1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
|
/*---------------------------------------------------------------------------
*
* Ryu floating-point output for double precision.
*
* Portions Copyright (c) 2018-2023, PostgreSQL Global Development Group
*
* IDENTIFICATION
* src/common/d2s.c
*
* This is a modification of code taken from github.com/ulfjack/ryu under the
* terms of the Boost license (not the Apache license). The original copyright
* notice follows:
*
* Copyright 2018 Ulf Adams
*
* The contents of this file may be used under the terms of the Apache
* License, Version 2.0.
*
* (See accompanying file LICENSE-Apache or copy at
* http://www.apache.org/licenses/LICENSE-2.0)
*
* Alternatively, the contents of this file may be used under the terms of the
* Boost Software License, Version 1.0.
*
* (See accompanying file LICENSE-Boost or copy at
* https://www.boost.org/LICENSE_1_0.txt)
*
* Unless required by applicable law or agreed to in writing, this software is
* distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied.
*
*---------------------------------------------------------------------------
*/
/*
* Runtime compiler options:
*
* -DRYU_ONLY_64_BIT_OPS Avoid using uint128 or 64-bit intrinsics. Slower,
* depending on your compiler.
*/
#ifndef FRONTEND
#include "postgres.h"
#else
#include "postgres_fe.h"
#endif
#include "common/shortest_dec.h"
/*
* For consistency, we use 128-bit types if and only if the rest of PG also
* does, even though we could use them here without worrying about the
* alignment concerns that apply elsewhere.
*/
#if !defined(HAVE_INT128) && defined(_MSC_VER) \
&& !defined(RYU_ONLY_64_BIT_OPS) && defined(_M_X64)
#define HAS_64_BIT_INTRINSICS
#endif
#include "ryu_common.h"
#include "digit_table.h"
#include "d2s_full_table.h"
#include "d2s_intrinsics.h"
#define DOUBLE_MANTISSA_BITS 52
#define DOUBLE_EXPONENT_BITS 11
#define DOUBLE_BIAS 1023
#define DOUBLE_POW5_INV_BITCOUNT 122
#define DOUBLE_POW5_BITCOUNT 121
static inline uint32
pow5Factor(uint64 value)
{
uint32 count = 0;
for (;;)
{
Assert(value != 0);
const uint64 q = div5(value);
const uint32 r = (uint32) (value - 5 * q);
if (r != 0)
break;
value = q;
++count;
}
return count;
}
/* Returns true if value is divisible by 5^p. */
static inline bool
multipleOfPowerOf5(const uint64 value, const uint32 p)
{
/*
* I tried a case distinction on p, but there was no performance
* difference.
*/
return pow5Factor(value) >= p;
}
/* Returns true if value is divisible by 2^p. */
static inline bool
multipleOfPowerOf2(const uint64 value, const uint32 p)
{
/* return __builtin_ctzll(value) >= p; */
return (value & ((UINT64CONST(1) << p) - 1)) == 0;
}
/*
* We need a 64x128-bit multiplication and a subsequent 128-bit shift.
*
* Multiplication:
*
* The 64-bit factor is variable and passed in, the 128-bit factor comes
* from a lookup table. We know that the 64-bit factor only has 55
* significant bits (i.e., the 9 topmost bits are zeros). The 128-bit
* factor only has 124 significant bits (i.e., the 4 topmost bits are
* zeros).
*
* Shift:
*
* In principle, the multiplication result requires 55 + 124 = 179 bits to
* represent. However, we then shift this value to the right by j, which is
* at least j >= 115, so the result is guaranteed to fit into 179 - 115 =
* 64 bits. This means that we only need the topmost 64 significant bits of
* the 64x128-bit multiplication.
*
* There are several ways to do this:
*
* 1. Best case: the compiler exposes a 128-bit type.
* We perform two 64x64-bit multiplications, add the higher 64 bits of the
* lower result to the higher result, and shift by j - 64 bits.
*
* We explicitly cast from 64-bit to 128-bit, so the compiler can tell
* that these are only 64-bit inputs, and can map these to the best
* possible sequence of assembly instructions. x86-64 machines happen to
* have matching assembly instructions for 64x64-bit multiplications and
* 128-bit shifts.
*
* 2. Second best case: the compiler exposes intrinsics for the x86-64
* assembly instructions mentioned in 1.
*
* 3. We only have 64x64 bit instructions that return the lower 64 bits of
* the result, i.e., we have to use plain C.
*
* Our inputs are less than the full width, so we have three options:
* a. Ignore this fact and just implement the intrinsics manually.
* b. Split both into 31-bit pieces, which guarantees no internal
* overflow, but requires extra work upfront (unless we change the
* lookup table).
* c. Split only the first factor into 31-bit pieces, which also
* guarantees no internal overflow, but requires extra work since the
* intermediate results are not perfectly aligned.
*/
#if defined(HAVE_INT128)
/* Best case: use 128-bit type. */
static inline uint64
mulShift(const uint64 m, const uint64 *const mul, const int32 j)
{
const uint128 b0 = ((uint128) m) * mul[0];
const uint128 b2 = ((uint128) m) * mul[1];
return (uint64) (((b0 >> 64) + b2) >> (j - 64));
}
static inline uint64
mulShiftAll(const uint64 m, const uint64 *const mul, const int32 j,
uint64 *const vp, uint64 *const vm, const uint32 mmShift)
{
*vp = mulShift(4 * m + 2, mul, j);
*vm = mulShift(4 * m - 1 - mmShift, mul, j);
return mulShift(4 * m, mul, j);
}
#elif defined(HAS_64_BIT_INTRINSICS)
static inline uint64
mulShift(const uint64 m, const uint64 *const mul, const int32 j)
{
/* m is maximum 55 bits */
uint64 high1;
/* 128 */
const uint64 low1 = umul128(m, mul[1], &high1);
/* 64 */
uint64 high0;
uint64 sum;
/* 64 */
umul128(m, mul[0], &high0);
/* 0 */
sum = high0 + low1;
if (sum < high0)
{
++high1;
/* overflow into high1 */
}
return shiftright128(sum, high1, j - 64);
}
static inline uint64
mulShiftAll(const uint64 m, const uint64 *const mul, const int32 j,
uint64 *const vp, uint64 *const vm, const uint32 mmShift)
{
*vp = mulShift(4 * m + 2, mul, j);
*vm = mulShift(4 * m - 1 - mmShift, mul, j);
return mulShift(4 * m, mul, j);
}
#else /* // !defined(HAVE_INT128) &&
* !defined(HAS_64_BIT_INTRINSICS) */
static inline uint64
mulShiftAll(uint64 m, const uint64 *const mul, const int32 j,
uint64 *const vp, uint64 *const vm, const uint32 mmShift)
{
m <<= 1; /* m is maximum 55 bits */
uint64 tmp;
const uint64 lo = umul128(m, mul[0], &tmp);
uint64 hi;
const uint64 mid = tmp + umul128(m, mul[1], &hi);
hi += mid < tmp; /* overflow into hi */
const uint64 lo2 = lo + mul[0];
const uint64 mid2 = mid + mul[1] + (lo2 < lo);
const uint64 hi2 = hi + (mid2 < mid);
*vp = shiftright128(mid2, hi2, j - 64 - 1);
if (mmShift == 1)
{
const uint64 lo3 = lo - mul[0];
const uint64 mid3 = mid - mul[1] - (lo3 > lo);
const uint64 hi3 = hi - (mid3 > mid);
*vm = shiftright128(mid3, hi3, j - 64 - 1);
}
else
{
const uint64 lo3 = lo + lo;
const uint64 mid3 = mid + mid + (lo3 < lo);
const uint64 hi3 = hi + hi + (mid3 < mid);
const uint64 lo4 = lo3 - mul[0];
const uint64 mid4 = mid3 - mul[1] - (lo4 > lo3);
const uint64 hi4 = hi3 - (mid4 > mid3);
*vm = shiftright128(mid4, hi4, j - 64);
}
return shiftright128(mid, hi, j - 64 - 1);
}
#endif /* // HAS_64_BIT_INTRINSICS */
static inline uint32
decimalLength(const uint64 v)
{
/* This is slightly faster than a loop. */
/* The average output length is 16.38 digits, so we check high-to-low. */
/* Function precondition: v is not an 18, 19, or 20-digit number. */
/* (17 digits are sufficient for round-tripping.) */
Assert(v < 100000000000000000L);
if (v >= 10000000000000000L)
{
return 17;
}
if (v >= 1000000000000000L)
{
return 16;
}
if (v >= 100000000000000L)
{
return 15;
}
if (v >= 10000000000000L)
{
return 14;
}
if (v >= 1000000000000L)
{
return 13;
}
if (v >= 100000000000L)
{
return 12;
}
if (v >= 10000000000L)
{
return 11;
}
if (v >= 1000000000L)
{
return 10;
}
if (v >= 100000000L)
{
return 9;
}
if (v >= 10000000L)
{
return 8;
}
if (v >= 1000000L)
{
return 7;
}
if (v >= 100000L)
{
return 6;
}
if (v >= 10000L)
{
return 5;
}
if (v >= 1000L)
{
return 4;
}
if (v >= 100L)
{
return 3;
}
if (v >= 10L)
{
return 2;
}
return 1;
}
/* A floating decimal representing m * 10^e. */
typedef struct floating_decimal_64
{
uint64 mantissa;
int32 exponent;
} floating_decimal_64;
static inline floating_decimal_64
d2d(const uint64 ieeeMantissa, const uint32 ieeeExponent)
{
int32 e2;
uint64 m2;
if (ieeeExponent == 0)
{
/* We subtract 2 so that the bounds computation has 2 additional bits. */
e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
m2 = ieeeMantissa;
}
else
{
e2 = ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
m2 = (UINT64CONST(1) << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
}
#if STRICTLY_SHORTEST
const bool even = (m2 & 1) == 0;
const bool acceptBounds = even;
#else
const bool acceptBounds = false;
#endif
/* Step 2: Determine the interval of legal decimal representations. */
const uint64 mv = 4 * m2;
/* Implicit bool -> int conversion. True is 1, false is 0. */
const uint32 mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
/* We would compute mp and mm like this: */
/* uint64 mp = 4 * m2 + 2; */
/* uint64 mm = mv - 1 - mmShift; */
/* Step 3: Convert to a decimal power base using 128-bit arithmetic. */
uint64 vr,
vp,
vm;
int32 e10;
bool vmIsTrailingZeros = false;
bool vrIsTrailingZeros = false;
if (e2 >= 0)
{
/*
* I tried special-casing q == 0, but there was no effect on
* performance.
*
* This expr is slightly faster than max(0, log10Pow2(e2) - 1).
*/
const uint32 q = log10Pow2(e2) - (e2 > 3);
const int32 k = DOUBLE_POW5_INV_BITCOUNT + pow5bits(q) - 1;
const int32 i = -e2 + q + k;
e10 = q;
vr = mulShiftAll(m2, DOUBLE_POW5_INV_SPLIT[q], i, &vp, &vm, mmShift);
if (q <= 21)
{
/*
* This should use q <= 22, but I think 21 is also safe. Smaller
* values may still be safe, but it's more difficult to reason
* about them.
*
* Only one of mp, mv, and mm can be a multiple of 5, if any.
*/
const uint32 mvMod5 = (uint32) (mv - 5 * div5(mv));
if (mvMod5 == 0)
{
vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
}
else if (acceptBounds)
{
/*----
* Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q
* <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q
* <=> true && pow5Factor(mm) >= q, since e2 >= q.
*----
*/
vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q);
}
else
{
/* Same as min(e2 + 1, pow5Factor(mp)) >= q. */
vp -= multipleOfPowerOf5(mv + 2, q);
}
}
}
else
{
/*
* This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
*/
const uint32 q = log10Pow5(-e2) - (-e2 > 1);
const int32 i = -e2 - q;
const int32 k = pow5bits(i) - DOUBLE_POW5_BITCOUNT;
const int32 j = q - k;
e10 = q + e2;
vr = mulShiftAll(m2, DOUBLE_POW5_SPLIT[i], j, &vp, &vm, mmShift);
if (q <= 1)
{
/*
* {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q
* trailing 0 bits.
*/
/* mv = 4 * m2, so it always has at least two trailing 0 bits. */
vrIsTrailingZeros = true;
if (acceptBounds)
{
/*
* mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff
* mmShift == 1.
*/
vmIsTrailingZeros = mmShift == 1;
}
else
{
/*
* mp = mv + 2, so it always has at least one trailing 0 bit.
*/
--vp;
}
}
else if (q < 63)
{
/* TODO(ulfjack):Use a tighter bound here. */
/*
* We need to compute min(ntz(mv), pow5Factor(mv) - e2) >= q - 1
*/
/* <=> ntz(mv) >= q - 1 && pow5Factor(mv) - e2 >= q - 1 */
/* <=> ntz(mv) >= q - 1 (e2 is negative and -e2 >= q) */
/* <=> (mv & ((1 << (q - 1)) - 1)) == 0 */
/*
* We also need to make sure that the left shift does not
* overflow.
*/
vrIsTrailingZeros = multipleOfPowerOf2(mv, q - 1);
}
}
/*
* Step 4: Find the shortest decimal representation in the interval of
* legal representations.
*/
uint32 removed = 0;
uint8 lastRemovedDigit = 0;
uint64 output;
/* On average, we remove ~2 digits. */
if (vmIsTrailingZeros || vrIsTrailingZeros)
{
/* General case, which happens rarely (~0.7%). */
for (;;)
{
const uint64 vpDiv10 = div10(vp);
const uint64 vmDiv10 = div10(vm);
if (vpDiv10 <= vmDiv10)
break;
const uint32 vmMod10 = (uint32) (vm - 10 * vmDiv10);
const uint64 vrDiv10 = div10(vr);
const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10);
vmIsTrailingZeros &= vmMod10 == 0;
vrIsTrailingZeros &= lastRemovedDigit == 0;
lastRemovedDigit = (uint8) vrMod10;
vr = vrDiv10;
vp = vpDiv10;
vm = vmDiv10;
++removed;
}
if (vmIsTrailingZeros)
{
for (;;)
{
const uint64 vmDiv10 = div10(vm);
const uint32 vmMod10 = (uint32) (vm - 10 * vmDiv10);
if (vmMod10 != 0)
break;
const uint64 vpDiv10 = div10(vp);
const uint64 vrDiv10 = div10(vr);
const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10);
vrIsTrailingZeros &= lastRemovedDigit == 0;
lastRemovedDigit = (uint8) vrMod10;
vr = vrDiv10;
vp = vpDiv10;
vm = vmDiv10;
++removed;
}
}
if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0)
{
/* Round even if the exact number is .....50..0. */
lastRemovedDigit = 4;
}
/*
* We need to take vr + 1 if vr is outside bounds or we need to round
* up.
*/
output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
}
else
{
/*
* Specialized for the common case (~99.3%). Percentages below are
* relative to this.
*/
bool roundUp = false;
const uint64 vpDiv100 = div100(vp);
const uint64 vmDiv100 = div100(vm);
if (vpDiv100 > vmDiv100)
{
/* Optimization:remove two digits at a time(~86.2 %). */
const uint64 vrDiv100 = div100(vr);
const uint32 vrMod100 = (uint32) (vr - 100 * vrDiv100);
roundUp = vrMod100 >= 50;
vr = vrDiv100;
vp = vpDiv100;
vm = vmDiv100;
removed += 2;
}
/*----
* Loop iterations below (approximately), without optimization
* above:
*
* 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%,
* 6+: 0.02%
*
* Loop iterations below (approximately), with optimization
* above:
*
* 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
*----
*/
for (;;)
{
const uint64 vpDiv10 = div10(vp);
const uint64 vmDiv10 = div10(vm);
if (vpDiv10 <= vmDiv10)
break;
const uint64 vrDiv10 = div10(vr);
const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10);
roundUp = vrMod10 >= 5;
vr = vrDiv10;
vp = vpDiv10;
vm = vmDiv10;
++removed;
}
/*
* We need to take vr + 1 if vr is outside bounds or we need to round
* up.
*/
output = vr + (vr == vm || roundUp);
}
const int32 exp = e10 + removed;
floating_decimal_64 fd;
fd.exponent = exp;
fd.mantissa = output;
return fd;
}
static inline int
to_chars_df(const floating_decimal_64 v, const uint32 olength, char *const result)
{
/* Step 5: Print the decimal representation. */
int index = 0;
uint64 output = v.mantissa;
int32 exp = v.exponent;
/*----
* On entry, mantissa * 10^exp is the result to be output.
* Caller has already done the - sign if needed.
*
* We want to insert the point somewhere depending on the output length
* and exponent, which might mean adding zeros:
*
* exp | format
* 1+ | ddddddddd000000
* 0 | ddddddddd
* -1 .. -len+1 | dddddddd.d to d.ddddddddd
* -len ... | 0.ddddddddd to 0.000dddddd
*/
uint32 i = 0;
int32 nexp = exp + olength;
if (nexp <= 0)
{
/* -nexp is number of 0s to add after '.' */
Assert(nexp >= -3);
/* 0.000ddddd */
index = 2 - nexp;
/* won't need more than this many 0s */
memcpy(result, "0.000000", 8);
}
else if (exp < 0)
{
/*
* dddd.dddd; leave space at the start and move the '.' in after
*/
index = 1;
}
else
{
/*
* We can save some code later by pre-filling with zeros. We know that
* there can be no more than 16 output digits in this form, otherwise
* we would not choose fixed-point output.
*/
Assert(exp < 16 && exp + olength <= 16);
memset(result, '0', 16);
}
/*
* We prefer 32-bit operations, even on 64-bit platforms. We have at most
* 17 digits, and uint32 can store 9 digits. If output doesn't fit into
* uint32, we cut off 8 digits, so the rest will fit into uint32.
*/
if ((output >> 32) != 0)
{
/* Expensive 64-bit division. */
const uint64 q = div1e8(output);
uint32 output2 = (uint32) (output - 100000000 * q);
const uint32 c = output2 % 10000;
output = q;
output2 /= 10000;
const uint32 d = output2 % 10000;
const uint32 c0 = (c % 100) << 1;
const uint32 c1 = (c / 100) << 1;
const uint32 d0 = (d % 100) << 1;
const uint32 d1 = (d / 100) << 1;
memcpy(result + index + olength - i - 2, DIGIT_TABLE + c0, 2);
memcpy(result + index + olength - i - 4, DIGIT_TABLE + c1, 2);
memcpy(result + index + olength - i - 6, DIGIT_TABLE + d0, 2);
memcpy(result + index + olength - i - 8, DIGIT_TABLE + d1, 2);
i += 8;
}
uint32 output2 = (uint32) output;
while (output2 >= 10000)
{
const uint32 c = output2 - 10000 * (output2 / 10000);
const uint32 c0 = (c % 100) << 1;
const uint32 c1 = (c / 100) << 1;
output2 /= 10000;
memcpy(result + index + olength - i - 2, DIGIT_TABLE + c0, 2);
memcpy(result + index + olength - i - 4, DIGIT_TABLE + c1, 2);
i += 4;
}
if (output2 >= 100)
{
const uint32 c = (output2 % 100) << 1;
output2 /= 100;
memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2);
i += 2;
}
if (output2 >= 10)
{
const uint32 c = output2 << 1;
memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2);
}
else
{
result[index] = (char) ('0' + output2);
}
if (index == 1)
{
/*
* nexp is 1..15 here, representing the number of digits before the
* point. A value of 16 is not possible because we switch to
* scientific notation when the display exponent reaches 15.
*/
Assert(nexp < 16);
/* gcc only seems to want to optimize memmove for small 2^n */
if (nexp & 8)
{
memmove(result + index - 1, result + index, 8);
index += 8;
}
if (nexp & 4)
{
memmove(result + index - 1, result + index, 4);
index += 4;
}
if (nexp & 2)
{
memmove(result + index - 1, result + index, 2);
index += 2;
}
if (nexp & 1)
{
result[index - 1] = result[index];
}
result[nexp] = '.';
index = olength + 1;
}
else if (exp >= 0)
{
/* we supplied the trailing zeros earlier, now just set the length. */
index = olength + exp;
}
else
{
index = olength + (2 - nexp);
}
return index;
}
static inline int
to_chars(floating_decimal_64 v, const bool sign, char *const result)
{
/* Step 5: Print the decimal representation. */
int index = 0;
uint64 output = v.mantissa;
uint32 olength = decimalLength(output);
int32 exp = v.exponent + olength - 1;
if (sign)
{
result[index++] = '-';
}
/*
* The thresholds for fixed-point output are chosen to match printf
* defaults. Beware that both the code of to_chars_df and the value of
* DOUBLE_SHORTEST_DECIMAL_LEN are sensitive to these thresholds.
*/
if (exp >= -4 && exp < 15)
return to_chars_df(v, olength, result + index) + sign;
/*
* If v.exponent is exactly 0, we might have reached here via the small
* integer fast path, in which case v.mantissa might contain trailing
* (decimal) zeros. For scientific notation we need to move these zeros
* into the exponent. (For fixed point this doesn't matter, which is why
* we do this here rather than above.)
*
* Since we already calculated the display exponent (exp) above based on
* the old decimal length, that value does not change here. Instead, we
* just reduce the display length for each digit removed.
*
* If we didn't get here via the fast path, the raw exponent will not
* usually be 0, and there will be no trailing zeros, so we pay no more
* than one div10/multiply extra cost. We claw back half of that by
* checking for divisibility by 2 before dividing by 10.
*/
if (v.exponent == 0)
{
while ((output & 1) == 0)
{
const uint64 q = div10(output);
const uint32 r = (uint32) (output - 10 * q);
if (r != 0)
break;
output = q;
--olength;
}
}
/*----
* Print the decimal digits.
*
* The following code is equivalent to:
*
* for (uint32 i = 0; i < olength - 1; ++i) {
* const uint32 c = output % 10; output /= 10;
* result[index + olength - i] = (char) ('0' + c);
* }
* result[index] = '0' + output % 10;
*----
*/
uint32 i = 0;
/*
* We prefer 32-bit operations, even on 64-bit platforms. We have at most
* 17 digits, and uint32 can store 9 digits. If output doesn't fit into
* uint32, we cut off 8 digits, so the rest will fit into uint32.
*/
if ((output >> 32) != 0)
{
/* Expensive 64-bit division. */
const uint64 q = div1e8(output);
uint32 output2 = (uint32) (output - 100000000 * q);
output = q;
const uint32 c = output2 % 10000;
output2 /= 10000;
const uint32 d = output2 % 10000;
const uint32 c0 = (c % 100) << 1;
const uint32 c1 = (c / 100) << 1;
const uint32 d0 = (d % 100) << 1;
const uint32 d1 = (d / 100) << 1;
memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
memcpy(result + index + olength - i - 5, DIGIT_TABLE + d0, 2);
memcpy(result + index + olength - i - 7, DIGIT_TABLE + d1, 2);
i += 8;
}
uint32 output2 = (uint32) output;
while (output2 >= 10000)
{
const uint32 c = output2 - 10000 * (output2 / 10000);
output2 /= 10000;
const uint32 c0 = (c % 100) << 1;
const uint32 c1 = (c / 100) << 1;
memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
i += 4;
}
if (output2 >= 100)
{
const uint32 c = (output2 % 100) << 1;
output2 /= 100;
memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2);
i += 2;
}
if (output2 >= 10)
{
const uint32 c = output2 << 1;
/*
* We can't use memcpy here: the decimal dot goes between these two
* digits.
*/
result[index + olength - i] = DIGIT_TABLE[c + 1];
result[index] = DIGIT_TABLE[c];
}
else
{
result[index] = (char) ('0' + output2);
}
/* Print decimal point if needed. */
if (olength > 1)
{
result[index + 1] = '.';
index += olength + 1;
}
else
{
++index;
}
/* Print the exponent. */
result[index++] = 'e';
if (exp < 0)
{
result[index++] = '-';
exp = -exp;
}
else
result[index++] = '+';
if (exp >= 100)
{
const int32 c = exp % 10;
memcpy(result + index, DIGIT_TABLE + 2 * (exp / 10), 2);
result[index + 2] = (char) ('0' + c);
index += 3;
}
else
{
memcpy(result + index, DIGIT_TABLE + 2 * exp, 2);
index += 2;
}
return index;
}
static inline bool
d2d_small_int(const uint64 ieeeMantissa,
const uint32 ieeeExponent,
floating_decimal_64 *v)
{
const int32 e2 = (int32) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
/*
* Avoid using multiple "return false;" here since it tends to provoke the
* compiler into inlining multiple copies of d2d, which is undesirable.
*/
if (e2 >= -DOUBLE_MANTISSA_BITS && e2 <= 0)
{
/*----
* Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52:
* 1 <= f = m2 / 2^-e2 < 2^53.
*
* Test if the lower -e2 bits of the significand are 0, i.e. whether
* the fraction is 0. We can use ieeeMantissa here, since the implied
* 1 bit can never be tested by this; the implied 1 can only be part
* of a fraction if e2 < -DOUBLE_MANTISSA_BITS which we already
* checked. (e.g. 0.5 gives ieeeMantissa == 0 and e2 == -53)
*/
const uint64 mask = (UINT64CONST(1) << -e2) - 1;
const uint64 fraction = ieeeMantissa & mask;
if (fraction == 0)
{
/*----
* f is an integer in the range [1, 2^53).
* Note: mantissa might contain trailing (decimal) 0's.
* Note: since 2^53 < 10^16, there is no need to adjust
* decimalLength().
*/
const uint64 m2 = (UINT64CONST(1) << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
v->mantissa = m2 >> -e2;
v->exponent = 0;
return true;
}
}
return false;
}
/*
* Store the shortest decimal representation of the given double as an
* UNTERMINATED string in the caller's supplied buffer (which must be at least
* DOUBLE_SHORTEST_DECIMAL_LEN-1 bytes long).
*
* Returns the number of bytes stored.
*/
int
double_to_shortest_decimal_bufn(double f, char *result)
{
/*
* Step 1: Decode the floating-point number, and unify normalized and
* subnormal cases.
*/
const uint64 bits = double_to_bits(f);
/* Decode bits into sign, mantissa, and exponent. */
const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
const uint64 ieeeMantissa = bits & ((UINT64CONST(1) << DOUBLE_MANTISSA_BITS) - 1);
const uint32 ieeeExponent = (uint32) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
/* Case distinction; exit early for the easy cases. */
if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0))
{
return copy_special_str(result, ieeeSign, (ieeeExponent != 0), (ieeeMantissa != 0));
}
floating_decimal_64 v;
const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v);
if (!isSmallInt)
{
v = d2d(ieeeMantissa, ieeeExponent);
}
return to_chars(v, ieeeSign, result);
}
/*
* Store the shortest decimal representation of the given double as a
* null-terminated string in the caller's supplied buffer (which must be at
* least DOUBLE_SHORTEST_DECIMAL_LEN bytes long).
*
* Returns the string length.
*/
int
double_to_shortest_decimal_buf(double f, char *result)
{
const int index = double_to_shortest_decimal_bufn(f, result);
/* Terminate the string. */
Assert(index < DOUBLE_SHORTEST_DECIMAL_LEN);
result[index] = '\0';
return index;
}
/*
* Return the shortest decimal representation as a null-terminated palloc'd
* string (outside the backend, uses malloc() instead).
*
* Caller is responsible for freeing the result.
*/
char *
double_to_shortest_decimal(double f)
{
char *const result = (char *) palloc(DOUBLE_SHORTEST_DECIMAL_LEN);
double_to_shortest_decimal_buf(f, result);
return result;
}
|