1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
|
#ifndef INCLUDES_MYSQL_SQL_LIST_H
#define INCLUDES_MYSQL_SQL_LIST_H
/* Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is also distributed with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have included with MySQL.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include <stddef.h>
#include <sys/types.h>
#include <algorithm>
#include <iterator>
#include <type_traits>
#include "my_alloc.h"
#include "my_compiler.h"
#include "my_dbug.h"
#include "my_sharedlib.h"
#include "sql/thr_malloc.h"
/**
Simple intrusive linked list.
@remark Similar in nature to base_list, but intrusive. It keeps a
a pointer to the first element in the list and a indirect
reference to the last element.
*/
template <typename T>
class SQL_I_List {
public:
uint elements;
/** The first element in the list. */
T *first;
/** A reference to the next element in the list. */
T **next;
SQL_I_List() { empty(); }
SQL_I_List(const SQL_I_List &tmp)
: elements(tmp.elements),
first(tmp.first),
next(elements ? tmp.next : &first) {}
SQL_I_List(SQL_I_List &&) = default;
inline void empty() {
elements = 0;
first = NULL;
next = &first;
}
inline void link_in_list(T *element, T **next_ptr) {
elements++;
(*next) = element;
next = next_ptr;
*next = NULL;
}
inline void save_and_clear(SQL_I_List<T> *save) {
*save = *this;
empty();
}
inline void push_front(SQL_I_List<T> *save) {
/* link current list last */
*save->next = first;
first = save->first;
elements += save->elements;
}
inline void push_back(SQL_I_List<T> *save) {
if (save->first) {
*next = save->first;
next = save->next;
elements += save->elements;
}
}
inline uint size() const { return elements; }
SQL_I_List &operator=(SQL_I_List &) = default;
SQL_I_List &operator=(SQL_I_List &&) = default;
};
/*
Basic single linked list
Used for item and item_buffs.
All list ends with a pointer to the 'end_of_list' element, which
data pointer is a null pointer and the next pointer points to itself.
This makes it very fast to traverse lists as we don't have to
test for a specialend condition for list that can't contain a null
pointer.
*/
/**
list_node - a node of a single-linked list.
@note We never call a destructor for instances of this class.
*/
struct list_node {
list_node *next;
void *info;
list_node(void *info_par, list_node *next_par)
: next(next_par), info(info_par) {}
list_node() /* For end_of_list */
{
info = 0;
next = this;
}
};
extern MYSQL_PLUGIN_IMPORT list_node end_of_list;
class base_list {
protected:
list_node *first, **last;
public:
uint elements;
bool operator==(const base_list &rhs) const {
return elements == rhs.elements && first == rhs.first && last == rhs.last;
}
inline void empty() {
elements = 0;
first = &end_of_list;
last = &first;
}
inline base_list() { empty(); }
/**
This is a shallow copy constructor that implicitly passes the ownership
from the source list to the new instance. The old instance is not
updated, so both objects end up sharing the same nodes. If one of
the instances then adds or removes a node, the other becomes out of
sync ('last' pointer), while still operational. Some old code uses and
relies on this behaviour. This logic is quite tricky: please do not use
it in any new code.
*/
base_list(const base_list &tmp)
: first(tmp.first),
last(tmp.elements ? tmp.last : &first),
elements(tmp.elements) {}
base_list &operator=(const base_list &tmp) {
elements = tmp.elements;
first = tmp.first;
last = elements ? tmp.last : &first;
return *this;
}
/**
Construct a deep copy of the argument in memory root mem_root.
The elements themselves are copied by pointer.
*/
base_list(const base_list &rhs, MEM_ROOT *mem_root);
inline bool push_back(void *info) {
if (((*last) = new (*THR_MALLOC) list_node(info, &end_of_list))) {
last = &(*last)->next;
elements++;
return 0;
}
return 1;
}
inline bool push_back(void *info, MEM_ROOT *mem_root) {
if (((*last) = new (mem_root) list_node(info, &end_of_list))) {
last = &(*last)->next;
elements++;
return 0;
}
return 1;
}
inline bool push_front(void *info) {
list_node *node = new (*THR_MALLOC) list_node(info, first);
if (node) {
if (last == &first) last = &node->next;
first = node;
elements++;
return 0;
}
return 1;
}
inline bool push_front(void *info, MEM_ROOT *mem_root) {
list_node *node = new (mem_root) list_node(info, first);
if (node) {
if (last == &first) last = &node->next;
first = node;
elements++;
return false;
}
return true;
}
void remove(list_node **prev) {
list_node *node = (*prev)->next;
if (!--elements)
last = &first;
else if (last == &(*prev)->next)
last = prev;
destroy(*prev);
*prev = node;
}
inline void concat(base_list *list) {
if (!list->is_empty()) {
*last = list->first;
last = list->last;
elements += list->elements;
}
}
inline void *pop(void) {
if (first == &end_of_list) return 0;
list_node *tmp = first;
first = first->next;
if (!--elements) last = &first;
return tmp->info;
}
inline void disjoin(base_list *list) {
list_node **prev = &first;
list_node *node = first;
list_node *list_first = list->first;
elements = 0;
while (node && node != list_first) {
prev = &node->next;
node = node->next;
elements++;
}
*prev = *last;
last = prev;
}
inline void prepend(base_list *list) {
if (!list->is_empty()) {
*list->last = first;
if (is_empty()) last = list->last;
first = list->first;
elements += list->elements;
}
}
/**
Swap two lists.
*/
inline void swap(base_list &rhs) {
std::swap(first, rhs.first);
std::swap(last, rhs.last);
std::swap(elements, rhs.elements);
}
inline list_node *last_node() { return *last; }
inline list_node *first_node() { return first; }
inline void *head() { return first->info; }
inline const void *head() const { return first->info; }
inline void **head_ref() { return first != &end_of_list ? &first->info : 0; }
inline bool is_empty() const { return first == &end_of_list; }
inline list_node *last_ref() { return &end_of_list; }
inline uint size() const { return elements; }
friend class base_list_iterator;
friend class error_list;
friend class error_list_iterator;
#ifdef LIST_EXTRA_DEBUG
/*
Check list invariants and print results into trace. Invariants are:
- (*last) points to end_of_list
- There are no NULLs in the list.
- base_list::elements is the number of elements in the list.
SYNOPSIS
check_list()
name Name to print to trace file
RETURN
1 The list is Ok.
0 List invariants are not met.
*/
bool check_list(const char *name) {
base_list *list = this;
list_node *node = first;
uint cnt = 0;
while (node->next != &end_of_list) {
if (!node->info) {
DBUG_PRINT("list_invariants",
("%s: error: NULL element in the list", name));
return false;
}
node = node->next;
cnt++;
}
if (last != &(node->next)) {
DBUG_PRINT("list_invariants", ("%s: error: wrong last pointer", name));
return false;
}
if (cnt + 1 != elements) {
DBUG_PRINT("list_invariants", ("%s: error: wrong element count", name));
return false;
}
DBUG_PRINT("list_invariants", ("%s: list is ok", name));
return true;
}
#endif // LIST_EXTRA_DEBUG
protected:
void after(void *info, list_node *node) {
list_node *new_node = new (*THR_MALLOC) list_node(info, node->next);
node->next = new_node;
elements++;
if (last == &(node->next)) last = &new_node->next;
}
bool after(void *info, list_node *node, MEM_ROOT *mem_root) {
list_node *new_node = new (mem_root) list_node(info, node->next);
if (!new_node) return true; // OOM
node->next = new_node;
elements++;
if (last == &(node->next)) last = &new_node->next;
return false;
}
};
class base_list_iterator {
protected:
base_list *list;
list_node **el, **prev, *current;
void sublist(base_list &ls, uint elm) {
ls.first = *el;
ls.last = list->last;
ls.elements = elm;
}
public:
base_list_iterator() : list(0), el(0), prev(0), current(0) {}
base_list_iterator(base_list &list_par) { init(list_par); }
inline void init(base_list &list_par) {
list = &list_par;
el = &list_par.first;
prev = 0;
current = 0;
}
inline void *next(void) {
prev = el;
current = *el;
el = ¤t->next;
return current->info;
}
inline void *next_fast(void) {
list_node *tmp;
tmp = *el;
el = &tmp->next;
return tmp->info;
}
inline void rewind(void) { el = &list->first; }
inline void *replace(void *element) { // Return old element
void *tmp = current->info;
DBUG_ASSERT(current->info != 0);
current->info = element;
return tmp;
}
void *replace(base_list &new_list) {
void *ret_value = current->info;
if (!new_list.is_empty()) {
*new_list.last = current->next;
current->info = new_list.first->info;
current->next = new_list.first->next;
if ((list->last == ¤t->next) && (new_list.elements > 1))
list->last = new_list.last;
list->elements += new_list.elements - 1;
}
return ret_value; // return old element
}
inline void remove(void) // Remove current
{
list->remove(prev);
el = prev;
current = 0; // Safeguard
}
void after(void *element) // Insert element after current
{
list->after(element, current);
current = current->next;
el = ¤t->next;
}
bool after(void *a, MEM_ROOT *mem_root) {
if (list->after(a, current, mem_root)) return true;
current = current->next;
el = ¤t->next;
return false;
}
inline void **ref(void) // Get reference pointer
{
return ¤t->info;
}
inline bool is_last(void) { return el == list->last; }
inline bool is_before_first() const { return current == NULL; }
bool prepend(void *a, MEM_ROOT *mem_root) {
if (list->push_front(a, mem_root)) return true;
el = &list->first;
prev = el;
el = &(*el)->next;
return false;
}
friend class error_list_iterator;
};
template <class T>
class List_STL_Iterator;
template <class T>
class List : public base_list {
public:
List() : base_list() {}
inline List(const List<T> &tmp) : base_list(tmp) {}
List &operator=(const List &tmp) {
return static_cast<List &>(base_list::operator=(tmp));
}
inline List(const List<T> &tmp, MEM_ROOT *mem_root)
: base_list(tmp, mem_root) {}
/*
Typecasting to (void *) it's necessary if we want to declare List<T> with
constant T parameter (like List<const char>), since the untyped storage
is "void *", and assignment of const pointer to "void *" is a syntax error.
*/
inline bool push_back(T *a) { return base_list::push_back((void *)a); }
inline bool push_back(T *a, MEM_ROOT *mem_root) {
return base_list::push_back((void *)a, mem_root);
}
inline bool push_front(T *a) { return base_list::push_front((void *)a); }
inline bool push_front(T *a, MEM_ROOT *mem_root) {
return base_list::push_front((void *)a, mem_root);
}
inline T *head() { return static_cast<T *>(base_list::head()); }
inline const T *head() const {
return static_cast<const T *>(base_list::head());
}
inline T **head_ref() { return (T **)base_list::head_ref(); }
inline T *pop() { return (T *)base_list::pop(); }
inline void concat(List<T> *list) { base_list::concat(list); }
inline void disjoin(List<T> *list) { base_list::disjoin(list); }
inline void prepend(List<T> *list) { base_list::prepend(list); }
void delete_elements(void) {
list_node *element, *next;
for (element = first; element != &end_of_list; element = next) {
next = element->next;
delete (T *)element->info;
}
empty();
}
void destroy_elements(void) {
list_node *element, *next;
for (element = first; element != &end_of_list; element = next) {
next = element->next;
destroy((T *)element->info);
}
empty();
}
T *operator[](uint index) const {
DBUG_ASSERT(index < elements);
list_node *current = first;
for (uint i = 0; i < index; ++i) current = current->next;
return static_cast<T *>(current->info);
}
void replace(uint index, T *new_value) {
DBUG_ASSERT(index < elements);
list_node *current = first;
for (uint i = 0; i < index; ++i) current = current->next;
current->info = new_value;
}
bool swap_elts(uint index1, uint index2) {
if (index1 == index2) return false;
if (index1 >= elements || index2 >= elements) return true; // error
if (index2 < index1) std::swap(index1, index2);
list_node *current1 = first;
for (uint i = 0; i < index1; ++i) current1 = current1->next;
list_node *current2 = current1;
for (uint i = 0; i < index2 - index1; ++i) current2 = current2->next;
std::swap(current1->info, current2->info);
return false;
}
/**
@brief
Sort the list
@param cmp node comparison function
@details
The function sorts list nodes by an exchange sort algorithm.
The order of list nodes isn't changed, values of info fields are
swapped instead. Due to this, list iterators that are initialized before
sort could be safely used after sort, i.e they wouldn't cause a crash.
As this isn't an effective algorithm the list to be sorted is supposed to
be short.
*/
template <typename Node_cmp_func>
void sort(Node_cmp_func cmp) {
if (elements < 2) return;
for (list_node *n1 = first; n1 && n1 != &end_of_list; n1 = n1->next) {
for (list_node *n2 = n1->next; n2 && n2 != &end_of_list; n2 = n2->next) {
if (cmp(static_cast<T *>(n1->info), static_cast<T *>(n2->info)) > 0) {
void *tmp = n1->info;
n1->info = n2->info;
n2->info = tmp;
}
}
}
}
// For C++11 range-based for loops.
using iterator = List_STL_Iterator<T>;
iterator begin() { return iterator(first); }
iterator end() {
// If the list overlaps another list, last isn't actually
// the last element, and if so, we'd give a different result from
// List_iterator_fast.
DBUG_ASSERT((*last)->next == &end_of_list);
return iterator(*last);
}
using const_iterator = List_STL_Iterator<const T>;
const_iterator begin() const { return const_iterator(first); }
const_iterator end() const {
DBUG_ASSERT((*last)->next == &end_of_list);
return const_iterator(*last);
}
const_iterator cbegin() const { return const_iterator(first); }
const_iterator cend() const {
DBUG_ASSERT((*last)->next == &end_of_list);
return const_iterator(*last);
}
};
template <class T>
class List_iterator : public base_list_iterator {
public:
List_iterator(List<T> &a) : base_list_iterator(a) {}
List_iterator() : base_list_iterator() {}
inline void init(List<T> &a) { base_list_iterator::init(a); }
inline T *operator++(int) { return (T *)base_list_iterator::next(); }
inline T *replace(T *a) { return (T *)base_list_iterator::replace(a); }
inline T *replace(List<T> &a) { return (T *)base_list_iterator::replace(a); }
inline void rewind(void) { base_list_iterator::rewind(); }
inline void remove() { base_list_iterator::remove(); }
inline void after(T *a) { base_list_iterator::after(a); }
inline bool after(T *a, MEM_ROOT *mem_root) {
return base_list_iterator::after(a, mem_root);
}
inline T **ref(void) { return (T **)base_list_iterator::ref(); }
};
template <class T>
class List_iterator_fast : public base_list_iterator {
protected:
inline T *replace(T *) { return (T *)0; }
inline T *replace(List<T> &) { return (T *)0; }
inline void remove(void) {}
inline void after(T *) {}
inline T **ref(void) { return (T **)0; }
public:
inline List_iterator_fast(List<T> &a) : base_list_iterator(a) {}
inline List_iterator_fast() : base_list_iterator() {}
inline void init(List<T> &a) { base_list_iterator::init(a); }
inline T *operator++(int) { return (T *)base_list_iterator::next_fast(); }
inline void rewind(void) { base_list_iterator::rewind(); }
void sublist(List<T> &list_arg, uint el_arg) {
base_list_iterator::sublist(list_arg, el_arg);
}
};
/*
Like List_iterator<T>, but with an STL-compatible interface
(ForwardIterator), so that you can use it in range-based for loops.
Prefer this to List_iterator<T> wherever possible, but also prefer
std::vector<T> or std::list<T> to List<T> wherever possible.
*/
template <class T>
class List_STL_Iterator {
public:
explicit List_STL_Iterator(list_node *node) : m_current(node) {}
// Iterator (required for InputIterator).
T &operator*() const { return *static_cast<T *>(m_current->info); }
List_STL_Iterator &operator++() {
m_current = m_current->next;
return *this;
}
using difference_type = ptrdiff_t;
using value_type = T; // NOTE: std::remove_cv_t<T> from C++20.
using pointer = T *;
using reference = T &;
using iterator_category = std::forward_iterator_tag;
// EqualityComparable (required for InputIterator).
bool operator==(const List_STL_Iterator &other) const {
return m_current == other.m_current;
}
// InputIterator (required for ForwardIterator).
bool operator!=(const List_STL_Iterator &other) const {
return !(*this == other);
}
T *operator->() const { return static_cast<T *>(m_current->info); }
// DefaultConstructible (required for ForwardIterator).
List_STL_Iterator() {}
// ForwardIterator.
List_STL_Iterator operator++(int) {
List_STL_Iterator copy = *this;
m_current = m_current->next;
return copy;
}
private:
list_node *m_current;
};
template <typename T>
class base_ilist;
template <typename T>
class base_ilist_iterator;
/*
A simple intrusive list.
NOTE: this inherently unsafe, since we rely on <T> to have
the same layout as ilink<T> (see base_ilist::sentinel).
Please consider using a different strategy for linking objects.
*/
template <typename T>
class ilink {
T **prev, *next;
public:
ilink() : prev(NULL), next(NULL) {}
void unlink() {
/* Extra tests because element doesn't have to be linked */
if (prev) *prev = next;
if (next) next->prev = prev;
prev = NULL;
next = NULL;
}
friend class base_ilist<T>;
friend class base_ilist_iterator<T>;
};
/* Needed to be able to have an I_List of char* strings in mysqld.cc. */
class i_string : public ilink<i_string> {
public:
const char *ptr;
i_string() : ptr(0) {}
i_string(const char *s) : ptr(s) {}
};
/* needed for linked list of two strings for replicate-rewrite-db */
class i_string_pair : public ilink<i_string_pair> {
public:
const char *key;
const char *val;
i_string_pair() : key(0), val(0) {}
i_string_pair(const char *key_arg, const char *val_arg)
: key(key_arg), val(val_arg) {}
};
template <class T>
class I_List_iterator;
template <typename T>
class base_ilist {
T *first;
ilink<T> sentinel;
static_assert(!std::is_polymorphic<T>::value,
"Do not use this for classes with virtual members");
public:
// The sentinel is not a T, but at least it is a POD
void empty() SUPPRESS_UBSAN {
first = static_cast<T *>(&sentinel);
sentinel.prev = &first;
}
base_ilist() { empty(); }
// The sentinel is not a T, but at least it is a POD
bool is_empty() const SUPPRESS_UBSAN {
return first == static_cast<const T *>(&sentinel);
}
/// Pushes new element in front of list.
void push_front(T *a) {
first->prev = &a->next;
a->next = first;
a->prev = &first;
first = a;
}
/// Pushes new element to the end of the list, i.e. in front of the sentinel.
void push_back(T *a) {
*sentinel.prev = a;
a->next = static_cast<T *>(&sentinel);
a->prev = sentinel.prev;
sentinel.prev = &a->next;
}
// Unlink first element, and return it.
T *get() {
if (is_empty()) return NULL;
T *first_link = first;
first_link->unlink();
return first_link;
}
T *head() { return is_empty() ? NULL : first; }
/**
Moves list elements to new owner, and empties current owner (i.e. this).
@param[in,out] new_owner The new owner of the list elements.
Should be empty in input.
*/
void move_elements_to(base_ilist *new_owner) {
DBUG_ASSERT(new_owner->is_empty());
new_owner->first = first;
new_owner->sentinel = sentinel;
empty();
}
friend class base_ilist_iterator<T>;
private:
/*
We don't want to allow copying of this class, as that would give us
two list heads containing the same elements.
So we declare, but don't define copy CTOR and assignment operator.
*/
base_ilist(const base_ilist &);
void operator=(const base_ilist &);
};
template <typename T>
class base_ilist_iterator {
base_ilist<T> *list;
T **el, *current;
public:
base_ilist_iterator(base_ilist<T> &list_par)
: list(&list_par), el(&list_par.first), current(NULL) {}
// The sentinel is not a T, but at least it is a POD
T *next(void) SUPPRESS_UBSAN {
/* This is coded to allow push_back() while iterating */
current = *el;
if (current == static_cast<T *>(&list->sentinel)) return NULL;
el = ¤t->next;
return current;
}
};
template <class T>
class I_List : private base_ilist<T> {
public:
using base_ilist<T>::empty;
using base_ilist<T>::is_empty;
using base_ilist<T>::get;
using base_ilist<T>::push_front;
using base_ilist<T>::push_back;
using base_ilist<T>::head;
void move_elements_to(I_List<T> *new_owner) {
base_ilist<T>::move_elements_to(new_owner);
}
friend class I_List_iterator<T>;
};
template <class T>
class I_List_iterator : public base_ilist_iterator<T> {
public:
I_List_iterator(I_List<T> &a) : base_ilist_iterator<T>(a) {}
inline T *operator++(int) { return base_ilist_iterator<T>::next(); }
};
void free_list(I_List<i_string_pair> *list);
void free_list(I_List<i_string> *list);
template <class T>
List<T> *List_merge(T *head, List<T> *tail) {
tail->push_front(head);
return tail;
}
#endif // INCLUDES_MYSQL_SQL_LIST_H
|