aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/libfuzzer12/FuzzerCorpus.h
blob: daea4f5213b18272a6c7520393b073ffba31c015 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
//===- FuzzerCorpus.h - Internal header for the Fuzzer ----------*- C++ -* ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// fuzzer::InputCorpus
//===----------------------------------------------------------------------===//

#ifndef LLVM_FUZZER_CORPUS
#define LLVM_FUZZER_CORPUS

#include "FuzzerDataFlowTrace.h"
#include "FuzzerDefs.h"
#include "FuzzerIO.h"
#include "FuzzerRandom.h"
#include "FuzzerSHA1.h"
#include "FuzzerTracePC.h"
#include <algorithm>
#include <chrono>
#include <numeric>
#include <random>
#include <unordered_set>

namespace fuzzer {

struct InputInfo {
  Unit U;  // The actual input data.
  std::chrono::microseconds TimeOfUnit;
  uint8_t Sha1[kSHA1NumBytes];  // Checksum.
  // Number of features that this input has and no smaller input has.
  size_t NumFeatures = 0;
  size_t Tmp = 0; // Used by ValidateFeatureSet.
  // Stats.
  size_t NumExecutedMutations = 0;
  size_t NumSuccessfullMutations = 0;
  bool NeverReduce = false;
  bool MayDeleteFile = false;
  bool Reduced = false;
  bool HasFocusFunction = false;
  Vector<uint32_t> UniqFeatureSet;
  Vector<uint8_t> DataFlowTraceForFocusFunction;
  // Power schedule.
  bool NeedsEnergyUpdate = false;
  double Energy = 0.0;
  size_t SumIncidence = 0;
  Vector<std::pair<uint32_t, uint16_t>> FeatureFreqs;

  // Delete feature Idx and its frequency from FeatureFreqs.
  bool DeleteFeatureFreq(uint32_t Idx) {
    if (FeatureFreqs.empty())
      return false;

    // Binary search over local feature frequencies sorted by index.
    auto Lower = std::lower_bound(FeatureFreqs.begin(), FeatureFreqs.end(),
                                  std::pair<uint32_t, uint16_t>(Idx, 0));

    if (Lower != FeatureFreqs.end() && Lower->first == Idx) {
      FeatureFreqs.erase(Lower);
      return true;
    }
    return false;
  }

  // Assign more energy to a high-entropy seed, i.e., that reveals more
  // information about the globally rare features in the neighborhood of the
  // seed. Since we do not know the entropy of a seed that has never been
  // executed we assign fresh seeds maximum entropy and let II->Energy approach
  // the true entropy from above. If ScalePerExecTime is true, the computed
  // entropy is scaled based on how fast this input executes compared to the
  // average execution time of inputs. The faster an input executes, the more
  // energy gets assigned to the input.
  void UpdateEnergy(size_t GlobalNumberOfFeatures, bool ScalePerExecTime,
                    std::chrono::microseconds AverageUnitExecutionTime) {
    Energy = 0.0;
    SumIncidence = 0;

    // Apply add-one smoothing to locally discovered features.
    for (auto F : FeatureFreqs) {
      size_t LocalIncidence = F.second + 1;
      Energy -= LocalIncidence * logl(LocalIncidence);
      SumIncidence += LocalIncidence;
    }

    // Apply add-one smoothing to locally undiscovered features.
    //   PreciseEnergy -= 0; // since logl(1.0) == 0)
    SumIncidence += (GlobalNumberOfFeatures - FeatureFreqs.size());

    // Add a single locally abundant feature apply add-one smoothing.
    size_t AbdIncidence = NumExecutedMutations + 1;
    Energy -= AbdIncidence * logl(AbdIncidence);
    SumIncidence += AbdIncidence;

    // Normalize.
    if (SumIncidence != 0)
      Energy = (Energy / SumIncidence) + logl(SumIncidence);

    if (ScalePerExecTime) {
      // Scaling to favor inputs with lower execution time.
      uint32_t PerfScore = 100;
      if (TimeOfUnit.count() > AverageUnitExecutionTime.count() * 10)
        PerfScore = 10;
      else if (TimeOfUnit.count() > AverageUnitExecutionTime.count() * 4)
        PerfScore = 25;
      else if (TimeOfUnit.count() > AverageUnitExecutionTime.count() * 2)
        PerfScore = 50;
      else if (TimeOfUnit.count() * 3 > AverageUnitExecutionTime.count() * 4)
        PerfScore = 75;
      else if (TimeOfUnit.count() * 4 < AverageUnitExecutionTime.count())
        PerfScore = 300;
      else if (TimeOfUnit.count() * 3 < AverageUnitExecutionTime.count())
        PerfScore = 200;
      else if (TimeOfUnit.count() * 2 < AverageUnitExecutionTime.count())
        PerfScore = 150;

      Energy *= PerfScore;
    }
  }

  // Increment the frequency of the feature Idx.
  void UpdateFeatureFrequency(uint32_t Idx) {
    NeedsEnergyUpdate = true;

    // The local feature frequencies is an ordered vector of pairs.
    // If there are no local feature frequencies, push_back preserves order.
    // Set the feature frequency for feature Idx32 to 1.
    if (FeatureFreqs.empty()) {
      FeatureFreqs.push_back(std::pair<uint32_t, uint16_t>(Idx, 1));
      return;
    }

    // Binary search over local feature frequencies sorted by index.
    auto Lower = std::lower_bound(FeatureFreqs.begin(), FeatureFreqs.end(),
                                  std::pair<uint32_t, uint16_t>(Idx, 0));

    // If feature Idx32 already exists, increment its frequency.
    // Otherwise, insert a new pair right after the next lower index.
    if (Lower != FeatureFreqs.end() && Lower->first == Idx) {
      Lower->second++;
    } else {
      FeatureFreqs.insert(Lower, std::pair<uint32_t, uint16_t>(Idx, 1));
    }
  }
};

struct EntropicOptions {
  bool Enabled;
  size_t NumberOfRarestFeatures;
  size_t FeatureFrequencyThreshold;
  bool ScalePerExecTime;
};

class InputCorpus {
  static const uint32_t kFeatureSetSize = 1 << 21;
  static const uint8_t kMaxMutationFactor = 20;
  static const size_t kSparseEnergyUpdates = 100;

  size_t NumExecutedMutations = 0;

  EntropicOptions Entropic;

public:
  InputCorpus(const std::string &OutputCorpus, EntropicOptions Entropic)
      : Entropic(Entropic), OutputCorpus(OutputCorpus) {
    memset(InputSizesPerFeature, 0, sizeof(InputSizesPerFeature));
    memset(SmallestElementPerFeature, 0, sizeof(SmallestElementPerFeature));
  }
  ~InputCorpus() {
    for (auto II : Inputs)
      delete II;
  }
  size_t size() const { return Inputs.size(); }
  size_t SizeInBytes() const {
    size_t Res = 0;
    for (auto II : Inputs)
      Res += II->U.size();
    return Res;
  }
  size_t NumActiveUnits() const {
    size_t Res = 0;
    for (auto II : Inputs)
      Res += !II->U.empty();
    return Res;
  }
  size_t MaxInputSize() const {
    size_t Res = 0;
    for (auto II : Inputs)
        Res = std::max(Res, II->U.size());
    return Res;
  }
  void IncrementNumExecutedMutations() { NumExecutedMutations++; }

  size_t NumInputsThatTouchFocusFunction() {
    return std::count_if(Inputs.begin(), Inputs.end(), [](const InputInfo *II) {
      return II->HasFocusFunction;
    });
  }

  size_t NumInputsWithDataFlowTrace() {
    return std::count_if(Inputs.begin(), Inputs.end(), [](const InputInfo *II) {
      return !II->DataFlowTraceForFocusFunction.empty();
    });
  }

  bool empty() const { return Inputs.empty(); }
  const Unit &operator[] (size_t Idx) const { return Inputs[Idx]->U; }
  InputInfo *AddToCorpus(const Unit &U, size_t NumFeatures, bool MayDeleteFile,
                         bool HasFocusFunction, bool NeverReduce,
                         std::chrono::microseconds TimeOfUnit,
                         const Vector<uint32_t> &FeatureSet,
                         const DataFlowTrace &DFT, const InputInfo *BaseII) {
    assert(!U.empty());
    if (FeatureDebug)
      Printf("ADD_TO_CORPUS %zd NF %zd\n", Inputs.size(), NumFeatures);
    Inputs.push_back(new InputInfo());
    InputInfo &II = *Inputs.back();
    II.U = U;
    II.NumFeatures = NumFeatures;
    II.NeverReduce = NeverReduce;
    II.TimeOfUnit = TimeOfUnit;
    II.MayDeleteFile = MayDeleteFile;
    II.UniqFeatureSet = FeatureSet;
    II.HasFocusFunction = HasFocusFunction;
    // Assign maximal energy to the new seed.
    II.Energy = RareFeatures.empty() ? 1.0 : log(RareFeatures.size());
    II.SumIncidence = RareFeatures.size();
    II.NeedsEnergyUpdate = false;
    std::sort(II.UniqFeatureSet.begin(), II.UniqFeatureSet.end());
    ComputeSHA1(U.data(), U.size(), II.Sha1);
    auto Sha1Str = Sha1ToString(II.Sha1);
    Hashes.insert(Sha1Str);
    if (HasFocusFunction)
      if (auto V = DFT.Get(Sha1Str))
        II.DataFlowTraceForFocusFunction = *V;
    // This is a gross heuristic.
    // Ideally, when we add an element to a corpus we need to know its DFT.
    // But if we don't, we'll use the DFT of its base input.
    if (II.DataFlowTraceForFocusFunction.empty() && BaseII)
      II.DataFlowTraceForFocusFunction = BaseII->DataFlowTraceForFocusFunction;
    DistributionNeedsUpdate = true;
    PrintCorpus();
    // ValidateFeatureSet();
    return &II;
  }

  // Debug-only
  void PrintUnit(const Unit &U) {
    if (!FeatureDebug) return;
    for (uint8_t C : U) {
      if (C != 'F' && C != 'U' && C != 'Z')
        C = '.';
      Printf("%c", C);
    }
  }

  // Debug-only
  void PrintFeatureSet(const Vector<uint32_t> &FeatureSet) {
    if (!FeatureDebug) return;
    Printf("{");
    for (uint32_t Feature: FeatureSet)
      Printf("%u,", Feature);
    Printf("}");
  }

  // Debug-only
  void PrintCorpus() {
    if (!FeatureDebug) return;
    Printf("======= CORPUS:\n");
    int i = 0;
    for (auto II : Inputs) {
      if (std::find(II->U.begin(), II->U.end(), 'F') != II->U.end()) {
        Printf("[%2d] ", i);
        Printf("%s sz=%zd ", Sha1ToString(II->Sha1).c_str(), II->U.size());
        PrintUnit(II->U);
        Printf(" ");
        PrintFeatureSet(II->UniqFeatureSet);
        Printf("\n");
      }
      i++;
    }
  }

  void Replace(InputInfo *II, const Unit &U) {
    assert(II->U.size() > U.size());
    Hashes.erase(Sha1ToString(II->Sha1));
    DeleteFile(*II);
    ComputeSHA1(U.data(), U.size(), II->Sha1);
    Hashes.insert(Sha1ToString(II->Sha1));
    II->U = U;
    II->Reduced = true;
    DistributionNeedsUpdate = true;
  }

  bool HasUnit(const Unit &U) { return Hashes.count(Hash(U)); }
  bool HasUnit(const std::string &H) { return Hashes.count(H); }
  InputInfo &ChooseUnitToMutate(Random &Rand) {
    InputInfo &II = *Inputs[ChooseUnitIdxToMutate(Rand)];
    assert(!II.U.empty());
    return II;
  }

  InputInfo &ChooseUnitToCrossOverWith(Random &Rand, bool UniformDist) {
    if (!UniformDist) {
      return ChooseUnitToMutate(Rand);
    }
    InputInfo &II = *Inputs[Rand(Inputs.size())];
    assert(!II.U.empty());
    return II;
  }

  // Returns an index of random unit from the corpus to mutate.
  size_t ChooseUnitIdxToMutate(Random &Rand) {
    UpdateCorpusDistribution(Rand);
    size_t Idx = static_cast<size_t>(CorpusDistribution(Rand));
    assert(Idx < Inputs.size());
    return Idx;
  }

  void PrintStats() {
    for (size_t i = 0; i < Inputs.size(); i++) {
      const auto &II = *Inputs[i];
      Printf("  [% 3zd %s] sz: % 5zd runs: % 5zd succ: % 5zd focus: %d\n", i,
             Sha1ToString(II.Sha1).c_str(), II.U.size(),
             II.NumExecutedMutations, II.NumSuccessfullMutations, II.HasFocusFunction);
    }
  }

  void PrintFeatureSet() {
    for (size_t i = 0; i < kFeatureSetSize; i++) {
      if(size_t Sz = GetFeature(i))
        Printf("[%zd: id %zd sz%zd] ", i, SmallestElementPerFeature[i], Sz);
    }
    Printf("\n\t");
    for (size_t i = 0; i < Inputs.size(); i++)
      if (size_t N = Inputs[i]->NumFeatures)
        Printf(" %zd=>%zd ", i, N);
    Printf("\n");
  }

  void DeleteFile(const InputInfo &II) {
    if (!OutputCorpus.empty() && II.MayDeleteFile)
      RemoveFile(DirPlusFile(OutputCorpus, Sha1ToString(II.Sha1)));
  }

  void DeleteInput(size_t Idx) {
    InputInfo &II = *Inputs[Idx];
    DeleteFile(II);
    Unit().swap(II.U);
    II.Energy = 0.0;
    II.NeedsEnergyUpdate = false;
    DistributionNeedsUpdate = true;
    if (FeatureDebug)
      Printf("EVICTED %zd\n", Idx);
  }

  void AddRareFeature(uint32_t Idx) {
    // Maintain *at least* TopXRarestFeatures many rare features
    // and all features with a frequency below ConsideredRare.
    // Remove all other features.
    while (RareFeatures.size() > Entropic.NumberOfRarestFeatures &&
           FreqOfMostAbundantRareFeature > Entropic.FeatureFrequencyThreshold) {

      // Find most and second most abbundant feature.
      uint32_t MostAbundantRareFeatureIndices[2] = {RareFeatures[0],
                                                    RareFeatures[0]};
      size_t Delete = 0;
      for (size_t i = 0; i < RareFeatures.size(); i++) {
        uint32_t Idx2 = RareFeatures[i];
        if (GlobalFeatureFreqs[Idx2] >=
            GlobalFeatureFreqs[MostAbundantRareFeatureIndices[0]]) {
          MostAbundantRareFeatureIndices[1] = MostAbundantRareFeatureIndices[0];
          MostAbundantRareFeatureIndices[0] = Idx2;
          Delete = i;
        }
      }

      // Remove most abundant rare feature.
      RareFeatures[Delete] = RareFeatures.back();
      RareFeatures.pop_back();

      for (auto II : Inputs) {
        if (II->DeleteFeatureFreq(MostAbundantRareFeatureIndices[0]))
          II->NeedsEnergyUpdate = true;
      }

      // Set 2nd most abundant as the new most abundant feature count.
      FreqOfMostAbundantRareFeature =
          GlobalFeatureFreqs[MostAbundantRareFeatureIndices[1]];
    }

    // Add rare feature, handle collisions, and update energy.
    RareFeatures.push_back(Idx);
    GlobalFeatureFreqs[Idx] = 0;
    for (auto II : Inputs) {
      II->DeleteFeatureFreq(Idx);

      // Apply add-one smoothing to this locally undiscovered feature.
      // Zero energy seeds will never be fuzzed and remain zero energy.
      if (II->Energy > 0.0) {
        II->SumIncidence += 1;
        II->Energy += logl(II->SumIncidence) / II->SumIncidence;
      }
    }

    DistributionNeedsUpdate = true;
  }

  bool AddFeature(size_t Idx, uint32_t NewSize, bool Shrink) {
    assert(NewSize);
    Idx = Idx % kFeatureSetSize;
    uint32_t OldSize = GetFeature(Idx);
    if (OldSize == 0 || (Shrink && OldSize > NewSize)) {
      if (OldSize > 0) {
        size_t OldIdx = SmallestElementPerFeature[Idx];
        InputInfo &II = *Inputs[OldIdx];
        assert(II.NumFeatures > 0);
        II.NumFeatures--;
        if (II.NumFeatures == 0)
          DeleteInput(OldIdx);
      } else {
        NumAddedFeatures++;
        if (Entropic.Enabled)
          AddRareFeature((uint32_t)Idx);
      }
      NumUpdatedFeatures++;
      if (FeatureDebug)
        Printf("ADD FEATURE %zd sz %d\n", Idx, NewSize);
      SmallestElementPerFeature[Idx] = Inputs.size();
      InputSizesPerFeature[Idx] = NewSize;
      return true;
    }
    return false;
  }

  // Increment frequency of feature Idx globally and locally.
  void UpdateFeatureFrequency(InputInfo *II, size_t Idx) {
    uint32_t Idx32 = Idx % kFeatureSetSize;

    // Saturated increment.
    if (GlobalFeatureFreqs[Idx32] == 0xFFFF)
      return;
    uint16_t Freq = GlobalFeatureFreqs[Idx32]++;

    // Skip if abundant.
    if (Freq > FreqOfMostAbundantRareFeature ||
        std::find(RareFeatures.begin(), RareFeatures.end(), Idx32) ==
            RareFeatures.end())
      return;

    // Update global frequencies.
    if (Freq == FreqOfMostAbundantRareFeature)
      FreqOfMostAbundantRareFeature++;

    // Update local frequencies.
    if (II)
      II->UpdateFeatureFrequency(Idx32);
  }

  size_t NumFeatures() const { return NumAddedFeatures; }
  size_t NumFeatureUpdates() const { return NumUpdatedFeatures; }

private:

  static const bool FeatureDebug = false;

  size_t GetFeature(size_t Idx) const { return InputSizesPerFeature[Idx]; }

  void ValidateFeatureSet() {
    if (FeatureDebug)
      PrintFeatureSet();
    for (size_t Idx = 0; Idx < kFeatureSetSize; Idx++)
      if (GetFeature(Idx))
        Inputs[SmallestElementPerFeature[Idx]]->Tmp++;
    for (auto II: Inputs) {
      if (II->Tmp != II->NumFeatures)
        Printf("ZZZ %zd %zd\n", II->Tmp, II->NumFeatures);
      assert(II->Tmp == II->NumFeatures);
      II->Tmp = 0;
    }
  }

  // Updates the probability distribution for the units in the corpus.
  // Must be called whenever the corpus or unit weights are changed.
  //
  // Hypothesis: inputs that maximize information about globally rare features
  // are interesting.
  void UpdateCorpusDistribution(Random &Rand) {
    // Skip update if no seeds or rare features were added/deleted.
    // Sparse updates for local change of feature frequencies,
    // i.e., randomly do not skip.
    if (!DistributionNeedsUpdate &&
        (!Entropic.Enabled || Rand(kSparseEnergyUpdates)))
      return;

    DistributionNeedsUpdate = false;

    size_t N = Inputs.size();
    assert(N);
    Intervals.resize(N + 1);
    Weights.resize(N);
    std::iota(Intervals.begin(), Intervals.end(), 0);

    std::chrono::microseconds AverageUnitExecutionTime(0);
    for (auto II : Inputs) {
      AverageUnitExecutionTime += II->TimeOfUnit;
    }
    AverageUnitExecutionTime /= N;

    bool VanillaSchedule = true;
    if (Entropic.Enabled) {
      for (auto II : Inputs) {
        if (II->NeedsEnergyUpdate && II->Energy != 0.0) {
          II->NeedsEnergyUpdate = false;
          II->UpdateEnergy(RareFeatures.size(), Entropic.ScalePerExecTime,
                           AverageUnitExecutionTime);
        }
      }

      for (size_t i = 0; i < N; i++) {

        if (Inputs[i]->NumFeatures == 0) {
          // If the seed doesn't represent any features, assign zero energy.
          Weights[i] = 0.;
        } else if (Inputs[i]->NumExecutedMutations / kMaxMutationFactor >
                   NumExecutedMutations / Inputs.size()) {
          // If the seed was fuzzed a lot more than average, assign zero energy.
          Weights[i] = 0.;
        } else {
          // Otherwise, simply assign the computed energy.
          Weights[i] = Inputs[i]->Energy;
        }

        // If energy for all seeds is zero, fall back to vanilla schedule.
        if (Weights[i] > 0.0)
          VanillaSchedule = false;
      }
    }

    if (VanillaSchedule) {
      for (size_t i = 0; i < N; i++)
        Weights[i] = Inputs[i]->NumFeatures
                         ? (i + 1) * (Inputs[i]->HasFocusFunction ? 1000 : 1)
                         : 0.;
    }

    if (FeatureDebug) {
      for (size_t i = 0; i < N; i++)
        Printf("%zd ", Inputs[i]->NumFeatures);
      Printf("SCORE\n");
      for (size_t i = 0; i < N; i++)
        Printf("%f ", Weights[i]);
      Printf("Weights\n");
    }
    CorpusDistribution = std::piecewise_constant_distribution<double>(
        Intervals.begin(), Intervals.end(), Weights.begin());
  }
  std::piecewise_constant_distribution<double> CorpusDistribution;

  Vector<double> Intervals;
  Vector<double> Weights;

  std::unordered_set<std::string> Hashes;
  Vector<InputInfo*> Inputs;

  size_t NumAddedFeatures = 0;
  size_t NumUpdatedFeatures = 0;
  uint32_t InputSizesPerFeature[kFeatureSetSize];
  uint32_t SmallestElementPerFeature[kFeatureSetSize];

  bool DistributionNeedsUpdate = true;
  uint16_t FreqOfMostAbundantRareFeature = 0;
  uint16_t GlobalFeatureFreqs[kFeatureSetSize] = {};
  Vector<uint32_t> RareFeatures;

  std::string OutputCorpus;
};

}  // namespace fuzzer

#endif  // LLVM_FUZZER_CORPUS