1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
|
/*-------------------------------------------------------------------------
* scram-common.c
* Shared frontend/backend code for SCRAM authentication
*
* This contains the common low-level functions needed in both frontend and
* backend, for implement the Salted Challenge Response Authentication
* Mechanism (SCRAM), per IETF's RFC 5802.
*
* Portions Copyright (c) 2017-2023, PostgreSQL Global Development Group
*
* IDENTIFICATION
* src/common/scram-common.c
*
*-------------------------------------------------------------------------
*/
#ifndef FRONTEND
#include "postgres.h"
#else
#include "postgres_fe.h"
#endif
#include "common/base64.h"
#include "common/hmac.h"
#include "common/scram-common.h"
#include "port/pg_bswap.h"
/*
* Calculate SaltedPassword.
*
* The password should already be normalized by SASLprep. Returns 0 on
* success, -1 on failure with *errstr pointing to a message about the
* error details.
*/
int
scram_SaltedPassword(const char *password,
pg_cryptohash_type hash_type, int key_length,
const char *salt, int saltlen, int iterations,
uint8 *result, const char **errstr)
{
int password_len = strlen(password);
uint32 one = pg_hton32(1);
int i,
j;
uint8 Ui[SCRAM_MAX_KEY_LEN];
uint8 Ui_prev[SCRAM_MAX_KEY_LEN];
pg_hmac_ctx *hmac_ctx = pg_hmac_create(hash_type);
if (hmac_ctx == NULL)
{
*errstr = pg_hmac_error(NULL); /* returns OOM */
return -1;
}
/*
* Iterate hash calculation of HMAC entry using given salt. This is
* essentially PBKDF2 (see RFC2898) with HMAC() as the pseudorandom
* function.
*/
/* First iteration */
if (pg_hmac_init(hmac_ctx, (uint8 *) password, password_len) < 0 ||
pg_hmac_update(hmac_ctx, (uint8 *) salt, saltlen) < 0 ||
pg_hmac_update(hmac_ctx, (uint8 *) &one, sizeof(uint32)) < 0 ||
pg_hmac_final(hmac_ctx, Ui_prev, key_length) < 0)
{
*errstr = pg_hmac_error(hmac_ctx);
pg_hmac_free(hmac_ctx);
return -1;
}
memcpy(result, Ui_prev, key_length);
/* Subsequent iterations */
for (i = 2; i <= iterations; i++)
{
if (pg_hmac_init(hmac_ctx, (uint8 *) password, password_len) < 0 ||
pg_hmac_update(hmac_ctx, (uint8 *) Ui_prev, key_length) < 0 ||
pg_hmac_final(hmac_ctx, Ui, key_length) < 0)
{
*errstr = pg_hmac_error(hmac_ctx);
pg_hmac_free(hmac_ctx);
return -1;
}
for (j = 0; j < key_length; j++)
result[j] ^= Ui[j];
memcpy(Ui_prev, Ui, key_length);
}
pg_hmac_free(hmac_ctx);
return 0;
}
/*
* Calculate hash for a NULL-terminated string. (The NULL terminator is
* not included in the hash). Returns 0 on success, -1 on failure with *errstr
* pointing to a message about the error details.
*/
int
scram_H(const uint8 *input, pg_cryptohash_type hash_type, int key_length,
uint8 *result, const char **errstr)
{
pg_cryptohash_ctx *ctx;
ctx = pg_cryptohash_create(hash_type);
if (ctx == NULL)
{
*errstr = pg_cryptohash_error(NULL); /* returns OOM */
return -1;
}
if (pg_cryptohash_init(ctx) < 0 ||
pg_cryptohash_update(ctx, input, key_length) < 0 ||
pg_cryptohash_final(ctx, result, key_length) < 0)
{
*errstr = pg_cryptohash_error(ctx);
pg_cryptohash_free(ctx);
return -1;
}
pg_cryptohash_free(ctx);
return 0;
}
/*
* Calculate ClientKey. Returns 0 on success, -1 on failure with *errstr
* pointing to a message about the error details.
*/
int
scram_ClientKey(const uint8 *salted_password,
pg_cryptohash_type hash_type, int key_length,
uint8 *result, const char **errstr)
{
pg_hmac_ctx *ctx = pg_hmac_create(hash_type);
if (ctx == NULL)
{
*errstr = pg_hmac_error(NULL); /* returns OOM */
return -1;
}
if (pg_hmac_init(ctx, salted_password, key_length) < 0 ||
pg_hmac_update(ctx, (uint8 *) "Client Key", strlen("Client Key")) < 0 ||
pg_hmac_final(ctx, result, key_length) < 0)
{
*errstr = pg_hmac_error(ctx);
pg_hmac_free(ctx);
return -1;
}
pg_hmac_free(ctx);
return 0;
}
/*
* Calculate ServerKey. Returns 0 on success, -1 on failure with *errstr
* pointing to a message about the error details.
*/
int
scram_ServerKey(const uint8 *salted_password,
pg_cryptohash_type hash_type, int key_length,
uint8 *result, const char **errstr)
{
pg_hmac_ctx *ctx = pg_hmac_create(hash_type);
if (ctx == NULL)
{
*errstr = pg_hmac_error(NULL); /* returns OOM */
return -1;
}
if (pg_hmac_init(ctx, salted_password, key_length) < 0 ||
pg_hmac_update(ctx, (uint8 *) "Server Key", strlen("Server Key")) < 0 ||
pg_hmac_final(ctx, result, key_length) < 0)
{
*errstr = pg_hmac_error(ctx);
pg_hmac_free(ctx);
return -1;
}
pg_hmac_free(ctx);
return 0;
}
/*
* Construct a SCRAM secret, for storing in pg_authid.rolpassword.
*
* The password should already have been processed with SASLprep, if necessary!
*
* If iterations is 0, default number of iterations is used. The result is
* palloc'd or malloc'd, so caller is responsible for freeing it.
*
* On error, returns NULL and sets *errstr to point to a message about the
* error details.
*/
char *
scram_build_secret(pg_cryptohash_type hash_type, int key_length,
const char *salt, int saltlen, int iterations,
const char *password, const char **errstr)
{
uint8 salted_password[SCRAM_MAX_KEY_LEN];
uint8 stored_key[SCRAM_MAX_KEY_LEN];
uint8 server_key[SCRAM_MAX_KEY_LEN];
char *result;
char *p;
int maxlen;
int encoded_salt_len;
int encoded_stored_len;
int encoded_server_len;
int encoded_result;
/* Only this hash method is supported currently */
Assert(hash_type == PG_SHA256);
Assert(iterations > 0);
/* Calculate StoredKey and ServerKey */
if (scram_SaltedPassword(password, hash_type, key_length,
salt, saltlen, iterations,
salted_password, errstr) < 0 ||
scram_ClientKey(salted_password, hash_type, key_length,
stored_key, errstr) < 0 ||
scram_H(stored_key, hash_type, key_length,
stored_key, errstr) < 0 ||
scram_ServerKey(salted_password, hash_type, key_length,
server_key, errstr) < 0)
{
/* errstr is filled already here */
#ifdef FRONTEND
return NULL;
#else
elog(ERROR, "could not calculate stored key and server key: %s",
*errstr);
#endif
}
/*----------
* The format is:
* SCRAM-SHA-256$<iteration count>:<salt>$<StoredKey>:<ServerKey>
*----------
*/
encoded_salt_len = pg_b64_enc_len(saltlen);
encoded_stored_len = pg_b64_enc_len(key_length);
encoded_server_len = pg_b64_enc_len(key_length);
maxlen = strlen("SCRAM-SHA-256") + 1
+ 10 + 1 /* iteration count */
+ encoded_salt_len + 1 /* Base64-encoded salt */
+ encoded_stored_len + 1 /* Base64-encoded StoredKey */
+ encoded_server_len + 1; /* Base64-encoded ServerKey */
#ifdef FRONTEND
result = malloc(maxlen);
if (!result)
{
*errstr = _("out of memory");
return NULL;
}
#else
result = palloc(maxlen);
#endif
p = result + sprintf(result, "SCRAM-SHA-256$%d:", iterations);
/* salt */
encoded_result = pg_b64_encode(salt, saltlen, p, encoded_salt_len);
if (encoded_result < 0)
{
*errstr = _("could not encode salt");
#ifdef FRONTEND
free(result);
return NULL;
#else
elog(ERROR, "%s", *errstr);
#endif
}
p += encoded_result;
*(p++) = '$';
/* stored key */
encoded_result = pg_b64_encode((char *) stored_key, key_length, p,
encoded_stored_len);
if (encoded_result < 0)
{
*errstr = _("could not encode stored key");
#ifdef FRONTEND
free(result);
return NULL;
#else
elog(ERROR, "%s", *errstr);
#endif
}
p += encoded_result;
*(p++) = ':';
/* server key */
encoded_result = pg_b64_encode((char *) server_key, key_length, p,
encoded_server_len);
if (encoded_result < 0)
{
*errstr = _("could not encode server key");
#ifdef FRONTEND
free(result);
return NULL;
#else
elog(ERROR, "%s", *errstr);
#endif
}
p += encoded_result;
*(p++) = '\0';
Assert(p - result <= maxlen);
return result;
}
|