1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
|
/* Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is also distributed with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have included with MySQL.
Without limiting anything contained in the foregoing, this file,
which is part of C Driver for MySQL (Connector/C), is also subject to the
Universal FOSS Exception, version 1.0, a copy of which can be found at
http://oss.oracle.com/licenses/universal-foss-exception.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/**
@file mysys/tree.cc
Code for handling red-black (balanced) binary trees.
key in tree is allocated according to following:
1) If size < 0 then tree will not allocate keys and only a pointer to
each key is saved in tree.
compare and search functions uses and returns key-pointer
2) If size == 0 then there are two options:
- key_size != 0 to tree_insert: The key will be stored in the tree.
- key_size == 0 to tree_insert: A pointer to the key is stored.
compare and search functions uses and returns key-pointer.
3) if key_size is given to init_tree then each node will continue the
key and calls to insert_key may increase length of key.
if key_size > sizeof(pointer) and key_size is a multiple of 8 (double
align) then key will be put on a 8 aligned address. Else
the key will be on address (element+1). This is transparent for user
compare and search functions uses a pointer to given key-argument.
- If you use a free function for tree-elements and you are freeing
the element itself, you should use key_size = 0 to init_tree and
tree_search
The actual key in TREE_ELEMENT is saved as a pointer or after the
TREE_ELEMENT struct.
If one uses only pointers in tree one can use tree_set_pointer() to
change address of data.
*/
/*
NOTE:
tree->compare function should be ALWAYS called as
(*tree->compare)(custom_arg, ELEMENT_KEY(tree,element), key)
and not other way around, as
(*tree->compare)(custom_arg, key, ELEMENT_KEY(tree,element))
ft_boolean_search.c (at least) relies on that.
*/
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include "my_alloc.h"
#include "my_base.h"
#include "my_dbug.h"
#include "my_inttypes.h"
#include "my_pointer_arithmetic.h"
#include "my_sys.h"
#include "my_tree.h"
#include "mysql/service_mysql_alloc.h"
#include "mysys/mysys_priv.h"
#define BLACK 1
#define RED 0
#define DEFAULT_ALLOC_SIZE 8192
#define DEFAULT_ALIGN_SIZE 8192
static void delete_tree_element(TREE *, TREE_ELEMENT *);
static int tree_walk_left_root_right(TREE *, TREE_ELEMENT *, tree_walk_action,
void *);
static int tree_walk_right_root_left(TREE *, TREE_ELEMENT *, tree_walk_action,
void *);
static void left_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf);
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf);
static void rb_insert(TREE *tree, TREE_ELEMENT ***parent, TREE_ELEMENT *leaf);
static void rb_delete_fixup(TREE *tree, TREE_ELEMENT ***parent);
/* The actuall code for handling binary trees */
#ifndef DBUG_OFF
static int test_rb_tree(TREE_ELEMENT *element);
#endif
void init_tree(TREE *tree, size_t default_alloc_size, ulong memory_limit,
int size, qsort2_cmp compare, bool with_delete,
tree_element_free free_element, const void *custom_arg) {
DBUG_ENTER("init_tree");
DBUG_PRINT("enter", ("tree: %p size: %d", tree, size));
if (default_alloc_size < DEFAULT_ALLOC_SIZE)
default_alloc_size = DEFAULT_ALLOC_SIZE;
default_alloc_size = MY_ALIGN(default_alloc_size, DEFAULT_ALIGN_SIZE);
new (&tree->null_element) TREE_ELEMENT();
tree->root = &tree->null_element;
tree->compare = compare;
tree->size_of_element = size > 0 ? (uint)size : 0;
tree->memory_limit = memory_limit;
tree->free = free_element;
tree->allocated = 0;
tree->elements_in_tree = 0;
tree->custom_arg = custom_arg;
tree->null_element.colour = BLACK;
tree->null_element.left = tree->null_element.right = 0;
tree->flag = 0;
if (!free_element && size >= 0 &&
((uint)size <= sizeof(void *) || ((uint)size & (sizeof(void *) - 1)))) {
/*
We know that the data doesn't have to be aligned (like if the key
contains a double), so we can store the data combined with the
TREE_ELEMENT.
*/
tree->offset_to_key = sizeof(TREE_ELEMENT); /* Put key after element */
/* Fix allocation size so that we don't lose any memory */
default_alloc_size /= (sizeof(TREE_ELEMENT) + size);
if (!default_alloc_size) default_alloc_size = 1;
default_alloc_size *= (sizeof(TREE_ELEMENT) + size);
} else {
tree->offset_to_key = 0; /* use key through pointer */
tree->size_of_element += sizeof(void *);
}
if (!(tree->with_delete = with_delete)) {
init_alloc_root(key_memory_TREE, &tree->mem_root, default_alloc_size, 0);
}
DBUG_VOID_RETURN;
}
static void free_tree(TREE *tree, myf free_flags) {
DBUG_ENTER("free_tree");
DBUG_PRINT("enter", ("tree: %p", tree));
if (tree->root) /* If initialized */
{
if (tree->with_delete)
delete_tree_element(tree, tree->root);
else {
if (tree->free) {
if (tree->memory_limit)
(*tree->free)(NULL, free_init, tree->custom_arg);
delete_tree_element(tree, tree->root);
if (tree->memory_limit) (*tree->free)(NULL, free_end, tree->custom_arg);
}
free_root(&tree->mem_root, free_flags);
}
}
tree->root = &tree->null_element;
tree->elements_in_tree = 0;
tree->allocated = 0;
DBUG_VOID_RETURN;
}
void delete_tree(TREE *tree) {
free_tree(tree, MYF(0)); /* my_free() mem_root if applicable */
}
void reset_tree(TREE *tree) {
/* do not free mem_root, just mark blocks as free */
free_tree(tree, MYF(MY_MARK_BLOCKS_FREE));
}
static void delete_tree_element(TREE *tree, TREE_ELEMENT *element) {
if (element != &tree->null_element) {
delete_tree_element(tree, element->left);
if (tree->free)
(*tree->free)(ELEMENT_KEY(tree, element), free_free, tree->custom_arg);
delete_tree_element(tree, element->right);
if (tree->with_delete) my_free(element);
}
}
/*
insert, search and delete of elements
The following should be true:
parent[0] = & parent[-1][0]->left ||
parent[0] = & parent[-1][0]->right
@returns
NULL OOM or duplicate
non-null inserted element
*/
TREE_ELEMENT *tree_insert(TREE *tree, void *key, uint key_size,
const void *custom_arg) {
int cmp;
TREE_ELEMENT *element, ***parent;
parent = tree->parents;
*parent = &tree->root;
element = tree->root;
for (;;) {
if (element == &tree->null_element ||
(cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element), key)) ==
0)
break;
if (cmp < 0) {
*++parent = &element->right;
element = element->right;
} else {
*++parent = &element->left;
element = element->left;
}
}
if (element == &tree->null_element) {
uint alloc_size = sizeof(TREE_ELEMENT) + key_size + tree->size_of_element;
tree->allocated += alloc_size;
if (tree->memory_limit && tree->elements_in_tree &&
tree->allocated > tree->memory_limit) {
reset_tree(tree);
return tree_insert(tree, key, key_size, custom_arg);
}
key_size += tree->size_of_element;
if (tree->with_delete)
element =
(TREE_ELEMENT *)my_malloc(key_memory_TREE, alloc_size, MYF(MY_WME));
else
element = (TREE_ELEMENT *)tree->mem_root.Alloc(alloc_size);
if (!element) return (NULL);
**parent = element;
element->left = element->right = &tree->null_element;
if (!tree->offset_to_key) {
if (key_size == sizeof(void *)) /* no length, save pointer */
*((void **)(element + 1)) = key;
else {
*((void **)(element + 1)) = (void *)((void **)(element + 1) + 1);
memcpy((uchar *)*((void **)(element + 1)), key,
(size_t)(key_size - sizeof(void *)));
}
} else
memcpy((uchar *)element + tree->offset_to_key, key, (size_t)key_size);
element->count = 1;
tree->elements_in_tree++;
rb_insert(tree, parent, element); /* rebalance tree */
} else {
if (tree->flag & TREE_NO_DUPS) return (NULL);
element->count++;
/* Avoid a wrap over of the count. */
if (!element->count) element->count--;
}
DBUG_EXECUTE("check_tree", test_rb_tree(tree->root););
return element;
}
int tree_delete(TREE *tree, void *key, uint key_size, const void *custom_arg) {
int cmp, remove_colour;
TREE_ELEMENT *element, ***parent, ***org_parent, *nod;
if (!tree->with_delete) return 1; /* not allowed */
parent = tree->parents;
*parent = &tree->root;
element = tree->root;
for (;;) {
if (element == &tree->null_element) return 1; /* Was not in tree */
if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element), key)) ==
0)
break;
if (cmp < 0) {
*++parent = &element->right;
element = element->right;
} else {
*++parent = &element->left;
element = element->left;
}
}
if (element->left == &tree->null_element) {
(**parent) = element->right;
remove_colour = element->colour;
} else if (element->right == &tree->null_element) {
(**parent) = element->left;
remove_colour = element->colour;
} else {
org_parent = parent;
*++parent = &element->right;
nod = element->right;
while (nod->left != &tree->null_element) {
*++parent = &nod->left;
nod = nod->left;
}
(**parent) = nod->right; /* unlink nod from tree */
remove_colour = nod->colour;
org_parent[0][0] = nod; /* put y in place of element */
org_parent[1] = &nod->right;
nod->left = element->left;
nod->right = element->right;
nod->colour = element->colour;
}
if (remove_colour == BLACK) rb_delete_fixup(tree, parent);
if (tree->free)
(*tree->free)(ELEMENT_KEY(tree, element), free_free, tree->custom_arg);
tree->allocated -= sizeof(TREE_ELEMENT) + tree->size_of_element + key_size;
my_free(element);
tree->elements_in_tree--;
return 0;
}
void *tree_search(TREE *tree, void *key, const void *custom_arg) {
int cmp;
TREE_ELEMENT *element = tree->root;
for (;;) {
if (element == &tree->null_element) return (void *)0;
if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element), key)) ==
0)
return ELEMENT_KEY(tree, element);
if (cmp < 0)
element = element->right;
else
element = element->left;
}
}
void *tree_search_key(TREE *tree, const void *key, TREE_ELEMENT **parents,
TREE_ELEMENT ***last_pos, enum ha_rkey_function flag,
const void *custom_arg) {
int cmp;
TREE_ELEMENT *element = tree->root;
TREE_ELEMENT **last_left_step_parent = NULL, **last_right_step_parent = NULL;
TREE_ELEMENT **last_equal_element = NULL;
/*
TODO: support for HA_READ_KEY_OR_PREV, HA_READ_PREFIX flags if needed.
*/
*parents = &tree->null_element;
while (element != &tree->null_element) {
*++parents = element;
if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element), key)) ==
0) {
switch (flag) {
case HA_READ_KEY_EXACT:
case HA_READ_KEY_OR_NEXT:
case HA_READ_BEFORE_KEY:
last_equal_element = parents;
cmp = 1;
break;
case HA_READ_AFTER_KEY:
cmp = -1;
break;
case HA_READ_PREFIX_LAST:
case HA_READ_PREFIX_LAST_OR_PREV:
last_equal_element = parents;
cmp = -1;
break;
default:
return NULL;
}
}
if (cmp < 0) /* element < key */
{
last_right_step_parent = parents;
element = element->right;
} else {
last_left_step_parent = parents;
element = element->left;
}
}
switch (flag) {
case HA_READ_KEY_EXACT:
case HA_READ_PREFIX_LAST:
*last_pos = last_equal_element;
break;
case HA_READ_KEY_OR_NEXT:
*last_pos =
last_equal_element ? last_equal_element : last_left_step_parent;
break;
case HA_READ_AFTER_KEY:
*last_pos = last_left_step_parent;
break;
case HA_READ_PREFIX_LAST_OR_PREV:
*last_pos =
last_equal_element ? last_equal_element : last_right_step_parent;
break;
case HA_READ_BEFORE_KEY:
*last_pos = last_right_step_parent;
break;
default:
return NULL;
}
return *last_pos ? ELEMENT_KEY(tree, **last_pos) : NULL;
}
/*
Search first (the most left) or last (the most right) tree element
*/
void *tree_search_edge(TREE *tree, TREE_ELEMENT **parents,
TREE_ELEMENT ***last_pos, int child_offs) {
TREE_ELEMENT *element = tree->root;
*parents = &tree->null_element;
while (element != &tree->null_element) {
*++parents = element;
element = ELEMENT_CHILD(element, child_offs);
}
*last_pos = parents;
return **last_pos != &tree->null_element ? ELEMENT_KEY(tree, **last_pos)
: NULL;
}
void *tree_search_next(TREE *tree, TREE_ELEMENT ***last_pos, int l_offs,
int r_offs) {
TREE_ELEMENT *x = **last_pos;
if (ELEMENT_CHILD(x, r_offs) != &tree->null_element) {
x = ELEMENT_CHILD(x, r_offs);
*++*last_pos = x;
while (ELEMENT_CHILD(x, l_offs) != &tree->null_element) {
x = ELEMENT_CHILD(x, l_offs);
*++*last_pos = x;
}
return ELEMENT_KEY(tree, x);
} else {
TREE_ELEMENT *y = *--*last_pos;
while (y != &tree->null_element && x == ELEMENT_CHILD(y, r_offs)) {
x = y;
y = *--*last_pos;
}
return y == &tree->null_element ? NULL : ELEMENT_KEY(tree, y);
}
}
/*
Expected that tree is fully balanced
(each path from root to leaf has the same length)
*/
ha_rows tree_record_pos(TREE *tree, const void *key, enum ha_rkey_function flag,
const void *custom_arg) {
int cmp;
TREE_ELEMENT *element = tree->root;
double left = 1;
double right = tree->elements_in_tree;
while (element != &tree->null_element) {
if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element), key)) ==
0) {
switch (flag) {
case HA_READ_KEY_EXACT:
case HA_READ_BEFORE_KEY:
cmp = 1;
break;
case HA_READ_AFTER_KEY:
cmp = -1;
break;
default:
return HA_POS_ERROR;
}
}
if (cmp < 0) /* element < key */
{
element = element->right;
left = (left + right) / 2;
} else {
element = element->left;
right = (left + right) / 2;
}
}
switch (flag) {
case HA_READ_KEY_EXACT:
case HA_READ_BEFORE_KEY:
return (ha_rows)right;
case HA_READ_AFTER_KEY:
return (ha_rows)left;
default:
return HA_POS_ERROR;
}
}
int tree_walk(TREE *tree, tree_walk_action action, void *argument,
TREE_WALK visit) {
switch (visit) {
case left_root_right:
return tree_walk_left_root_right(tree, tree->root, action, argument);
case right_root_left:
return tree_walk_right_root_left(tree, tree->root, action, argument);
}
return 0; /* Keep gcc happy */
}
static int tree_walk_left_root_right(TREE *tree, TREE_ELEMENT *element,
tree_walk_action action, void *argument) {
int error;
if (element->left) /* Not null_element */
{
if ((error = tree_walk_left_root_right(tree, element->left, action,
argument)) == 0 &&
(error = (*action)(ELEMENT_KEY(tree, element),
(element_count)element->count, argument)) == 0)
error = tree_walk_left_root_right(tree, element->right, action, argument);
return error;
}
return 0;
}
static int tree_walk_right_root_left(TREE *tree, TREE_ELEMENT *element,
tree_walk_action action, void *argument) {
int error;
if (element->right) /* Not null_element */
{
if ((error = tree_walk_right_root_left(tree, element->right, action,
argument)) == 0 &&
(error = (*action)(ELEMENT_KEY(tree, element),
(element_count)element->count, argument)) == 0)
error = tree_walk_right_root_left(tree, element->left, action, argument);
return error;
}
return 0;
}
/* Functions to fix up the tree after insert and delete */
static void left_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf) {
TREE_ELEMENT *y;
y = leaf->right;
leaf->right = y->left;
parent[0] = y;
y->left = leaf;
}
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf) {
TREE_ELEMENT *x;
x = leaf->left;
leaf->left = x->right;
parent[0] = x;
x->right = leaf;
}
static void rb_insert(TREE *tree, TREE_ELEMENT ***parent, TREE_ELEMENT *leaf) {
TREE_ELEMENT *y, *par, *par2;
leaf->colour = RED;
while (leaf != tree->root && (par = parent[-1][0])->colour == RED) {
if (par == (par2 = parent[-2][0])->left) {
y = par2->right;
if (y->colour == RED) {
par->colour = BLACK;
y->colour = BLACK;
leaf = par2;
parent -= 2;
leaf->colour = RED; /* And the loop continues */
} else {
if (leaf == par->right) {
left_rotate(parent[-1], par);
par = leaf; /* leaf is now parent to old leaf */
}
par->colour = BLACK;
par2->colour = RED;
right_rotate(parent[-2], par2);
break;
}
} else {
y = par2->left;
if (y->colour == RED) {
par->colour = BLACK;
y->colour = BLACK;
leaf = par2;
parent -= 2;
leaf->colour = RED; /* And the loop continues */
} else {
if (leaf == par->left) {
right_rotate(parent[-1], par);
par = leaf;
}
par->colour = BLACK;
par2->colour = RED;
left_rotate(parent[-2], par2);
break;
}
}
}
tree->root->colour = BLACK;
}
static void rb_delete_fixup(TREE *tree, TREE_ELEMENT ***parent) {
TREE_ELEMENT *x, *w, *par;
x = **parent;
while (x != tree->root && x->colour == BLACK) {
if (x == (par = parent[-1][0])->left) {
w = par->right;
if (w->colour == RED) {
w->colour = BLACK;
par->colour = RED;
left_rotate(parent[-1], par);
parent[0] = &w->left;
*++parent = &par->left;
w = par->right;
}
if (w->left->colour == BLACK && w->right->colour == BLACK) {
w->colour = RED;
x = par;
parent--;
} else {
if (w->right->colour == BLACK) {
w->left->colour = BLACK;
w->colour = RED;
right_rotate(&par->right, w);
w = par->right;
}
w->colour = par->colour;
par->colour = BLACK;
w->right->colour = BLACK;
left_rotate(parent[-1], par);
x = tree->root;
break;
}
} else {
w = par->left;
if (w->colour == RED) {
w->colour = BLACK;
par->colour = RED;
right_rotate(parent[-1], par);
parent[0] = &w->right;
*++parent = &par->right;
w = par->left;
}
if (w->right->colour == BLACK && w->left->colour == BLACK) {
w->colour = RED;
x = par;
parent--;
} else {
if (w->left->colour == BLACK) {
w->right->colour = BLACK;
w->colour = RED;
left_rotate(&par->left, w);
w = par->left;
}
w->colour = par->colour;
par->colour = BLACK;
w->left->colour = BLACK;
right_rotate(parent[-1], par);
x = tree->root;
break;
}
}
}
x->colour = BLACK;
}
#ifndef DBUG_OFF
/* Test that the proporties for a red-black tree holds */
static int test_rb_tree(TREE_ELEMENT *element) {
int count_l, count_r;
if (!element->left) return 0; /* Found end of tree */
if (element->colour == RED &&
(element->left->colour == RED || element->right->colour == RED)) {
printf("Wrong tree: Found two red in a row\n");
return -1;
}
count_l = test_rb_tree(element->left);
count_r = test_rb_tree(element->right);
if (count_l >= 0 && count_r >= 0) {
if (count_l == count_r) return count_l + (element->colour == BLACK);
printf("Wrong tree: Incorrect black-count: %d - %d\n", count_l, count_r);
}
return -1;
}
#endif
|