1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
|
/*-------------------------------------------------------------------------
*
* pg_crc32c.h
* Routines for computing CRC-32C checksums.
*
* The speed of CRC-32C calculation has a big impact on performance, so we
* jump through some hoops to get the best implementation for each
* platform. Some CPU architectures have special instructions for speeding
* up CRC calculations (e.g. Intel SSE 4.2), on other platforms we use the
* Slicing-by-8 algorithm which uses lookup tables.
*
* The public interface consists of four macros:
*
* INIT_CRC32C(crc)
* Initialize a CRC accumulator
*
* COMP_CRC32C(crc, data, len)
* Accumulate some (more) bytes into a CRC
*
* FIN_CRC32C(crc)
* Finish a CRC calculation
*
* EQ_CRC32C(c1, c2)
* Check for equality of two CRCs.
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/include/port/pg_crc32c.h
*
*-------------------------------------------------------------------------
*/
#ifndef PG_CRC32C_H
#define PG_CRC32C_H
#include "port/pg_bswap.h"
typedef uint32 pg_crc32c;
/* The INIT and EQ macros are the same for all implementations. */
#define INIT_CRC32C(crc) ((crc) = 0xFFFFFFFF)
#define EQ_CRC32C(c1, c2) ((c1) == (c2))
#if defined(USE_SSE42_CRC32C)
/* Use Intel SSE4.2 instructions. */
#define COMP_CRC32C(crc, data, len) \
((crc) = pg_comp_crc32c_sse42((crc), (data), (len)))
#define FIN_CRC32C(crc) ((crc) ^= 0xFFFFFFFF)
extern pg_crc32c pg_comp_crc32c_sse42(pg_crc32c crc, const void *data, size_t len);
#elif defined(USE_ARMV8_CRC32C)
/* Use ARMv8 CRC Extension instructions. */
#define COMP_CRC32C(crc, data, len) \
((crc) = pg_comp_crc32c_armv8((crc), (data), (len)))
#define FIN_CRC32C(crc) ((crc) ^= 0xFFFFFFFF)
extern pg_crc32c pg_comp_crc32c_armv8(pg_crc32c crc, const void *data, size_t len);
#elif defined(USE_SSE42_CRC32C_WITH_RUNTIME_CHECK) || defined(USE_ARMV8_CRC32C_WITH_RUNTIME_CHECK)
/*
* Use Intel SSE 4.2 or ARMv8 instructions, but perform a runtime check first
* to check that they are available.
*/
#define COMP_CRC32C(crc, data, len) \
((crc) = pg_comp_crc32c((crc), (data), (len)))
#define FIN_CRC32C(crc) ((crc) ^= 0xFFFFFFFF)
extern pg_crc32c pg_comp_crc32c_sb8(pg_crc32c crc, const void *data, size_t len);
extern pg_crc32c (*pg_comp_crc32c) (pg_crc32c crc, const void *data, size_t len);
#ifdef USE_SSE42_CRC32C_WITH_RUNTIME_CHECK
extern pg_crc32c pg_comp_crc32c_sse42(pg_crc32c crc, const void *data, size_t len);
#endif
#ifdef USE_ARMV8_CRC32C_WITH_RUNTIME_CHECK
extern pg_crc32c pg_comp_crc32c_armv8(pg_crc32c crc, const void *data, size_t len);
#endif
#else
/*
* Use slicing-by-8 algorithm.
*
* On big-endian systems, the intermediate value is kept in reverse byte
* order, to avoid byte-swapping during the calculation. FIN_CRC32C reverses
* the bytes to the final order.
*/
#define COMP_CRC32C(crc, data, len) \
((crc) = pg_comp_crc32c_sb8((crc), (data), (len)))
#ifdef WORDS_BIGENDIAN
#define FIN_CRC32C(crc) ((crc) = pg_bswap32(crc) ^ 0xFFFFFFFF)
#else
#define FIN_CRC32C(crc) ((crc) ^= 0xFFFFFFFF)
#endif
extern pg_crc32c pg_comp_crc32c_sb8(pg_crc32c crc, const void *data, size_t len);
#endif
#endif /* PG_CRC32C_H */
|