

template <typename A>
void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end,
                           pint_t fde) {
#if !defined(_LIBUNWIND_NO_HEAP)
  _LIBUNWIND_LOG_IF_FALSE(_lock.lock());
  if (_bufferUsed >= _bufferEnd) {
    size_t oldSize = (size_t)(_bufferEnd - _buffer);
    size_t newSize = oldSize * 4;
    // Can't use operator new (we are below it).
    entry *newBuffer = (entry *)malloc(newSize * sizeof(entry));
    memcpy(newBuffer, _buffer, oldSize * sizeof(entry));
    if (_buffer != _initialBuffer)
      free(_buffer);
    _buffer = newBuffer;
    _bufferUsed = &newBuffer[oldSize];
    _bufferEnd = &newBuffer[newSize];
  }
  _bufferUsed->mh = mh;
  _bufferUsed->ip_start = ip_start;
  _bufferUsed->ip_end = ip_end;
  _bufferUsed->fde = fde;
  ++_bufferUsed;
#ifdef __APPLE__
  if (!_registeredForDyldUnloads) {
    _dyld_register_func_for_remove_image(&dyldUnloadHook);
    _registeredForDyldUnloads = true;
  }
#endif
  _LIBUNWIND_LOG_IF_FALSE(_lock.unlock());
#endif
}

template <typename A>
void DwarfFDECache<A>::removeAllIn(pint_t mh) {
  _LIBUNWIND_LOG_IF_FALSE(_lock.lock());
  entry *d = _buffer;
  for (const entry *s = _buffer; s < _bufferUsed; ++s) {
    if (s->mh != mh) {
      if (d != s)
        *d = *s;
      ++d;
    }
  }
  _bufferUsed = d;
  _LIBUNWIND_LOG_IF_FALSE(_lock.unlock());
}

#ifdef __APPLE__
template <typename A>
void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) {
  removeAllIn((pint_t) mh);
}
#endif

template <typename A>
void DwarfFDECache<A>::iterateCacheEntries(void (*func)(
    unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) {
  _LIBUNWIND_LOG_IF_FALSE(_lock.lock());
  for (entry *p = _buffer; p < _bufferUsed; ++p) {
    (*func)(p->ip_start, p->ip_end, p->fde, p->mh);
  }
  _LIBUNWIND_LOG_IF_FALSE(_lock.unlock());
}
#endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)


#define arrayoffsetof(type, index, field) ((size_t)(&((type *)0)[index].field))

#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
template <typename A> class UnwindSectionHeader {
public:
  UnwindSectionHeader(A &addressSpace, typename A::pint_t addr)
      : _addressSpace(addressSpace), _addr(addr) {}

  uint32_t version() const {
    return _addressSpace.get32(_addr +
                               offsetof(unwind_info_section_header, version));
  }
  uint32_t commonEncodingsArraySectionOffset() const {
    return _addressSpace.get32(_addr +
                               offsetof(unwind_info_section_header,
                                        commonEncodingsArraySectionOffset));
  }
  uint32_t commonEncodingsArrayCount() const {
    return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
                                                commonEncodingsArrayCount));
  }
  uint32_t personalityArraySectionOffset() const {
    return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
                                                personalityArraySectionOffset));
  }
  uint32_t personalityArrayCount() const {
    return _addressSpace.get32(
        _addr + offsetof(unwind_info_section_header, personalityArrayCount));
  }
  uint32_t indexSectionOffset() const {
    return _addressSpace.get32(
        _addr + offsetof(unwind_info_section_header, indexSectionOffset));
  }
  uint32_t indexCount() const {
    return _addressSpace.get32(
        _addr + offsetof(unwind_info_section_header, indexCount));
  }

private:
  A                     &_addressSpace;
  typename A::pint_t     _addr;
};

template <typename A> class UnwindSectionIndexArray {
public:
  UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr)
      : _addressSpace(addressSpace), _addr(addr) {}

  uint32_t functionOffset(uint32_t index) const {
    return _addressSpace.get32(
        _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
                              functionOffset));
  }
  uint32_t secondLevelPagesSectionOffset(uint32_t index) const {
    return _addressSpace.get32(
        _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
                              secondLevelPagesSectionOffset));
  }
  uint32_t lsdaIndexArraySectionOffset(uint32_t index) const {
    return _addressSpace.get32(
        _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
                              lsdaIndexArraySectionOffset));
  }

private:
  A                   &_addressSpace;
  typename A::pint_t   _addr;
};

template <typename A> class UnwindSectionRegularPageHeader {
public:
  UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr)
      : _addressSpace(addressSpace), _addr(addr) {}

  uint32_t kind() const {
    return _addressSpace.get32(
        _addr + offsetof(unwind_info_regular_second_level_page_header, kind));
  }
  uint16_t entryPageOffset() const {
    return _addressSpace.get16(
        _addr + offsetof(unwind_info_regular_second_level_page_header,
                         entryPageOffset));
  }
  uint16_t entryCount() const {
    return _addressSpace.get16(
        _addr +
        offsetof(unwind_info_regular_second_level_page_header, entryCount));
  }

private:
  A &_addressSpace;
  typename A::pint_t _addr;
};

template <typename A> class UnwindSectionRegularArray {
public:
  UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr)
      : _addressSpace(addressSpace), _addr(addr) {}

  uint32_t functionOffset(uint32_t index) const {
    return _addressSpace.get32(
        _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index,
                              functionOffset));
  }
  uint32_t encoding(uint32_t index) const {
    return _addressSpace.get32(
        _addr +
        arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding));
  }

private:
  A &_addressSpace;
  typename A::pint_t _addr;
};

template <typename A> class UnwindSectionCompressedPageHeader {
public:
  UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr)
      : _addressSpace(addressSpace), _addr(addr) {}

  uint32_t kind() const {
    return _addressSpace.get32(
        _addr +
        offsetof(unwind_info_compressed_second_level_page_header, kind));
  }
  uint16_t entryPageOffset() const {
    return _addressSpace.get16(
        _addr + offsetof(unwind_info_compressed_second_level_page_header,
                         entryPageOffset));
  }
  uint16_t entryCount() const {
    return _addressSpace.get16(
        _addr +
        offsetof(unwind_info_compressed_second_level_page_header, entryCount));
  }
  uint16_t encodingsPageOffset() const {
    return _addressSpace.get16(
        _addr + offsetof(unwind_info_compressed_second_level_page_header,
                         encodingsPageOffset));
  }
  uint16_t encodingsCount() const {
    return _addressSpace.get16(
        _addr + offsetof(unwind_info_compressed_second_level_page_header,
                         encodingsCount));
  }

private:
  A &_addressSpace;
  typename A::pint_t _addr;
};

template <typename A> class UnwindSectionCompressedArray {
public:
  UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr)
      : _addressSpace(addressSpace), _addr(addr) {}

  uint32_t functionOffset(uint32_t index) const {
    return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(
        _addressSpace.get32(_addr + index * sizeof(uint32_t)));
  }
  uint16_t encodingIndex(uint32_t index) const {
    return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(
        _addressSpace.get32(_addr + index * sizeof(uint32_t)));
  }

private:
  A &_addressSpace;
  typename A::pint_t _addr;
};

template <typename A> class UnwindSectionLsdaArray {
public:
  UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr)
      : _addressSpace(addressSpace), _addr(addr) {}

  uint32_t functionOffset(uint32_t index) const {
    return _addressSpace.get32(
        _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
                              index, functionOffset));
  }
  uint32_t lsdaOffset(uint32_t index) const {
    return _addressSpace.get32(
        _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
                              index, lsdaOffset));
  }

private:
  A                   &_addressSpace;
  typename A::pint_t   _addr;
};
#endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)

class _LIBUNWIND_HIDDEN AbstractUnwindCursor {
public:
  // NOTE: provide a class specific placement deallocation function (S5.3.4 p20)
  // This avoids an unnecessary dependency to libc++abi.
  void operator delete(void *, size_t) {}

  virtual ~AbstractUnwindCursor() {}
  virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); }
  virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); }
  virtual void setReg(int, unw_word_t) {
    _LIBUNWIND_ABORT("setReg not implemented");
  }
  virtual bool validFloatReg(int) {
    _LIBUNWIND_ABORT("validFloatReg not implemented");
  }
  virtual unw_fpreg_t getFloatReg(int) {
    _LIBUNWIND_ABORT("getFloatReg not implemented");
  }
  virtual void setFloatReg(int, unw_fpreg_t) {
    _LIBUNWIND_ABORT("setFloatReg not implemented");
  }
  virtual int step(bool = false) { _LIBUNWIND_ABORT("step not implemented"); }
  virtual void getInfo(unw_proc_info_t *) {
    _LIBUNWIND_ABORT("getInfo not implemented");
  }
  virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); }
  virtual bool isSignalFrame() {
    _LIBUNWIND_ABORT("isSignalFrame not implemented");
  }
  virtual bool getFunctionName(char *, size_t, unw_word_t *) {
    _LIBUNWIND_ABORT("getFunctionName not implemented");
  }
  virtual void setInfoBasedOnIPRegister(bool = false) {
    _LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented");
  }
  virtual const char *getRegisterName(int) {
    _LIBUNWIND_ABORT("getRegisterName not implemented");
  }
#ifdef __arm__
  virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); }
#endif

#ifdef _AIX
  virtual uintptr_t getDataRelBase() {
    _LIBUNWIND_ABORT("getDataRelBase not implemented");
  }
#endif

#if defined(_LIBUNWIND_USE_CET)
  virtual void *get_registers() {
    _LIBUNWIND_ABORT("get_registers not implemented");
  }
#endif
};

#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32)

/// \c UnwindCursor contains all state (including all register values) during
/// an unwind.  This is normally stack-allocated inside a unw_cursor_t.
template <typename A, typename R>
class UnwindCursor : public AbstractUnwindCursor {
  typedef typename A::pint_t pint_t;
public:
                      UnwindCursor(unw_context_t *context, A &as);
                      UnwindCursor(CONTEXT *context, A &as);
                      UnwindCursor(A &as, void *threadArg);
  virtual             ~UnwindCursor() {}
  virtual bool        validReg(int);
  virtual unw_word_t  getReg(int);
  virtual void        setReg(int, unw_word_t);
  virtual bool        validFloatReg(int);
  virtual unw_fpreg_t getFloatReg(int);
  virtual void        setFloatReg(int, unw_fpreg_t);
  virtual int         step(bool = false);
  virtual void        getInfo(unw_proc_info_t *);
  virtual void        jumpto();
  virtual bool        isSignalFrame();
  virtual bool        getFunctionName(char *buf, size_t len, unw_word_t *off);
  virtual void        setInfoBasedOnIPRegister(bool isReturnAddress = false);
  virtual const char *getRegisterName(int num);
#ifdef __arm__
  virtual void        saveVFPAsX();
#endif

  DISPATCHER_CONTEXT *getDispatcherContext() { return &_dispContext; }
  void setDispatcherContext(DISPATCHER_CONTEXT *disp) {
    _dispContext = *disp;
    _info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData);
    if (_dispContext.LanguageHandler) {
      _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality);
    } else
      _info.handler = 0;
  }

  // libunwind does not and should not depend on C++ library which means that we
  // need our own definition of inline placement new.
  static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; }

private:

  pint_t getLastPC() const { return _dispContext.ControlPc; }
  void setLastPC(pint_t pc) { _dispContext.ControlPc = pc; }
  RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) {
#ifdef __arm__
    // Remove the thumb bit; FunctionEntry ranges don't include the thumb bit.
    pc &= ~1U;
#endif
    // If pc points exactly at the end of the range, we might resolve the
    // next function instead. Decrement pc by 1 to fit inside the current
    // function.
    pc -= 1;
    _dispContext.FunctionEntry = RtlLookupFunctionEntry(pc,
                                                        &_dispContext.ImageBase,
                                                        _dispContext.HistoryTable);
    *base = _dispContext.ImageBase;
    return _dispContext.FunctionEntry;
  }
  bool getInfoFromSEH(pint_t pc);
  int stepWithSEHData() {
    _dispContext.LanguageHandler = RtlVirtualUnwind(UNW_FLAG_UHANDLER,
                                                    _dispContext.ImageBase,
                                                    _dispContext.ControlPc,
                                                    _dispContext.FunctionEntry,
                                                    _dispContext.ContextRecord,
                                                    &_dispContext.HandlerData,
                                                    &_dispContext.EstablisherFrame,
                                                    NULL);
    // Update some fields of the unwind info now, since we have them.
    _info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData);
    if (_dispContext.LanguageHandler) {
      _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality);
    } else
      _info.handler = 0;
    return UNW_STEP_SUCCESS;
  }

  A                   &_addressSpace;
  unw_proc_info_t      _info;
  DISPATCHER_CONTEXT   _dispContext;
  CONTEXT              _msContext;
  UNWIND_HISTORY_TABLE _histTable;
  bool                 _unwindInfoMissing;
};


template <typename A, typename R>
UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as)
    : _addressSpace(as), _unwindInfoMissing(false) {
  static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
                "UnwindCursor<> does not fit in unw_cursor_t");
  static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)),
                "UnwindCursor<> requires more alignment than unw_cursor_t");
  memset(&_info, 0, sizeof(_info));
  memset(&_histTable, 0, sizeof(_histTable));
  memset(&_dispContext, 0, sizeof(_dispContext));
  _dispContext.ContextRecord = &_msContext;
  _dispContext.HistoryTable = &_histTable;
  // Initialize MS context from ours.
  R r(context);
  RtlCaptureContext(&_msContext);
  _msContext.ContextFlags = CONTEXT_CONTROL|CONTEXT_INTEGER|CONTEXT_FLOATING_POINT;
#if defined(_LIBUNWIND_TARGET_X86_64)
  _msContext.Rax = r.getRegister(UNW_X86_64_RAX);
  _msContext.Rcx = r.getRegister(UNW_X86_64_RCX);
  _msContext.Rdx = r.getRegister(UNW_X86_64_RDX);
  _msContext.Rbx = r.getRegister(UNW_X86_64_RBX);
  _msContext.Rsp = r.getRegister(UNW_X86_64_RSP);
  _msContext.Rbp = r.getRegister(UNW_X86_64_RBP);
  _msContext.Rsi = r.getRegister(UNW_X86_64_RSI);
  _msContext.Rdi = r.getRegister(UNW_X86_64_RDI);
  _msContext.R8 = r.getRegister(UNW_X86_64_R8);
  _msContext.R9 = r.getRegister(UNW_X86_64_R9);
  _msContext.R10 = r.getRegister(UNW_X86_64_R10);
  _msContext.R11 = r.getRegister(UNW_X86_64_R11);
  _msContext.R12 = r.getRegister(UNW_X86_64_R12);
  _msContext.R13 = r.getRegister(UNW_X86_64_R13);
  _msContext.R14 = r.getRegister(UNW_X86_64_R14);
  _msContext.R15 = r.getRegister(UNW_X86_64_R15);
  _msContext.Rip = r.getRegister(UNW_REG_IP);
  union {
    v128 v;
    M128A m;
  } t;
  t.v = r.getVectorRegister(UNW_X86_64_XMM0);
  _msContext.Xmm0 = t.m;
  t.v = r.getVectorRegister(UNW_X86_64_XMM1);
  _msContext.Xmm1 = t.m;
  t.v = r.getVectorRegister(UNW_X86_64_XMM2);
  _msContext.Xmm2 = t.m;
  t.v = r.getVectorRegister(UNW_X86_64_XMM3);
  _msContext.Xmm3 = t.m;
  t.v = r.getVectorRegister(UNW_X86_64_XMM4);
  _msContext.Xmm4 = t.m;
  t.v = r.getVectorRegister(UNW_X86_64_XMM5);
  _msContext.Xmm5 = t.m;
  t.v = r.getVectorRegister(UNW_X86_64_XMM6);
  _msContext.Xmm6 = t.m;
  t.v = r.getVectorRegister(UNW_X86_64_XMM7);
  _msContext.Xmm7 = t.m;
  t.v = r.getVectorRegister(UNW_X86_64_XMM8);
  _msContext.Xmm8 = t.m;
  t.v = r.getVectorRegister(UNW_X86_64_XMM9);
  _msContext.Xmm9 = t.m;
  t.v = r.getVectorRegister(UNW_X86_64_XMM10);
  _msContext.Xmm10 = t.m;
  t.v = r.getVectorRegister(UNW_X86_64_XMM11);
  _msContext.Xmm11 = t.m;
  t.v = r.getVectorRegister(UNW_X86_64_XMM12);
  _msContext.Xmm12 = t.m;
  t.v = r.getVectorRegister(UNW_X86_64_XMM13);
  _msContext.Xmm13 = t.m;
  t.v = r.getVectorRegister(UNW_X86_64_XMM14);
  _msContext.Xmm14 = t.m;
  t.v = r.getVectorRegister(UNW_X86_64_XMM15);
  _msContext.Xmm15 = t.m;
#elif defined(_LIBUNWIND_TARGET_ARM)
  _msContext.R0 = r.getRegister(UNW_ARM_R0);
  _msContext.R1 = r.getRegister(UNW_ARM_R1);
  _msContext.R2 = r.getRegister(UNW_ARM_R2);
  _msContext.R3 = r.getRegister(UNW_ARM_R3);
  _msContext.R4 = r.getRegister(UNW_ARM_R4);
  _msContext.R5 = r.getRegister(UNW_ARM_R5);
  _msContext.R6 = r.getRegister(UNW_ARM_R6);
  _msContext.R7 = r.getRegister(UNW_ARM_R7);
  _msContext.R8 = r.getRegister(UNW_ARM_R8);
  _msContext.R9 = r.getRegister(UNW_ARM_R9);
  _msContext.R10 = r.getRegister(UNW_ARM_R10);
  _msContext.R11 = r.getRegister(UNW_ARM_R11);
  _msContext.R12 = r.getRegister(UNW_ARM_R12);
  _msContext.Sp = r.getRegister(UNW_ARM_SP);
  _msContext.Lr = r.getRegister(UNW_ARM_LR);
  _msContext.Pc = r.getRegister(UNW_ARM_IP);
  for (int i = UNW_ARM_D0; i <= UNW_ARM_D31; ++i) {
    union {
      uint64_t w;
      double d;
    } d;
    d.d = r.getFloatRegister(i);
    _msContext.D[i - UNW_ARM_D0] = d.w;
  }
#elif defined(_LIBUNWIND_TARGET_AARCH64)
  for (int i = UNW_AARCH64_X0; i <= UNW_ARM64_X30; ++i)
    _msContext.X[i - UNW_AARCH64_X0] = r.getRegister(i);
  _msContext.Sp = r.getRegister(UNW_REG_SP);
  _msContext.Pc = r.getRegister(UNW_REG_IP);
  for (int i = UNW_AARCH64_V0; i <= UNW_ARM64_D31; ++i)
    _msContext.V[i - UNW_AARCH64_V0].D[0] = r.getFloatRegister(i);
#endif
}

template <typename A, typename R>
UnwindCursor<A, R>::UnwindCursor(CONTEXT *context, A &as)
    : _addressSpace(as), _unwindInfoMissing(false) {
  static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
                "UnwindCursor<> does not fit in unw_cursor_t");
  memset(&_info, 0, sizeof(_info));
  memset(&_histTable, 0, sizeof(_histTable));
  memset(&_dispContext, 0, sizeof(_dispContext));
  _dispContext.ContextRecord = &_msContext;
  _dispContext.HistoryTable = &_histTable;
  _msContext = *context;
}


template <typename A, typename R>
bool UnwindCursor<A, R>::validReg(int regNum) {
  if (regNum == UNW_REG_IP || regNum == UNW_REG_SP) return true;
#if defined(_LIBUNWIND_TARGET_X86_64)
  if (regNum >= UNW_X86_64_RAX && regNum <= UNW_X86_64_RIP) return true;
#elif defined(_LIBUNWIND_TARGET_ARM)
  if ((regNum >= UNW_ARM_R0 && regNum <= UNW_ARM_R15) ||
      regNum == UNW_ARM_RA_AUTH_CODE)
    return true;
#elif defined(_LIBUNWIND_TARGET_AARCH64)
  if (regNum >= UNW_AARCH64_X0 && regNum <= UNW_ARM64_X30) return true;
#endif
  return false;
}

template <typename A, typename R>
unw_word_t UnwindCursor<A, R>::getReg(int regNum) {
  switch (regNum) {
#if defined(_LIBUNWIND_TARGET_X86_64)
  case UNW_X86_64_RIP:
  case UNW_REG_IP: return _msContext.Rip;
  case UNW_X86_64_RAX: return _msContext.Rax;
  case UNW_X86_64_RDX: return _msContext.Rdx;
  case UNW_X86_64_RCX: return _msContext.Rcx;
  case UNW_X86_64_RBX: return _msContext.Rbx;
  case UNW_REG_SP:
  case UNW_X86_64_RSP: return _msContext.Rsp;
  case UNW_X86_64_RBP: return _msContext.Rbp;
  case UNW_X86_64_RSI: return _msContext.Rsi;
  case UNW_X86_64_RDI: return _msContext.Rdi;
  case UNW_X86_64_R8: return _msContext.R8;
  case UNW_X86_64_R9: return _msContext.R9;
  case UNW_X86_64_R10: return _msContext.R10;
  case UNW_X86_64_R11: return _msContext.R11;
  case UNW_X86_64_R12: return _msContext.R12;
  case UNW_X86_64_R13: return _msContext.R13;
  case UNW_X86_64_R14: return _msContext.R14;
  case UNW_X86_64_R15: return _msContext.R15;
#elif defined(_LIBUNWIND_TARGET_ARM)
  case UNW_ARM_R0: return _msContext.R0;
  case UNW_ARM_R1: return _msContext.R1;
  case UNW_ARM_R2: return _msContext.R2;
  case UNW_ARM_R3: return _msContext.R3;
  case UNW_ARM_R4: return _msContext.R4;
  case UNW_ARM_R5: return _msContext.R5;
  case UNW_ARM_R6: return _msContext.R6;
  case UNW_ARM_R7: return _msContext.R7;
  case UNW_ARM_R8: return _msContext.R8;
  case UNW_ARM_R9: return _msContext.R9;
  case UNW_ARM_R10: return _msContext.R10;
  case UNW_ARM_R11: return _msContext.R11;
  case UNW_ARM_R12: return _msContext.R12;
  case UNW_REG_SP:
  case UNW_ARM_SP: return _msContext.Sp;
  case UNW_ARM_LR: return _msContext.Lr;
  case UNW_REG_IP:
  case UNW_ARM_IP: return _msContext.Pc;
#elif defined(_LIBUNWIND_TARGET_AARCH64)
  case UNW_REG_SP: return _msContext.Sp;
  case UNW_REG_IP: return _msContext.Pc;
  default: return _msContext.X[regNum - UNW_AARCH64_X0];
#endif
  }
  _LIBUNWIND_ABORT("unsupported register");
}

template <typename A, typename R>
void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) {
  switch (regNum) {
#if defined(_LIBUNWIND_TARGET_X86_64)
  case UNW_X86_64_RIP:
  case UNW_REG_IP: _msContext.Rip = value; break;
  case UNW_X86_64_RAX: _msContext.Rax = value; break;
  case UNW_X86_64_RDX: _msContext.Rdx = value; break;
  case UNW_X86_64_RCX: _msContext.Rcx = value; break;
  case UNW_X86_64_RBX: _msContext.Rbx = value; break;
  case UNW_REG_SP:
  case UNW_X86_64_RSP: _msContext.Rsp = value; break;
  case UNW_X86_64_RBP: _msContext.Rbp = value; break;
  case UNW_X86_64_RSI: _msContext.Rsi = value; break;
  case UNW_X86_64_RDI: _msContext.Rdi = value; break;
  case UNW_X86_64_R8: _msContext.R8 = value; break;
  case UNW_X86_64_R9: _msContext.R9 = value; break;
  case UNW_X86_64_R10: _msContext.R10 = value; break;
  case UNW_X86_64_R11: _msContext.R11 = value; break;
  case UNW_X86_64_R12: _msContext.R12 = value; break;
  case UNW_X86_64_R13: _msContext.R13 = value; break;
  case UNW_X86_64_R14: _msContext.R14 = value; break;
  case UNW_X86_64_R15: _msContext.R15 = value; break;
#elif defined(_LIBUNWIND_TARGET_ARM)
  case UNW_ARM_R0: _msContext.R0 = value; break;
  case UNW_ARM_R1: _msContext.R1 = value; break;
  case UNW_ARM_R2: _msContext.R2 = value; break;
  case UNW_ARM_R3: _msContext.R3 = value; break;
  case UNW_ARM_R4: _msContext.R4 = value; break;
  case UNW_ARM_R5: _msContext.R5 = value; break;
  case UNW_ARM_R6: _msContext.R6 = value; break;
  case UNW_ARM_R7: _msContext.R7 = value; break;
  case UNW_ARM_R8: _msContext.R8 = value; break;
  case UNW_ARM_R9: _msContext.R9 = value; break;
  case UNW_ARM_R10: _msContext.R10 = value; break;
  case UNW_ARM_R11: _msContext.R11 = value; break;
  case UNW_ARM_R12: _msContext.R12 = value; break;
  case UNW_REG_SP:
  case UNW_ARM_SP: _msContext.Sp = value; break;
  case UNW_ARM_LR: _msContext.Lr = value; break;
  case UNW_REG_IP:
  case UNW_ARM_IP: _msContext.Pc = value; break;
#elif defined(_LIBUNWIND_TARGET_AARCH64)
  case UNW_REG_SP: _msContext.Sp = value; break;
  case UNW_REG_IP: _msContext.Pc = value; break;
  case UNW_AARCH64_X0:
  case UNW_AARCH64_X1:
  case UNW_AARCH64_X2:
  case UNW_AARCH64_X3:
  case UNW_AARCH64_X4:
  case UNW_AARCH64_X5:
  case UNW_AARCH64_X6:
  case UNW_AARCH64_X7:
  case UNW_AARCH64_X8:
  case UNW_AARCH64_X9:
  case UNW_AARCH64_X10:
  case UNW_AARCH64_X11:
  case UNW_AARCH64_X12:
  case UNW_AARCH64_X13:
  case UNW_AARCH64_X14:
  case UNW_AARCH64_X15:
  case UNW_AARCH64_X16:
  case UNW_AARCH64_X17:
  case UNW_AARCH64_X18:
  case UNW_AARCH64_X19:
  case UNW_AARCH64_X20:
  case UNW_AARCH64_X21:
  case UNW_AARCH64_X22:
  case UNW_AARCH64_X23:
  case UNW_AARCH64_X24:
  case UNW_AARCH64_X25:
  case UNW_AARCH64_X26:
  case UNW_AARCH64_X27:
  case UNW_AARCH64_X28:
  case UNW_AARCH64_FP:
  case UNW_AARCH64_LR: _msContext.X[regNum - UNW_ARM64_X0] = value; break;
#endif
  default:
    _LIBUNWIND_ABORT("unsupported register");
  }
}

template <typename A, typename R>
bool UnwindCursor<A, R>::validFloatReg(int regNum) {
#if defined(_LIBUNWIND_TARGET_ARM)
  if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) return true;
  if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) return true;
#elif defined(_LIBUNWIND_TARGET_AARCH64)
  if (regNum >= UNW_AARCH64_V0 && regNum <= UNW_ARM64_D31) return true;
#else
  (void)regNum;
#endif
  return false;
}

template <typename A, typename R>
unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) {
#if defined(_LIBUNWIND_TARGET_ARM)
  if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) {
    union {
      uint32_t w;
      float f;
    } d;
    d.w = _msContext.S[regNum - UNW_ARM_S0];
    return d.f;
  }
  if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) {
    union {
      uint64_t w;
      double d;
    } d;
    d.w = _msContext.D[regNum - UNW_ARM_D0];
    return d.d;
  }
  _LIBUNWIND_ABORT("unsupported float register");
#elif defined(_LIBUNWIND_TARGET_AARCH64)
  return _msContext.V[regNum - UNW_AARCH64_V0].D[0];
#else
  (void)regNum;
  _LIBUNWIND_ABORT("float registers unimplemented");
#endif
}

template <typename A, typename R>
void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) {
#if defined(_LIBUNWIND_TARGET_ARM)
  if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) {
    union {
      uint32_t w;
      float f;
    } d;
    d.f = (float)value;
    _msContext.S[regNum - UNW_ARM_S0] = d.w;
  }
  if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) {
    union {
      uint64_t w;
      double d;
    } d;
    d.d = value;
    _msContext.D[regNum - UNW_ARM_D0] = d.w;
  }
  _LIBUNWIND_ABORT("unsupported float register");
#elif defined(_LIBUNWIND_TARGET_AARCH64)
  _msContext.V[regNum - UNW_AARCH64_V0].D[0] = value;
#else
  (void)regNum;
  (void)value;
  _LIBUNWIND_ABORT("float registers unimplemented");
#endif
}

template <typename A, typename R> void UnwindCursor<A, R>::jumpto() {
  RtlRestoreContext(&_msContext, nullptr);
}

#ifdef __arm__
template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {}
#endif

template <typename A, typename R>
const char *UnwindCursor<A, R>::getRegisterName(int regNum) {
  return R::getRegisterName(regNum);
}

template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() {
  return false;
}

#else  // !defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) || !defined(_WIN32)

/// UnwindCursor contains all state (including all register values) during
/// an unwind.  This is normally stack allocated inside a unw_cursor_t.
template <typename A, typename R>
class UnwindCursor : public AbstractUnwindCursor{
  typedef typename A::pint_t pint_t;
public:
                      UnwindCursor(unw_context_t *context, A &as);
                      UnwindCursor(A &as, void *threadArg);
  virtual             ~UnwindCursor() {}
  virtual bool        validReg(int);
  virtual unw_word_t  getReg(int);
  virtual void        setReg(int, unw_word_t);
  virtual bool        validFloatReg(int);
  virtual unw_fpreg_t getFloatReg(int);
  virtual void        setFloatReg(int, unw_fpreg_t);
  virtual int         step(bool stage2 = false);
  virtual void        getInfo(unw_proc_info_t *);
  virtual void        jumpto();
  virtual bool        isSignalFrame();
  virtual bool        getFunctionName(char *buf, size_t len, unw_word_t *off);
  virtual void        setInfoBasedOnIPRegister(bool isReturnAddress = false);
  virtual const char *getRegisterName(int num);
#ifdef __arm__
  virtual void        saveVFPAsX();
#endif

#ifdef _AIX
  virtual uintptr_t getDataRelBase();
#endif

#if defined(_LIBUNWIND_USE_CET)
  virtual void *get_registers() { return &_registers; }
#endif

  // libunwind does not and should not depend on C++ library which means that we
  // need our own definition of inline placement new.
  static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; }

private:

#if defined(_LIBUNWIND_ARM_EHABI)
  bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections &sects);

  int stepWithEHABI() {
    size_t len = 0;
    size_t off = 0;
    // FIXME: Calling decode_eht_entry() here is violating the libunwind
    // abstraction layer.
    const uint32_t *ehtp =
        decode_eht_entry(reinterpret_cast<const uint32_t *>(_info.unwind_info),
                         &off, &len);
    if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) !=
            _URC_CONTINUE_UNWIND)
      return UNW_STEP_END;
    return UNW_STEP_SUCCESS;
  }
#endif

#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
  bool setInfoForSigReturn() {
    R dummy;
    return setInfoForSigReturn(dummy);
  }
  int stepThroughSigReturn() {
    R dummy;
    return stepThroughSigReturn(dummy);
  }
  bool isReadableAddr(const pint_t addr) const;
#if defined(_LIBUNWIND_TARGET_AARCH64)
  bool setInfoForSigReturn(Registers_arm64 &);
  int stepThroughSigReturn(Registers_arm64 &);
#endif
#if defined(_LIBUNWIND_TARGET_RISCV)
  bool setInfoForSigReturn(Registers_riscv &);
  int stepThroughSigReturn(Registers_riscv &);
#endif
#if defined(_LIBUNWIND_TARGET_S390X)
  bool setInfoForSigReturn(Registers_s390x &);
  int stepThroughSigReturn(Registers_s390x &);
#endif
  template <typename Registers> bool setInfoForSigReturn(Registers &) {
    return false;
  }
  template <typename Registers> int stepThroughSigReturn(Registers &) {
    return UNW_STEP_END;
  }
#endif

#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
  bool getInfoFromFdeCie(const typename CFI_Parser<A>::FDE_Info &fdeInfo,
                         const typename CFI_Parser<A>::CIE_Info &cieInfo,
                         pint_t pc, uintptr_t dso_base);
  bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections &sects,
                                            uint32_t fdeSectionOffsetHint=0);
  int stepWithDwarfFDE(bool stage2) {
    return DwarfInstructions<A, R>::stepWithDwarf(
        _addressSpace, (pint_t)this->getReg(UNW_REG_IP),
        (pint_t)_info.unwind_info, _registers, _isSignalFrame, stage2);
  }
#endif

#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
  bool getInfoFromCompactEncodingSection(pint_t pc,
                                            const UnwindInfoSections &sects);
  int stepWithCompactEncoding(bool stage2 = false) {
#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
    if ( compactSaysUseDwarf() )
      return stepWithDwarfFDE(stage2);
#endif
    R dummy;
    return stepWithCompactEncoding(dummy);
  }

#if defined(_LIBUNWIND_TARGET_X86_64)
  int stepWithCompactEncoding(Registers_x86_64 &) {
    return CompactUnwinder_x86_64<A>::stepWithCompactEncoding(
        _info.format, _info.start_ip, _addressSpace, _registers);
  }
#endif

#if defined(_LIBUNWIND_TARGET_I386)
  int stepWithCompactEncoding(Registers_x86 &) {
    return CompactUnwinder_x86<A>::stepWithCompactEncoding(
        _info.format, (uint32_t)_info.start_ip, _addressSpace, _registers);
  }
#endif

#if defined(_LIBUNWIND_TARGET_PPC)
  int stepWithCompactEncoding(Registers_ppc &) {
    return UNW_EINVAL;
  }
#endif

#if defined(_LIBUNWIND_TARGET_PPC64)
  int stepWithCompactEncoding(Registers_ppc64 &) {
    return UNW_EINVAL;
  }
#endif


#if defined(_LIBUNWIND_TARGET_AARCH64)
  int stepWithCompactEncoding(Registers_arm64 &) {
    return CompactUnwinder_arm64<A>::stepWithCompactEncoding(
        _info.format, _info.start_ip, _addressSpace, _registers);
  }
#endif

#if defined(_LIBUNWIND_TARGET_MIPS_O32)
  int stepWithCompactEncoding(Registers_mips_o32 &) {
    return UNW_EINVAL;
  }
#endif

#if defined(_LIBUNWIND_TARGET_MIPS_NEWABI)
  int stepWithCompactEncoding(Registers_mips_newabi &) {
    return UNW_EINVAL;
  }
#endif

#if defined(_LIBUNWIND_TARGET_LOONGARCH)
  int stepWithCompactEncoding(Registers_loongarch &) { return UNW_EINVAL; }
#endif

#if defined(_LIBUNWIND_TARGET_SPARC)
  int stepWithCompactEncoding(Registers_sparc &) { return UNW_EINVAL; }
#endif

#if defined(_LIBUNWIND_TARGET_SPARC64)
  int stepWithCompactEncoding(Registers_sparc64 &) { return UNW_EINVAL; }
#endif

#if defined (_LIBUNWIND_TARGET_RISCV)
  int stepWithCompactEncoding(Registers_riscv &) {
    return UNW_EINVAL;
  }
#endif

  bool compactSaysUseDwarf(uint32_t *offset=NULL) const {
    R dummy;
    return compactSaysUseDwarf(dummy, offset);
  }

#if defined(_LIBUNWIND_TARGET_X86_64)
  bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const {
    if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) {
      if (offset)
        *offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET);
      return true;
    }
    return false;
  }
#endif

#if defined(_LIBUNWIND_TARGET_I386)
  bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const {
    if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) {
      if (offset)
        *offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET);
      return true;
    }
    return false;
  }
#endif

#if defined(_LIBUNWIND_TARGET_PPC)
  bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const {
    return true;
  }
#endif

#if defined(_LIBUNWIND_TARGET_PPC64)
  bool compactSaysUseDwarf(Registers_ppc64 &, uint32_t *) const {
    return true;
  }
#endif

#if defined(_LIBUNWIND_TARGET_AARCH64)
  bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const {
    if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) {
      if (offset)
        *offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET);
      return true;
    }
    return false;
  }
#endif

#if defined(_LIBUNWIND_TARGET_MIPS_O32)
  bool compactSaysUseDwarf(Registers_mips_o32 &, uint32_t *) const {
    return true;
  }
#endif

#if defined(_LIBUNWIND_TARGET_MIPS_NEWABI)
  bool compactSaysUseDwarf(Registers_mips_newabi &, uint32_t *) const {
    return true;
  }
#endif

#if defined(_LIBUNWIND_TARGET_LOONGARCH)
  bool compactSaysUseDwarf(Registers_loongarch &, uint32_t *) const {
    return true;
  }
#endif

#if defined(_LIBUNWIND_TARGET_SPARC)
  bool compactSaysUseDwarf(Registers_sparc &, uint32_t *) const { return true; }
#endif

#if defined(_LIBUNWIND_TARGET_SPARC64)
  bool compactSaysUseDwarf(Registers_sparc64 &, uint32_t *) const {
    return true;
  }
#endif

#if defined (_LIBUNWIND_TARGET_RISCV)
  bool compactSaysUseDwarf(Registers_riscv &, uint32_t *) const {
    return true;
  }
#endif

#endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)

#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
  compact_unwind_encoding_t dwarfEncoding() const {
    R dummy;
    return dwarfEncoding(dummy);
  }

#if defined(_LIBUNWIND_TARGET_X86_64)
  compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const {
    return UNWIND_X86_64_MODE_DWARF;
  }
#endif

#if defined(_LIBUNWIND_TARGET_I386)
  compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const {
    return UNWIND_X86_MODE_DWARF;
  }
#endif

#if defined(_LIBUNWIND_TARGET_PPC)
  compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const {
    return 0;
  }
#endif

#if defined(_LIBUNWIND_TARGET_PPC64)
  compact_unwind_encoding_t dwarfEncoding(Registers_ppc64 &) const {
    return 0;
  }
#endif

#if defined(_LIBUNWIND_TARGET_AARCH64)
  compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const {
    return UNWIND_ARM64_MODE_DWARF;
  }
#endif

#if defined(_LIBUNWIND_TARGET_ARM)
  compact_unwind_encoding_t dwarfEncoding(Registers_arm &) const {
    return 0;
  }
#endif

#if defined (_LIBUNWIND_TARGET_OR1K)
  compact_unwind_encoding_t dwarfEncoding(Registers_or1k &) const {
    return 0;
  }
#endif

#if defined (_LIBUNWIND_TARGET_HEXAGON)
  compact_unwind_encoding_t dwarfEncoding(Registers_hexagon &) const {
    return 0;
  }
#endif

#if defined (_LIBUNWIND_TARGET_MIPS_O32)
  compact_unwind_encoding_t dwarfEncoding(Registers_mips_o32 &) const {
    return 0;
  }
#endif

#if defined (_LIBUNWIND_TARGET_MIPS_NEWABI)
  compact_unwind_encoding_t dwarfEncoding(Registers_mips_newabi &) const {
    return 0;
  }
#endif

#if defined(_LIBUNWIND_TARGET_LOONGARCH)
  compact_unwind_encoding_t dwarfEncoding(Registers_loongarch &) const {
    return 0;
  }
#endif

#if defined(_LIBUNWIND_TARGET_SPARC)
  compact_unwind_encoding_t dwarfEncoding(Registers_sparc &) const { return 0; }
#endif

#if defined(_LIBUNWIND_TARGET_SPARC64)
  compact_unwind_encoding_t dwarfEncoding(Registers_sparc64 &) const {
    return 0;
  }
#endif

#if defined (_LIBUNWIND_TARGET_RISCV)
  compact_unwind_encoding_t dwarfEncoding(Registers_riscv &) const {
    return 0;
  }
#endif

#if defined (_LIBUNWIND_TARGET_S390X)
  compact_unwind_encoding_t dwarfEncoding(Registers_s390x &) const {
    return 0;
  }
#endif

#endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)

#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
  // For runtime environments using SEH unwind data without Windows runtime
  // support.
  pint_t getLastPC() const { /* FIXME: Implement */ return 0; }
  void setLastPC(pint_t pc) { /* FIXME: Implement */ }
  RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) {
    /* FIXME: Implement */
    *base = 0;
    return nullptr;
  }
  bool getInfoFromSEH(pint_t pc);
  int stepWithSEHData() { /* FIXME: Implement */ return 0; }
#endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)

#if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
  bool getInfoFromTBTable(pint_t pc, R &registers);
  int stepWithTBTable(pint_t pc, tbtable *TBTable, R &registers,
                      bool &isSignalFrame);
  int stepWithTBTableData() {
    return stepWithTBTable(reinterpret_cast<pint_t>(this->getReg(UNW_REG_IP)),
                           reinterpret_cast<tbtable *>(_info.unwind_info),
                           _registers, _isSignalFrame);
  }
#endif // defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)

  A               &_addressSpace;
  R                _registers;
  unw_proc_info_t  _info;
  bool             _unwindInfoMissing;
  bool             _isSignalFrame;
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
  bool             _isSigReturn = false;
#endif
};


template <typename A, typename R>
UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as)
    : _addressSpace(as), _registers(context), _unwindInfoMissing(false),
      _isSignalFrame(false) {
  static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
                "UnwindCursor<> does not fit in unw_cursor_t");
  static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)),
                "UnwindCursor<> requires more alignment than unw_cursor_t");
  memset(&_info, 0, sizeof(_info));
}

template <typename A, typename R>
UnwindCursor<A, R>::UnwindCursor(A &as, void *)
    : _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) {
  memset(&_info, 0, sizeof(_info));
  // FIXME
  // fill in _registers from thread arg
}


template <typename A, typename R>
bool UnwindCursor<A, R>::validReg(int regNum) {
  return _registers.validRegister(regNum);
}

template <typename A, typename R>
unw_word_t UnwindCursor<A, R>::getReg(int regNum) {
  return _registers.getRegister(regNum);
}

template <typename A, typename R>
void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) {
  _registers.setRegister(regNum, (typename A::pint_t)value);
}

template <typename A, typename R>
bool UnwindCursor<A, R>::validFloatReg(int regNum) {
  return _registers.validFloatRegister(regNum);
}

template <typename A, typename R>
unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) {
  return _registers.getFloatRegister(regNum);
}

template <typename A, typename R>
void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) {
  _registers.setFloatRegister(regNum, value);
}

template <typename A, typename R> void UnwindCursor<A, R>::jumpto() {
  _registers.jumpto();
}

#ifdef __arm__
template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {
  _registers.saveVFPAsX();
}
#endif

#ifdef _AIX
template <typename A, typename R>
uintptr_t UnwindCursor<A, R>::getDataRelBase() {
  return reinterpret_cast<uintptr_t>(_info.extra);
}
#endif

template <typename A, typename R>
const char *UnwindCursor<A, R>::getRegisterName(int regNum) {
  return _registers.getRegisterName(regNum);
}

template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() {
  return _isSignalFrame;
}

#endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)

#if defined(_LIBUNWIND_ARM_EHABI)
template<typename A>
struct EHABISectionIterator {
  typedef EHABISectionIterator _Self;

  typedef typename A::pint_t value_type;
  typedef typename A::pint_t* pointer;
  typedef typename A::pint_t& reference;
  typedef size_t size_type;
  typedef size_t difference_type;

  static _Self begin(A& addressSpace, const UnwindInfoSections& sects) {
    return _Self(addressSpace, sects, 0);
  }
  static _Self end(A& addressSpace, const UnwindInfoSections& sects) {
    return _Self(addressSpace, sects,
                 sects.arm_section_length / sizeof(EHABIIndexEntry));
  }

  EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i)
      : _i(i), _addressSpace(&addressSpace), _sects(&sects) {}

  _Self& operator++() { ++_i; return *this; }
  _Self& operator+=(size_t a) { _i += a; return *this; }
  _Self& operator--() { assert(_i > 0); --_i; return *this; }
  _Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; }

  _Self operator+(size_t a) { _Self out = *this; out._i += a; return out; }
  _Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; }

  size_t operator-(const _Self& other) const { return _i - other._i; }

  bool operator==(const _Self& other) const {
    assert(_addressSpace == other._addressSpace);
    assert(_sects == other._sects);
    return _i == other._i;
  }

  bool operator!=(const _Self& other) const {
    assert(_addressSpace == other._addressSpace);
    assert(_sects == other._sects);
    return _i != other._i;
  }

  typename A::pint_t operator*() const { return functionAddress(); }

  typename A::pint_t functionAddress() const {
    typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
        EHABIIndexEntry, _i, functionOffset);
    return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr));
  }

  typename A::pint_t dataAddress() {
    typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
        EHABIIndexEntry, _i, data);
    return indexAddr;
  }

 private:
  size_t _i;
  A* _addressSpace;
  const UnwindInfoSections* _sects;
};

namespace {

template <typename A>
EHABISectionIterator<A> EHABISectionUpperBound(
    EHABISectionIterator<A> first,
    EHABISectionIterator<A> last,
    typename A::pint_t value) {
  size_t len = last - first;
  while (len > 0) {
    size_t l2 = len / 2;
    EHABISectionIterator<A> m = first + l2;
    if (value < *m) {
        len = l2;
    } else {
        first = ++m;
        len -= l2 + 1;
    }
  }
  return first;
}

}

template <typename A, typename R>
bool UnwindCursor<A, R>::getInfoFromEHABISection(
    pint_t pc,
    const UnwindInfoSections &sects) {
  EHABISectionIterator<A> begin =
      EHABISectionIterator<A>::begin(_addressSpace, sects);
  EHABISectionIterator<A> end =
      EHABISectionIterator<A>::end(_addressSpace, sects);
  if (begin == end)
    return false;

  EHABISectionIterator<A> itNextPC = EHABISectionUpperBound(begin, end, pc);
  if (itNextPC == begin)
    return false;
  EHABISectionIterator<A> itThisPC = itNextPC - 1;

  pint_t thisPC = itThisPC.functionAddress();
  // If an exception is thrown from a function, corresponding to the last entry
  // in the table, we don't really know the function extent and have to choose a
  // value for nextPC. Choosing max() will allow the range check during trace to
  // succeed.
  pint_t nextPC = (itNextPC == end) ? UINTPTR_MAX : itNextPC.functionAddress();
  pint_t indexDataAddr = itThisPC.dataAddress();

  if (indexDataAddr == 0)
    return false;

  uint32_t indexData = _addressSpace.get32(indexDataAddr);
  if (indexData == UNW_EXIDX_CANTUNWIND)
    return false;

  // If the high bit is set, the exception handling table entry is inline inside
  // the index table entry on the second word (aka |indexDataAddr|). Otherwise,
  // the table points at an offset in the exception handling table (section 5
  // EHABI).
  pint_t exceptionTableAddr;
  uint32_t exceptionTableData;
  bool isSingleWordEHT;
  if (indexData & 0x80000000) {
    exceptionTableAddr = indexDataAddr;
    // TODO(ajwong): Should this data be 0?
    exceptionTableData = indexData;
    isSingleWordEHT = true;
  } else {
    exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData);
    exceptionTableData = _addressSpace.get32(exceptionTableAddr);
    isSingleWordEHT = false;
  }

  // Now we know the 3 things:
  //   exceptionTableAddr -- exception handler table entry.
  //   exceptionTableData -- the data inside the first word of the eht entry.
  //   isSingleWordEHT -- whether the entry is in the index.
  unw_word_t personalityRoutine = 0xbadf00d;
  bool scope32 = false;
  uintptr_t lsda;

  // If the high bit in the exception handling table entry is set, the entry is
  // in compact form (section 6.3 EHABI).
  if (exceptionTableData & 0x80000000) {
    // Grab the index of the personality routine from the compact form.
    uint32_t choice = (exceptionTableData & 0x0f000000) >> 24;
    uint32_t extraWords = 0;
    switch (choice) {
      case 0:
        personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0;
        extraWords = 0;
        scope32 = false;
        lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4);
        break;
      case 1:
        personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1;
        extraWords = (exceptionTableData & 0x00ff0000) >> 16;
        scope32 = false;
        lsda = exceptionTableAddr + (extraWords + 1) * 4;
        break;
      case 2:
        personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2;
        extraWords = (exceptionTableData & 0x00ff0000) >> 16;
        scope32 = true;
        lsda = exceptionTableAddr + (extraWords + 1) * 4;
        break;
      default:
        _LIBUNWIND_ABORT("unknown personality routine");
        return false;
    }

    if (isSingleWordEHT) {
      if (extraWords != 0) {
        _LIBUNWIND_ABORT("index inlined table detected but pr function "
                         "requires extra words");
        return false;
      }
    }
  } else {
    pint_t personalityAddr =
        exceptionTableAddr + signExtendPrel31(exceptionTableData);
    personalityRoutine = personalityAddr;

    // ARM EHABI # 6.2, # 9.2
    //
    //  +---- ehtp
    //  v
    // +--------------------------------------+
    // | +--------+--------+--------+-------+ |
    // | |0| prel31 to personalityRoutine   | |
    // | +--------+--------+--------+-------+ |
    // | |      N |      unwind opcodes     | |  <-- UnwindData
    // | +--------+--------+--------+-------+ |
    // | | Word 2        unwind opcodes     | |
    // | +--------+--------+--------+-------+ |
    // | ...                                  |
    // | +--------+--------+--------+-------+ |
    // | | Word N        unwind opcodes     | |
    // | +--------+--------+--------+-------+ |
    // | | LSDA                             | |  <-- lsda
    // | | ...                              | |
    // | +--------+--------+--------+-------+ |
    // +--------------------------------------+

    uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1;
    uint32_t FirstDataWord = *UnwindData;
    size_t N = ((FirstDataWord >> 24) & 0xff);
    size_t NDataWords = N + 1;
    lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords);
  }

  _info.start_ip = thisPC;
  _info.end_ip = nextPC;
  _info.handler = personalityRoutine;
  _info.unwind_info = exceptionTableAddr;
  _info.lsda = lsda;
  // flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0.
  _info.flags = (isSingleWordEHT ? 1 : 0) | (scope32 ? 0x2 : 0);  // Use enum?

  return true;
}
#endif

#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
template <typename A, typename R>
bool UnwindCursor<A, R>::getInfoFromFdeCie(
    const typename CFI_Parser<A>::FDE_Info &fdeInfo,
    const typename CFI_Parser<A>::CIE_Info &cieInfo, pint_t pc,
    uintptr_t dso_base) {
  typename CFI_Parser<A>::PrologInfo prolog;
  if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc,
                                          R::getArch(), &prolog)) {
    // Save off parsed FDE info
    _info.start_ip          = fdeInfo.pcStart;
    _info.end_ip            = fdeInfo.pcEnd;
    _info.lsda              = fdeInfo.lsda;
    _info.handler           = cieInfo.personality;
    // Some frameless functions need SP altered when resuming in function, so
    // propagate spExtraArgSize.
    _info.gp                = prolog.spExtraArgSize;
    _info.flags             = 0;
    _info.format            = dwarfEncoding();
    _info.unwind_info       = fdeInfo.fdeStart;
    _info.unwind_info_size  = static_cast<uint32_t>(fdeInfo.fdeLength);
    _info.extra             = static_cast<unw_word_t>(dso_base);
    return true;
  }
  return false;
}

template <typename A, typename R>
bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc,
                                                const UnwindInfoSections &sects,
                                                uint32_t fdeSectionOffsetHint) {
  typename CFI_Parser<A>::FDE_Info fdeInfo;
  typename CFI_Parser<A>::CIE_Info cieInfo;
  bool foundFDE = false;
  bool foundInCache = false;
  // If compact encoding table gave offset into dwarf section, go directly there
  if (fdeSectionOffsetHint != 0) {
    foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
                                    sects.dwarf_section_length,
                                    sects.dwarf_section + fdeSectionOffsetHint,
                                    &fdeInfo, &cieInfo);
  }
#if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX)
  if (!foundFDE && (sects.dwarf_index_section != 0)) {
    foundFDE = EHHeaderParser<A>::findFDE(
        _addressSpace, pc, sects.dwarf_index_section,
        (uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo);
  }
#endif
  if (!foundFDE) {
    // otherwise, search cache of previously found FDEs.
    pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc);
    if (cachedFDE != 0) {
      foundFDE =
          CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
                                 sects.dwarf_section_length,
                                 cachedFDE, &fdeInfo, &cieInfo);
      foundInCache = foundFDE;
    }
  }
  if (!foundFDE) {
    // Still not found, do full scan of __eh_frame section.
    foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
                                      sects.dwarf_section_length, 0,
                                      &fdeInfo, &cieInfo);
  }
  if (foundFDE) {
    if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, sects.dso_base)) {
      // Add to cache (to make next lookup faster) if we had no hint
      // and there was no index.
      if (!foundInCache && (fdeSectionOffsetHint == 0)) {
  #if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX)
        if (sects.dwarf_index_section == 0)
  #endif
        DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd,
                              fdeInfo.fdeStart);
      }
      return true;
    }
  }
  //_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX", (uint64_t)pc);
  return false;
}
#endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)


#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
template <typename A, typename R>
bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc,
                                              const UnwindInfoSections &sects) {
  const bool log = false;
  if (log)
    fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n",
            (uint64_t)pc, (uint64_t)sects.dso_base);

  const UnwindSectionHeader<A> sectionHeader(_addressSpace,
                                                sects.compact_unwind_section);
  if (sectionHeader.version() != UNWIND_SECTION_VERSION)
    return false;

  // do a binary search of top level index to find page with unwind info
  pint_t targetFunctionOffset = pc - sects.dso_base;
  const UnwindSectionIndexArray<A> topIndex(_addressSpace,
                                           sects.compact_unwind_section
                                         + sectionHeader.indexSectionOffset());
  uint32_t low = 0;
  uint32_t high = sectionHeader.indexCount();
  uint32_t last = high - 1;
  while (low < high) {
    uint32_t mid = (low + high) / 2;
    //if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n",
    //mid, low, high, topIndex.functionOffset(mid));
    if (topIndex.functionOffset(mid) <= targetFunctionOffset) {
      if ((mid == last) ||
          (topIndex.functionOffset(mid + 1) > targetFunctionOffset)) {
        low = mid;
        break;
      } else {
        low = mid + 1;
      }
    } else {
      high = mid;
    }
  }
  const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low);
  const uint32_t firstLevelNextPageFunctionOffset =
      topIndex.functionOffset(low + 1);
  const pint_t secondLevelAddr =
      sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low);
  const pint_t lsdaArrayStartAddr =
      sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low);
  const pint_t lsdaArrayEndAddr =
      sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1);
  if (log)
    fprintf(stderr, "\tfirst level search for result index=%d "
                    "to secondLevelAddr=0x%llX\n",
                    low, (uint64_t) secondLevelAddr);
  // do a binary search of second level page index
  uint32_t encoding = 0;
  pint_t funcStart = 0;
  pint_t funcEnd = 0;
  pint_t lsda = 0;
  pint_t personality = 0;
  uint32_t pageKind = _addressSpace.get32(secondLevelAddr);
  if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) {
    // regular page
    UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace,
                                                 secondLevelAddr);
    UnwindSectionRegularArray<A> pageIndex(
        _addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
    // binary search looks for entry with e where index[e].offset <= pc <
    // index[e+1].offset
    if (log)
      fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in "
                      "regular page starting at secondLevelAddr=0x%llX\n",
              (uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr);
    low = 0;
    high = pageHeader.entryCount();
    while (low < high) {
      uint32_t mid = (low + high) / 2;
      if (pageIndex.functionOffset(mid) <= targetFunctionOffset) {
        if (mid == (uint32_t)(pageHeader.entryCount() - 1)) {
          // at end of table
          low = mid;
          funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
          break;
        } else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) {
          // next is too big, so we found it
          low = mid;
          funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base;
          break;
        } else {
          low = mid + 1;
        }
      } else {
        high = mid;
      }
    }
    encoding = pageIndex.encoding(low);
    funcStart = pageIndex.functionOffset(low) + sects.dso_base;
    if (pc < funcStart) {
      if (log)
        fprintf(
            stderr,
            "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
            (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
      return false;
    }
    if (pc > funcEnd) {
      if (log)
        fprintf(
            stderr,
            "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
            (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
      return false;
    }
  } else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) {
    // compressed page
    UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace,
                                                    secondLevelAddr);
    UnwindSectionCompressedArray<A> pageIndex(
        _addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
    const uint32_t targetFunctionPageOffset =
        (uint32_t)(targetFunctionOffset - firstLevelFunctionOffset);
    // binary search looks for entry with e where index[e].offset <= pc <
    // index[e+1].offset
    if (log)
      fprintf(stderr, "\tbinary search of compressed page starting at "
                      "secondLevelAddr=0x%llX\n",
              (uint64_t) secondLevelAddr);
    low = 0;
    last = pageHeader.entryCount() - 1;
    high = pageHeader.entryCount();
    while (low < high) {
      uint32_t mid = (low + high) / 2;
      if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) {
        if ((mid == last) ||
            (pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) {
          low = mid;
          break;
        } else {
          low = mid + 1;
        }
      } else {
        high = mid;
      }
    }
    funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset
                                                              + sects.dso_base;
    if (low < last)
      funcEnd =
          pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset
                                                              + sects.dso_base;
    else
      funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
    if (pc < funcStart) {
      _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX "
                           "not in second level compressed unwind table. "
                           "funcStart=0x%llX",
                            (uint64_t) pc, (uint64_t) funcStart);
      return false;
    }
    if (pc > funcEnd) {
      _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX "
                           "not in second level compressed unwind table. "
                           "funcEnd=0x%llX",
                           (uint64_t) pc, (uint64_t) funcEnd);
      return false;
    }
    uint16_t encodingIndex = pageIndex.encodingIndex(low);
    if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) {
      // encoding is in common table in section header
      encoding = _addressSpace.get32(
          sects.compact_unwind_section +
          sectionHeader.commonEncodingsArraySectionOffset() +
          encodingIndex * sizeof(uint32_t));
    } else {
      // encoding is in page specific table
      uint16_t pageEncodingIndex =
          encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount();
      encoding = _addressSpace.get32(secondLevelAddr +
                                     pageHeader.encodingsPageOffset() +
                                     pageEncodingIndex * sizeof(uint32_t));
    }
  } else {
    _LIBUNWIND_DEBUG_LOG(
        "malformed __unwind_info at 0x%0llX bad second level page",
        (uint64_t)sects.compact_unwind_section);
    return false;
  }

  // look up LSDA, if encoding says function has one
  if (encoding & UNWIND_HAS_LSDA) {
    UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr);
    uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base);
    low = 0;
    high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) /
                    sizeof(unwind_info_section_header_lsda_index_entry);
    // binary search looks for entry with exact match for functionOffset
    if (log)
      fprintf(stderr,
              "\tbinary search of lsda table for targetFunctionOffset=0x%08X\n",
              funcStartOffset);
    while (low < high) {
      uint32_t mid = (low + high) / 2;
      if (lsdaIndex.functionOffset(mid) == funcStartOffset) {
        lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base;
        break;
      } else if (lsdaIndex.functionOffset(mid) < funcStartOffset) {
        low = mid + 1;
      } else {
        high = mid;
      }
    }
    if (lsda == 0) {
      _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for "
                    "pc=0x%0llX, but lsda table has no entry",
                    encoding, (uint64_t) pc);
      return false;
    }
  }

  // extract personality routine, if encoding says function has one
  uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >>
                              (__builtin_ctz(UNWIND_PERSONALITY_MASK));
  if (personalityIndex != 0) {
    --personalityIndex; // change 1-based to zero-based index
    if (personalityIndex >= sectionHeader.personalityArrayCount()) {
      _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d,  "
                            "but personality table has only %d entries",
                            encoding, personalityIndex,
                            sectionHeader.personalityArrayCount());
      return false;
    }
    int32_t personalityDelta = (int32_t)_addressSpace.get32(
        sects.compact_unwind_section +
        sectionHeader.personalityArraySectionOffset() +
        personalityIndex * sizeof(uint32_t));
    pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta;
    personality = _addressSpace.getP(personalityPointer);
    if (log)
      fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
                      "personalityDelta=0x%08X, personality=0x%08llX\n",
              (uint64_t) pc, personalityDelta, (uint64_t) personality);
  }

  if (log)
    fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
                    "encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n",
            (uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart);
  _info.start_ip = funcStart;
  _info.end_ip = funcEnd;
  _info.lsda = lsda;
  _info.handler = personality;
  _info.gp = 0;
  _info.flags = 0;
  _info.format = encoding;
  _info.unwind_info = 0;
  _info.unwind_info_size = 0;
  _info.extra = sects.dso_base;
  return true;
}
#endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)


#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
template <typename A, typename R>
bool UnwindCursor<A, R>::getInfoFromSEH(pint_t pc) {
  pint_t base;
  RUNTIME_FUNCTION *unwindEntry = lookUpSEHUnwindInfo(pc, &base);
  if (!unwindEntry) {
    _LIBUNWIND_DEBUG_LOG("\tpc not in table, pc=0x%llX", (uint64_t) pc);
    return false;
  }
  _info.gp = 0;
  _info.flags = 0;
  _info.format = 0;
  _info.unwind_info_size = sizeof(RUNTIME_FUNCTION);
  _info.unwind_info = reinterpret_cast<unw_word_t>(unwindEntry);
  _info.extra = base;
  _info.start_ip = base + unwindEntry->BeginAddress;
#ifdef _LIBUNWIND_TARGET_X86_64
  _info.end_ip = base + unwindEntry->EndAddress;
  // Only fill in the handler and LSDA if they're stale.
  if (pc != getLastPC()) {
    UNWIND_INFO *xdata = reinterpret_cast<UNWIND_INFO *>(base + unwindEntry->UnwindData);
    if (xdata->Flags & (UNW_FLAG_EHANDLER|UNW_FLAG_UHANDLER)) {
      // The personality is given in the UNWIND_INFO itself. The LSDA immediately
      // follows the UNWIND_INFO. (This follows how both Clang and MSVC emit
      // these structures.)
      // N.B. UNWIND_INFO structs are DWORD-aligned.
      uint32_t lastcode = (xdata->CountOfCodes + 1) & ~1;
      const uint32_t *handler = reinterpret_cast<uint32_t *>(&xdata->UnwindCodes[lastcode]);
      _info.lsda = reinterpret_cast<unw_word_t>(handler+1);
      _dispContext.HandlerData = reinterpret_cast<void *>(_info.lsda);
      _dispContext.LanguageHandler =
          reinterpret_cast<EXCEPTION_ROUTINE *>(base + *handler);
      if (*handler) {
        _info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality);
      } else
        _info.handler = 0;
    } else {
      _info.lsda = 0;
      _info.handler = 0;
    }
  }
#endif
  setLastPC(pc);
  return true;
}
#endif

#if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
// Masks for traceback table field xtbtable.
enum xTBTableMask : uint8_t {
  reservedBit = 0x02, // The traceback table was incorrectly generated if set
                      // (see comments in function getInfoFromTBTable().
  ehInfoBit = 0x08    // Exception handling info is present if set
};

enum frameType : unw_word_t {
  frameWithXLEHStateTable = 0,
  frameWithEHInfo = 1
};

extern "C" {
typedef _Unwind_Reason_Code __xlcxx_personality_v0_t(int, _Unwind_Action,
                                                     uint64_t,
                                                     _Unwind_Exception *,
                                                     struct _Unwind_Context *);
__attribute__((__weak__)) __xlcxx_personality_v0_t __xlcxx_personality_v0;
}

static __xlcxx_personality_v0_t *xlcPersonalityV0;
static RWMutex xlcPersonalityV0InitLock;

template <typename A, typename R>
bool UnwindCursor<A, R>::getInfoFromTBTable(pint_t pc, R &registers) {
  uint32_t *p = reinterpret_cast<uint32_t *>(pc);

  // Keep looking forward until a word of 0 is found. The traceback
  // table starts at the following word.
  while (*p)
    ++p;
  tbtable *TBTable = reinterpret_cast<tbtable *>(p + 1);

  if (_LIBUNWIND_TRACING_UNWINDING) {
    char functionBuf[512];
    const char *functionName = functionBuf;
    unw_word_t offset;
    if (!getFunctionName(functionBuf, sizeof(functionBuf), &offset)) {
      functionName = ".anonymous.";
    }
    _LIBUNWIND_TRACE_UNWINDING("%s: Look up traceback table of func=%s at %p",
                               __func__, functionName,
                               reinterpret_cast<void *>(TBTable));
  }

  // If the traceback table does not contain necessary info, bypass this frame.
  if (!TBTable->tb.has_tboff)
    return false;

  // Structure tbtable_ext contains important data we are looking for.
  p = reinterpret_cast<uint32_t *>(&TBTable->tb_ext);

  // Skip field parminfo if it exists.
  if (TBTable->tb.fixedparms || TBTable->tb.floatparms)
    ++p;

  // p now points to tb_offset, the offset from start of function to TB table.
  unw_word_t start_ip =
      reinterpret_cast<unw_word_t>(TBTable) - *p - sizeof(uint32_t);
  unw_word_t end_ip = reinterpret_cast<unw_word_t>(TBTable);
  ++p;

  _LIBUNWIND_TRACE_UNWINDING("start_ip=%p, end_ip=%p\n",
                             reinterpret_cast<void *>(start_ip),
                             reinterpret_cast<void *>(end_ip));

  // Skip field hand_mask if it exists.
  if (TBTable->tb.int_hndl)
    ++p;

  unw_word_t lsda = 0;
  unw_word_t handler = 0;
  unw_word_t flags = frameType::frameWithXLEHStateTable;

  if (TBTable->tb.lang == TB_CPLUSPLUS && TBTable->tb.has_ctl) {
    // State table info is available. The ctl_info field indicates the
    // number of CTL anchors. There should be only one entry for the C++
    // state table.
    assert(*p == 1 && "libunwind: there must be only one ctl_info entry");
    ++p;
    // p points to the offset of the state table into the stack.
    pint_t stateTableOffset = *p++;

    int framePointerReg;

    // Skip fields name_len and name if exist.
    if (TBTable->tb.name_present) {
      const uint16_t name_len = *(reinterpret_cast<uint16_t *>(p));
      p = reinterpret_cast<uint32_t *>(reinterpret_cast<char *>(p) + name_len +
                                       sizeof(uint16_t));
    }

    if (TBTable->tb.uses_alloca)
      framePointerReg = *(reinterpret_cast<char *>(p));
    else
      framePointerReg = 1; // default frame pointer == SP

    _LIBUNWIND_TRACE_UNWINDING(
        "framePointerReg=%d, framePointer=%p, "
        "stateTableOffset=%#lx\n",
        framePointerReg,
        reinterpret_cast<void *>(_registers.getRegister(framePointerReg)),
        stateTableOffset);
    lsda = _registers.getRegister(framePointerReg) + stateTableOffset;

    // Since the traceback table generated by the legacy XLC++ does not
    // provide the location of the personality for the state table,
    // function __xlcxx_personality_v0(), which is the personality for the state
    // table and is exported from libc++abi, is directly assigned as the
    // handler here. When a legacy XLC++ frame is encountered, the symbol
    // is resolved dynamically using dlopen() to avoid hard dependency from
    // libunwind on libc++abi.

    // Resolve the function pointer to the state table personality if it has
    // not already.
    if (xlcPersonalityV0 == NULL) {
      xlcPersonalityV0InitLock.lock();
      if (xlcPersonalityV0 == NULL) {
        // If libc++abi is statically linked in, symbol __xlcxx_personality_v0
        // has been resolved at the link time.
        xlcPersonalityV0 = &__xlcxx_personality_v0;
        if (xlcPersonalityV0 == NULL) {
          // libc++abi is dynamically linked. Resolve __xlcxx_personality_v0
          // using dlopen().
          const char libcxxabi[] = "libc++abi.a(libc++abi.so.1)";
          void *libHandle;
          // The AIX dlopen() sets errno to 0 when it is successful, which
          // clobbers the value of errno from the user code. This is an AIX
          // bug because according to POSIX it should not set errno to 0. To
          // workaround before AIX fixes the bug, errno is saved and restored.
          int saveErrno = errno;
          libHandle = dlopen(libcxxabi, RTLD_MEMBER | RTLD_NOW);
          if (libHandle == NULL) {
            _LIBUNWIND_TRACE_UNWINDING("dlopen() failed with errno=%d\n",
                                       errno);
            assert(0 && "dlopen() failed");
          }
          xlcPersonalityV0 = reinterpret_cast<__xlcxx_personality_v0_t *>(
              dlsym(libHandle, "__xlcxx_personality_v0"));
          if (xlcPersonalityV0 == NULL) {
            _LIBUNWIND_TRACE_UNWINDING("dlsym() failed with errno=%d\n", errno);
            assert(0 && "dlsym() failed");
          }
          dlclose(libHandle);
          errno = saveErrno;
        }
      }
      xlcPersonalityV0InitLock.unlock();
    }
    handler = reinterpret_cast<unw_word_t>(xlcPersonalityV0);
    _LIBUNWIND_TRACE_UNWINDING("State table: LSDA=%p, Personality=%p\n",
                               reinterpret_cast<void *>(lsda),
                               reinterpret_cast<void *>(handler));
  } else if (TBTable->tb.longtbtable) {
    // This frame has the traceback table extension. Possible cases are
    // 1) a C++ frame that has the 'eh_info' structure; 2) a C++ frame that
    // is not EH aware; or, 3) a frame of other languages. We need to figure out
    // if the traceback table extension contains the 'eh_info' structure.
    //
    // We also need to deal with the complexity arising from some XL compiler
    // versions use the wrong ordering of 'longtbtable' and 'has_vec' bits
    // where the 'longtbtable' bit is meant to be the 'has_vec' bit and vice
    // versa. For frames of code generated by those compilers, the 'longtbtable'
    // bit may be set but there isn't really a traceback table extension.
    //
    // In </usr/include/sys/debug.h>, there is the following definition of
    // 'struct tbtable_ext'. It is not really a structure but a dummy to
    // collect the description of optional parts of the traceback table.
    //
    // struct tbtable_ext {
    //   ...
    //   char alloca_reg;        /* Register for alloca automatic storage */
    //   struct vec_ext vec_ext; /* Vector extension (if has_vec is set) */
    //   unsigned char xtbtable; /* More tbtable fields, if longtbtable is set*/
    // };
    //
    // Depending on how the 'has_vec'/'longtbtable' bit is interpreted, the data
    // following 'alloca_reg' can be treated either as 'struct vec_ext' or
    // 'unsigned char xtbtable'. 'xtbtable' bits are defined in
    // </usr/include/sys/debug.h> as flags. The 7th bit '0x02' is currently
    // unused and should not be set. 'struct vec_ext' is defined in
    // </usr/include/sys/debug.h> as follows:
    //
    // struct vec_ext {
    //   unsigned vr_saved:6;      /* Number of non-volatile vector regs saved
    //   */
    //                             /* first register saved is assumed to be */
    //                             /* 32 - vr_saved                         */
    //   unsigned saves_vrsave:1;  /* Set if vrsave is saved on the stack */
    //   unsigned has_varargs:1;
    //   ...
    // };
    //
    // Here, the 7th bit is used as 'saves_vrsave'. To determine whether it
    // is 'struct vec_ext' or 'xtbtable' that follows 'alloca_reg',
    // we checks if the 7th bit is set or not because 'xtbtable' should
    // never have the 7th bit set. The 7th bit of 'xtbtable' will be reserved
    // in the future to make sure the mitigation works. This mitigation
    // is not 100% bullet proof because 'struct vec_ext' may not always have
    // 'saves_vrsave' bit set.
    //
    // 'reservedBit' is defined in enum 'xTBTableMask' above as the mask for
    // checking the 7th bit.

    // p points to field name len.
    uint8_t *charPtr = reinterpret_cast<uint8_t *>(p);

    // Skip fields name_len and name if they exist.
    if (TBTable->tb.name_present) {
      const uint16_t name_len = *(reinterpret_cast<uint16_t *>(charPtr));
      charPtr = charPtr + name_len + sizeof(uint16_t);
    }

    // Skip field alloc_reg if it exists.
    if (TBTable->tb.uses_alloca)
      ++charPtr;

    // Check traceback table bit has_vec. Skip struct vec_ext if it exists.
    if (TBTable->tb.has_vec)
      // Note struct vec_ext does exist at this point because whether the
      // ordering of longtbtable and has_vec bits is correct or not, both
      // are set.
      charPtr += sizeof(struct vec_ext);

    // charPtr points to field 'xtbtable'. Check if the EH info is available.
    // Also check if the reserved bit of the extended traceback table field
    // 'xtbtable' is set. If it is, the traceback table was incorrectly
    // generated by an XL compiler that uses the wrong ordering of 'longtbtable'
    // and 'has_vec' bits and this is in fact 'struct vec_ext'. So skip the
    // frame.
    if ((*charPtr & xTBTableMask::ehInfoBit) &&
        !(*charPtr & xTBTableMask::reservedBit)) {
      // Mark this frame has the new EH info.
      flags = frameType::frameWithEHInfo;

      // eh_info is available.
      charPtr++;
      // The pointer is 4-byte aligned.
      if (reinterpret_cast<uintptr_t>(charPtr) % 4)
        charPtr += 4 - reinterpret_cast<uintptr_t>(charPtr) % 4;
      uintptr_t *ehInfo =
          reinterpret_cast<uintptr_t *>(*(reinterpret_cast<uintptr_t *>(
              registers.getRegister(2) +
              *(reinterpret_cast<uintptr_t *>(charPtr)))));

      // ehInfo points to structure en_info. The first member is version.
      // Only version 0 is currently supported.
      assert(*(reinterpret_cast<uint32_t *>(ehInfo)) == 0 &&
             "libunwind: ehInfo version other than 0 is not supported");

      // Increment ehInfo to point to member lsda.
      ++ehInfo;
      lsda = *ehInfo++;

      // enInfo now points to member personality.
      handler = *ehInfo;

      _LIBUNWIND_TRACE_UNWINDING("Range table: LSDA=%#lx, Personality=%#lx\n",
                                 lsda, handler);
    }
  }

  _info.start_ip = start_ip;
  _info.end_ip = end_ip;
  _info.lsda = lsda;
  _info.handler = handler;
  _info.gp = 0;
  _info.flags = flags;
  _info.format = 0;
  _info.unwind_info = reinterpret_cast<unw_word_t>(TBTable);
  _info.unwind_info_size = 0;
  _info.extra = registers.getRegister(2);

  return true;
}

// Step back up the stack following the frame back link.
template <typename A, typename R>
int UnwindCursor<A, R>::stepWithTBTable(pint_t pc, tbtable *TBTable,
                                        R &registers, bool &isSignalFrame) {
  if (_LIBUNWIND_TRACING_UNWINDING) {
    char functionBuf[512];
    const char *functionName = functionBuf;
    unw_word_t offset;
    if (!getFunctionName(functionBuf, sizeof(functionBuf), &offset)) {
      functionName = ".anonymous.";
    }
    _LIBUNWIND_TRACE_UNWINDING(
        "%s: Look up traceback table of func=%s at %p, pc=%p, "
        "SP=%p, saves_lr=%d, stores_bc=%d",
        __func__, functionName, reinterpret_cast<void *>(TBTable),
        reinterpret_cast<void *>(pc),
        reinterpret_cast<void *>(registers.getSP()), TBTable->tb.saves_lr,
        TBTable->tb.stores_bc);
  }

#if defined(__powerpc64__)
  // Instruction to reload TOC register "ld r2,40(r1)"
  const uint32_t loadTOCRegInst = 0xe8410028;
  const int32_t unwPPCF0Index = UNW_PPC64_F0;
  const int32_t unwPPCV0Index = UNW_PPC64_V0;
#else
  // Instruction to reload TOC register "lwz r2,20(r1)"
  const uint32_t loadTOCRegInst = 0x80410014;
  const int32_t unwPPCF0Index = UNW_PPC_F0;
  const int32_t unwPPCV0Index = UNW_PPC_V0;
#endif

  // lastStack points to the stack frame of the next routine up.
  pint_t curStack = static_cast<pint_t>(registers.getSP());
  pint_t lastStack = *reinterpret_cast<pint_t *>(curStack);

  if (lastStack == 0)
    return UNW_STEP_END;

  R newRegisters = registers;

  // If backchain is not stored, use the current stack frame.
  if (!TBTable->tb.stores_bc)
    lastStack = curStack;

  // Return address is the address after call site instruction.
  pint_t returnAddress;

  if (isSignalFrame) {
    _LIBUNWIND_TRACE_UNWINDING("Possible signal handler frame: lastStack=%p",
                               reinterpret_cast<void *>(lastStack));

    sigcontext *sigContext = reinterpret_cast<sigcontext *>(
        reinterpret_cast<char *>(lastStack) + STKMINALIGN);
    returnAddress = sigContext->sc_jmpbuf.jmp_context.iar;

    bool useSTKMIN = false;
    if (returnAddress < 0x10000000) {
      // Try again using STKMIN.
      sigContext = reinterpret_cast<sigcontext *>(
          reinterpret_cast<char *>(lastStack) + STKMIN);
      returnAddress = sigContext->sc_jmpbuf.jmp_context.iar;
      if (returnAddress < 0x10000000) {
        _LIBUNWIND_TRACE_UNWINDING("Bad returnAddress=%p from sigcontext=%p",
                                   reinterpret_cast<void *>(returnAddress),
                                   reinterpret_cast<void *>(sigContext));
        return UNW_EBADFRAME;
      }
      useSTKMIN = true;
    }
    _LIBUNWIND_TRACE_UNWINDING("Returning from a signal handler %s: "
                               "sigContext=%p, returnAddress=%p. "
                               "Seems to be a valid address",
                               useSTKMIN ? "STKMIN" : "STKMINALIGN",
                               reinterpret_cast<void *>(sigContext),
                               reinterpret_cast<void *>(returnAddress));

    // Restore the condition register from sigcontext.
    newRegisters.setCR(sigContext->sc_jmpbuf.jmp_context.cr);

    // Save the LR in sigcontext for stepping up when the function that
    // raised the signal is a leaf function. This LR has the return address
    // to the caller of the leaf function.
    newRegisters.setLR(sigContext->sc_jmpbuf.jmp_context.lr);
    _LIBUNWIND_TRACE_UNWINDING(
        "Save LR=%p from sigcontext",
        reinterpret_cast<void *>(sigContext->sc_jmpbuf.jmp_context.lr));

    // Restore GPRs from sigcontext.
    for (int i = 0; i < 32; ++i)
      newRegisters.setRegister(i, sigContext->sc_jmpbuf.jmp_context.gpr[i]);

    // Restore FPRs from sigcontext.
    for (int i = 0; i < 32; ++i)
      newRegisters.setFloatRegister(i + unwPPCF0Index,
                                    sigContext->sc_jmpbuf.jmp_context.fpr[i]);

    // Restore vector registers if there is an associated extended context
    // structure.
    if (sigContext->sc_jmpbuf.jmp_context.msr & __EXTCTX) {
      ucontext_t *uContext = reinterpret_cast<ucontext_t *>(sigContext);
      if (uContext->__extctx->__extctx_magic == __EXTCTX_MAGIC) {
        for (int i = 0; i < 32; ++i)
          newRegisters.setVectorRegister(
              i + unwPPCV0Index, *(reinterpret_cast<v128 *>(
                                     &(uContext->__extctx->__vmx.__vr[i]))));
      }
    }
  } else {
    // Step up a normal frame.

    if (!TBTable->tb.saves_lr && registers.getLR()) {
      // This case should only occur if we were called from a signal handler
      // and the signal occurred in a function that doesn't save the LR.
      returnAddress = static_cast<pint_t>(registers.getLR());
      _LIBUNWIND_TRACE_UNWINDING("Use saved LR=%p",
                                 reinterpret_cast<void *>(returnAddress));
    } else {
      // Otherwise, use the LR value in the stack link area.
      returnAddress = reinterpret_cast<pint_t *>(lastStack)[2];
    }

    // Reset LR in the current context.
    newRegisters.setLR(NULL);

    _LIBUNWIND_TRACE_UNWINDING(
        "Extract info from lastStack=%p, returnAddress=%p",
        reinterpret_cast<void *>(lastStack),
        reinterpret_cast<void *>(returnAddress));
    _LIBUNWIND_TRACE_UNWINDING("fpr_regs=%d, gpr_regs=%d, saves_cr=%d",
                               TBTable->tb.fpr_saved, TBTable->tb.gpr_saved,
                               TBTable->tb.saves_cr);

    // Restore FP registers.
    char *ptrToRegs = reinterpret_cast<char *>(lastStack);
    double *FPRegs = reinterpret_cast<double *>(
        ptrToRegs - (TBTable->tb.fpr_saved * sizeof(double)));
    for (int i = 0; i < TBTable->tb.fpr_saved; ++i)
      newRegisters.setFloatRegister(
          32 - TBTable->tb.fpr_saved + i + unwPPCF0Index, FPRegs[i]);

    // Restore GP registers.
    ptrToRegs = reinterpret_cast<char *>(FPRegs);
    uintptr_t *GPRegs = reinterpret_cast<uintptr_t *>(
        ptrToRegs - (TBTable->tb.gpr_saved * sizeof(uintptr_t)));
    for (int i = 0; i < TBTable->tb.gpr_saved; ++i)
      newRegisters.setRegister(32 - TBTable->tb.gpr_saved + i, GPRegs[i]);

    // Restore Vector registers.
    ptrToRegs = reinterpret_cast<char *>(GPRegs);

    // Restore vector registers only if this is a Clang frame. Also
    // check if traceback table bit has_vec is set. If it is, structure
    // vec_ext is available.
    if (_info.flags == frameType::frameWithEHInfo && TBTable->tb.has_vec) {

      // Get to the vec_ext structure to check if vector registers are saved.
      uint32_t *p = reinterpret_cast<uint32_t *>(&TBTable->tb_ext);

      // Skip field parminfo if exists.
      if (TBTable->tb.fixedparms || TBTable->tb.floatparms)
        ++p;

      // Skip field tb_offset if exists.
      if (TBTable->tb.has_tboff)
        ++p;

      // Skip field hand_mask if exists.
      if (TBTable->tb.int_hndl)
        ++p;

      // Skip fields ctl_info and ctl_info_disp if exist.
      if (TBTable->tb.has_ctl) {
        // Skip field ctl_info.
        ++p;
        // Skip field ctl_info_disp.
        ++p;
      }

      // Skip fields name_len and name if exist.
      // p is supposed to point to field name_len now.
      uint8_t *charPtr = reinterpret_cast<uint8_t *>(p);
      if (TBTable->tb.name_present) {
        const uint16_t name_len = *(reinterpret_cast<uint16_t *>(charPtr));
        charPtr = charPtr + name_len + sizeof(uint16_t);
      }

      // Skip field alloc_reg if it exists.
      if (TBTable->tb.uses_alloca)
        ++charPtr;

      struct vec_ext *vec_ext = reinterpret_cast<struct vec_ext *>(charPtr);

      _LIBUNWIND_TRACE_UNWINDING("vr_saved=%d", vec_ext->vr_saved);

      // Restore vector register(s) if saved on the stack.
      if (vec_ext->vr_saved) {
        // Saved vector registers are 16-byte aligned.
        if (reinterpret_cast<uintptr_t>(ptrToRegs) % 16)
          ptrToRegs -= reinterpret_cast<uintptr_t>(ptrToRegs) % 16;
        v128 *VecRegs = reinterpret_cast<v128 *>(ptrToRegs - vec_ext->vr_saved *
                                                                 sizeof(v128));
        for (int i = 0; i < vec_ext->vr_saved; ++i) {
          newRegisters.setVectorRegister(
              32 - vec_ext->vr_saved + i + unwPPCV0Index, VecRegs[i]);
        }
      }
    }
    if (TBTable->tb.saves_cr) {
      // Get the saved condition register. The condition register is only
      // a single word.
      newRegisters.setCR(
          *(reinterpret_cast<uint32_t *>(lastStack + sizeof(uintptr_t))));
    }

    // Restore the SP.
    newRegisters.setSP(lastStack);

    // The first instruction after return.
    uint32_t firstInstruction = *(reinterpret_cast<uint32_t *>(returnAddress));

    // Do we need to set the TOC register?
    _LIBUNWIND_TRACE_UNWINDING(
        "Current gpr2=%p",
        reinterpret_cast<void *>(newRegisters.getRegister(2)));
    if (firstInstruction == loadTOCRegInst) {
      _LIBUNWIND_TRACE_UNWINDING(
          "Set gpr2=%p from frame",
          reinterpret_cast<void *>(reinterpret_cast<pint_t *>(lastStack)[5]));
      newRegisters.setRegister(2, reinterpret_cast<pint_t *>(lastStack)[5]);
    }
  }
  _LIBUNWIND_TRACE_UNWINDING("lastStack=%p, returnAddress=%p, pc=%p\n",
                             reinterpret_cast<void *>(lastStack),
                             reinterpret_cast<void *>(returnAddress),
                             reinterpret_cast<void *>(pc));

  // The return address is the address after call site instruction, so
  // setting IP to that simulates a return.
  newRegisters.setIP(reinterpret_cast<uintptr_t>(returnAddress));

  // Simulate the step by replacing the register set with the new ones.
  registers = newRegisters;

  // Check if the next frame is a signal frame.
  pint_t nextStack = *(reinterpret_cast<pint_t *>(registers.getSP()));

  // Return address is the address after call site instruction.
  pint_t nextReturnAddress = reinterpret_cast<pint_t *>(nextStack)[2];

  if (nextReturnAddress > 0x01 && nextReturnAddress < 0x10000) {
    _LIBUNWIND_TRACE_UNWINDING("The next is a signal handler frame: "
                               "nextStack=%p, next return address=%p\n",
                               reinterpret_cast<void *>(nextStack),
                               reinterpret_cast<void *>(nextReturnAddress));
    isSignalFrame = true;
  } else {
    isSignalFrame = false;
  }
  return UNW_STEP_SUCCESS;
}
#endif // defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)

template <typename A, typename R>
void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) {
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
  _isSigReturn = false;
#endif

  pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
#if defined(_LIBUNWIND_ARM_EHABI)
  // Remove the thumb bit so the IP represents the actual instruction address.
  // This matches the behaviour of _Unwind_GetIP on arm.
  pc &= (pint_t)~0x1;
#endif

  // Exit early if at the top of the stack.
  if (pc == 0) {
    _unwindInfoMissing = true;
    return;
  }

  // If the last line of a function is a "throw" the compiler sometimes
  // emits no instructions after the call to __cxa_throw.  This means
  // the return address is actually the start of the next function.
  // To disambiguate this, back up the pc when we know it is a return
  // address.
  if (isReturnAddress)
#if defined(_AIX)
    // PC needs to be a 4-byte aligned address to be able to look for a
    // word of 0 that indicates the start of the traceback table at the end
    // of a function on AIX.
    pc -= 4;
#else
    --pc;
#endif

  // Ask address space object to find unwind sections for this pc.
  UnwindInfoSections sects;
  if (_addressSpace.findUnwindSections(pc, sects)) {
#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
    // If there is a compact unwind encoding table, look there first.
    if (sects.compact_unwind_section != 0) {
      if (this->getInfoFromCompactEncodingSection(pc, sects)) {
  #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
        // Found info in table, done unless encoding says to use dwarf.
        uint32_t dwarfOffset;
        if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) {
          if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) {
            // found info in dwarf, done
            return;
          }
        }
  #endif
        // If unwind table has entry, but entry says there is no unwind info,
        // record that we have no unwind info.
        if (_info.format == 0)
          _unwindInfoMissing = true;
        return;
      }
    }
#endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)

#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
    // If there is SEH unwind info, look there next.
    if (this->getInfoFromSEH(pc))
      return;
#endif

#if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
    // If there is unwind info in the traceback table, look there next.
    if (this->getInfoFromTBTable(pc, _registers))
      return;
#endif

#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
    // If there is dwarf unwind info, look there next.
    if (sects.dwarf_section != 0) {
      if (this->getInfoFromDwarfSection(pc, sects)) {
        // found info in dwarf, done
        return;
      }
    }
#endif

#if defined(_LIBUNWIND_ARM_EHABI)
    // If there is ARM EHABI unwind info, look there next.
    if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects))
      return;
#endif
  }

#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
  // There is no static unwind info for this pc. Look to see if an FDE was
  // dynamically registered for it.
  pint_t cachedFDE = DwarfFDECache<A>::findFDE(DwarfFDECache<A>::kSearchAll,
                                               pc);
  if (cachedFDE != 0) {
    typename CFI_Parser<A>::FDE_Info fdeInfo;
    typename CFI_Parser<A>::CIE_Info cieInfo;
    if (!CFI_Parser<A>::decodeFDE(_addressSpace, cachedFDE, &fdeInfo, &cieInfo))
      if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, 0))
        return;
  }

  // Lastly, ask AddressSpace object about platform specific ways to locate
  // other FDEs.
  pint_t fde;
  if (_addressSpace.findOtherFDE(pc, fde)) {
    typename CFI_Parser<A>::FDE_Info fdeInfo;
    typename CFI_Parser<A>::CIE_Info cieInfo;
    if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) {
      // Double check this FDE is for a function that includes the pc.
      if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd))
        if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, 0))
          return;
    }
  }
#endif // #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)

#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
  if (setInfoForSigReturn())
    return;
#endif

  // no unwind info, flag that we can't reliably unwind
  _unwindInfoMissing = true;
}

#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&                               \
    defined(_LIBUNWIND_TARGET_AARCH64)
template <typename A, typename R>
bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_arm64 &) {
  // Look for the sigreturn trampoline. The trampoline's body is two
  // specific instructions (see below). Typically the trampoline comes from the
  // vDSO[1] (i.e. the __kernel_rt_sigreturn function). A libc might provide its
  // own restorer function, though, or user-mode QEMU might write a trampoline
  // onto the stack.
  //
  // This special code path is a fallback that is only used if the trampoline
  // lacks proper (e.g. DWARF) unwind info. On AArch64, a new DWARF register
  // constant for the PC needs to be defined before DWARF can handle a signal
  // trampoline. This code may segfault if the target PC is unreadable, e.g.:
  //  - The PC points at a function compiled without unwind info, and which is
  //    part of an execute-only mapping (e.g. using -Wl,--execute-only).
  //  - The PC is invalid and happens to point to unreadable or unmapped memory.
  //
  // [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/vdso/sigreturn.S
  const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
  // The PC might contain an invalid address if the unwind info is bad, so
  // directly accessing it could cause a SIGSEGV.
  if (!isReadableAddr(pc))
    return false;
  auto *instructions = reinterpret_cast<const uint32_t *>(pc);
  // Look for instructions: mov x8, #0x8b; svc #0x0
  if (instructions[0] != 0xd2801168 || instructions[1] != 0xd4000001)
    return false;

  _info = {};
  _info.start_ip = pc;
  _info.end_ip = pc + 4;
  _isSigReturn = true;
  return true;
}

template <typename A, typename R>
int UnwindCursor<A, R>::stepThroughSigReturn(Registers_arm64 &) {
  // In the signal trampoline frame, sp points to an rt_sigframe[1], which is:
  //  - 128-byte siginfo struct
  //  - ucontext struct:
  //     - 8-byte long (uc_flags)
  //     - 8-byte pointer (uc_link)
  //     - 24-byte stack_t
  //     - 128-byte signal set
  //     - 8 bytes of padding because sigcontext has 16-byte alignment
  //     - sigcontext/mcontext_t
  // [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/signal.c
  const pint_t kOffsetSpToSigcontext = (128 + 8 + 8 + 24 + 128 + 8); // 304

  // Offsets from sigcontext to each register.
  const pint_t kOffsetGprs = 8; // offset to "__u64 regs[31]" field
  const pint_t kOffsetSp = 256; // offset to "__u64 sp" field
  const pint_t kOffsetPc = 264; // offset to "__u64 pc" field

  pint_t sigctx = _registers.getSP() + kOffsetSpToSigcontext;

  for (int i = 0; i <= 30; ++i) {
    uint64_t value = _addressSpace.get64(sigctx + kOffsetGprs +
                                         static_cast<pint_t>(i * 8));
    _registers.setRegister(UNW_AARCH64_X0 + i, value);
  }
  _registers.setSP(_addressSpace.get64(sigctx + kOffsetSp));
  _registers.setIP(_addressSpace.get64(sigctx + kOffsetPc));
  _isSignalFrame = true;
  return UNW_STEP_SUCCESS;
}
#endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&
       // defined(_LIBUNWIND_TARGET_AARCH64)

#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&                               \
    defined(_LIBUNWIND_TARGET_RISCV)
template <typename A, typename R>
bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_riscv &) {
  const pint_t pc = static_cast<pint_t>(getReg(UNW_REG_IP));
  // The PC might contain an invalid address if the unwind info is bad, so
  // directly accessing it could cause a SIGSEGV.
  if (!isReadableAddr(pc))
    return false;
  const auto *instructions = reinterpret_cast<const uint32_t *>(pc);
  // Look for the two instructions used in the sigreturn trampoline
  // __vdso_rt_sigreturn:
  //
  // 0x08b00893 li a7,0x8b
  // 0x00000073 ecall
  if (instructions[0] != 0x08b00893 || instructions[1] != 0x00000073)
    return false;

  _info = {};
  _info.start_ip = pc;
  _info.end_ip = pc + 4;
  _isSigReturn = true;
  return true;
}

template <typename A, typename R>
int UnwindCursor<A, R>::stepThroughSigReturn(Registers_riscv &) {
  // In the signal trampoline frame, sp points to an rt_sigframe[1], which is:
  //  - 128-byte siginfo struct
  //  - ucontext_t struct:
  //     - 8-byte long (__uc_flags)
  //     - 8-byte pointer (*uc_link)
  //     - 24-byte uc_stack
  //     - 8-byte uc_sigmask
  //     - 120-byte of padding to allow sigset_t to be expanded in the future
  //     - 8 bytes of padding because sigcontext has 16-byte alignment
  //     - struct sigcontext uc_mcontext
  // [1]
  // https://github.com/torvalds/linux/blob/master/arch/riscv/kernel/signal.c
  const pint_t kOffsetSpToSigcontext = 128 + 8 + 8 + 24 + 8 + 128;

  const pint_t sigctx = _registers.getSP() + kOffsetSpToSigcontext;
  _registers.setIP(_addressSpace.get64(sigctx));
  for (int i = UNW_RISCV_X1; i <= UNW_RISCV_X31; ++i) {
    uint64_t value = _addressSpace.get64(sigctx + static_cast<pint_t>(i * 8));
    _registers.setRegister(i, value);
  }
  _isSignalFrame = true;
  return UNW_STEP_SUCCESS;
}
#endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&
       // defined(_LIBUNWIND_TARGET_RISCV)

#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&                               \
    defined(_LIBUNWIND_TARGET_S390X)
template <typename A, typename R>
bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_s390x &) {
  // Look for the sigreturn trampoline. The trampoline's body is a
  // specific instruction (see below). Typically the trampoline comes from the
  // vDSO (i.e. the __kernel_[rt_]sigreturn function). A libc might provide its
  // own restorer function, though, or user-mode QEMU might write a trampoline
  // onto the stack.
  const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
  // The PC might contain an invalid address if the unwind info is bad, so
  // directly accessing it could cause a SIGSEGV.
  if (!isReadableAddr(pc))
    return false;
  const auto inst = *reinterpret_cast<const uint16_t *>(pc);
  if (inst == 0x0a77 || inst == 0x0aad) {
    _info = {};
    _info.start_ip = pc;
    _info.end_ip = pc + 2;
    _isSigReturn = true;
    return true;
  }
  return false;
}

template <typename A, typename R>
int UnwindCursor<A, R>::stepThroughSigReturn(Registers_s390x &) {
  // Determine current SP.
  const pint_t sp = static_cast<pint_t>(this->getReg(UNW_REG_SP));
  // According to the s390x ABI, the CFA is at (incoming) SP + 160.
  const pint_t cfa = sp + 160;

  // Determine current PC and instruction there (this must be either
  // a "svc __NR_sigreturn" or "svc __NR_rt_sigreturn").
  const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
  const uint16_t inst = _addressSpace.get16(pc);

  // Find the addresses of the signo and sigcontext in the frame.
  pint_t pSigctx = 0;
  pint_t pSigno = 0;

  // "svc __NR_sigreturn" uses a non-RT signal trampoline frame.
  if (inst == 0x0a77) {
    // Layout of a non-RT signal trampoline frame, starting at the CFA:
    //  - 8-byte signal mask
    //  - 8-byte pointer to sigcontext, followed by signo
    //  - 4-byte signo
    pSigctx = _addressSpace.get64(cfa + 8);
    pSigno = pSigctx + 344;
  }

  // "svc __NR_rt_sigreturn" uses a RT signal trampoline frame.
  if (inst == 0x0aad) {
    // Layout of a RT signal trampoline frame, starting at the CFA:
    //  - 8-byte retcode (+ alignment)
    //  - 128-byte siginfo struct (starts with signo)
    //  - ucontext struct:
    //     - 8-byte long (uc_flags)
    //     - 8-byte pointer (uc_link)
    //     - 24-byte stack_t
    //     - 8 bytes of padding because sigcontext has 16-byte alignment
    //     - sigcontext/mcontext_t
    pSigctx = cfa + 8 + 128 + 8 + 8 + 24 + 8;
    pSigno = cfa + 8;
  }

  assert(pSigctx != 0);
  assert(pSigno != 0);

  // Offsets from sigcontext to each register.
  const pint_t kOffsetPc = 8;
  const pint_t kOffsetGprs = 16;
  const pint_t kOffsetFprs = 216;

  // Restore all registers.
  for (int i = 0; i < 16; ++i) {
    uint64_t value = _addressSpace.get64(pSigctx + kOffsetGprs +
                                         static_cast<pint_t>(i * 8));
    _registers.setRegister(UNW_S390X_R0 + i, value);
  }
  for (int i = 0; i < 16; ++i) {
    static const int fpr[16] = {
      UNW_S390X_F0, UNW_S390X_F1, UNW_S390X_F2, UNW_S390X_F3,
      UNW_S390X_F4, UNW_S390X_F5, UNW_S390X_F6, UNW_S390X_F7,
      UNW_S390X_F8, UNW_S390X_F9, UNW_S390X_F10, UNW_S390X_F11,
      UNW_S390X_F12, UNW_S390X_F13, UNW_S390X_F14, UNW_S390X_F15
    };
    double value = _addressSpace.getDouble(pSigctx + kOffsetFprs +
                                           static_cast<pint_t>(i * 8));
    _registers.setFloatRegister(fpr[i], value);
  }
  _registers.setIP(_addressSpace.get64(pSigctx + kOffsetPc));

  // SIGILL, SIGFPE and SIGTRAP are delivered with psw_addr
  // after the faulting instruction rather than before it.
  // Do not set _isSignalFrame in that case.
  uint32_t signo = _addressSpace.get32(pSigno);
  _isSignalFrame = (signo != 4 && signo != 5 && signo != 8);

  return UNW_STEP_SUCCESS;
}
#endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&
       // defined(_LIBUNWIND_TARGET_S390X)

template <typename A, typename R> int UnwindCursor<A, R>::step(bool stage2) {
  (void)stage2;
  // Bottom of stack is defined is when unwind info cannot be found.
  if (_unwindInfoMissing)
    return UNW_STEP_END;

  // Use unwinding info to modify register set as if function returned.
  int result;
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
  if (_isSigReturn) {
    result = this->stepThroughSigReturn();
  } else
#endif
  {
#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
    result = this->stepWithCompactEncoding(stage2);
#elif defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
    result = this->stepWithSEHData();
#elif defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
    result = this->stepWithTBTableData();
#elif defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
    result = this->stepWithDwarfFDE(stage2);
#elif defined(_LIBUNWIND_ARM_EHABI)
    result = this->stepWithEHABI();
#else
  #error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \
              _LIBUNWIND_SUPPORT_SEH_UNWIND or \
              _LIBUNWIND_SUPPORT_DWARF_UNWIND or \
              _LIBUNWIND_ARM_EHABI
#endif
  }

  // update info based on new PC
  if (result == UNW_STEP_SUCCESS) {
    this->setInfoBasedOnIPRegister(true);
    if (_unwindInfoMissing)
      return UNW_STEP_END;
  }

  return result;
}

template <typename A, typename R>
void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) {
  if (_unwindInfoMissing)
    memset(info, 0, sizeof(*info));
  else
    *info = _info;
}

template <typename A, typename R>
bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen,
                                                           unw_word_t *offset) {
  return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP),
                                         buf, bufLen, offset);
}

#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
template <typename A, typename R>
bool UnwindCursor<A, R>::isReadableAddr(const pint_t addr) const {
  // We use SYS_rt_sigprocmask, inspired by Abseil's AddressIsReadable.

  const auto sigsetAddr = reinterpret_cast<sigset_t *>(addr);
  // We have to check that addr is nullptr because sigprocmask allows that
  // as an argument without failure.
  if (!sigsetAddr)
    return false;
  const auto saveErrno = errno;
  // We MUST use a raw syscall here, as wrappers may try to access
  // sigsetAddr which may cause a SIGSEGV. A raw syscall however is
  // safe. Additionally, we need to pass the kernel_sigset_size, which is
  // different from libc sizeof(sigset_t). For the majority of architectures,
  // it's 64 bits (_NSIG), and libc NSIG is _NSIG + 1.
  const auto kernelSigsetSize = NSIG / 8;
  [[maybe_unused]] const int Result = syscall(
      SYS_rt_sigprocmask, /*how=*/~0, sigsetAddr, nullptr, kernelSigsetSize);
  // Because our "how" is invalid, this syscall should always fail, and our
  // errno should always be EINVAL or an EFAULT. This relies on the Linux
  // kernel to check copy_from_user before checking if the "how" argument is
  // invalid.
  assert(Result == -1);
  assert(errno == EFAULT || errno == EINVAL);
  const auto readable = errno != EFAULT;
  errno = saveErrno;
  return readable;
}
#endif

#if defined(_LIBUNWIND_USE_CET)
extern "C" void *__libunwind_cet_get_registers(unw_cursor_t *cursor) {
  AbstractUnwindCursor *co = (AbstractUnwindCursor *)cursor;
  return co->get_registers();
}
#endif
} // namespace libunwind

#endif // __UNWINDCURSOR_HPP__