aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/libfuzzer/FuzzerUtil.cpp
blob: aeab70f20c28e87bc70e8f4d5fdcb13337ff02af (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
//===- FuzzerUtil.cpp - Misc utils ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Misc utils.
//===----------------------------------------------------------------------===//

#include "FuzzerUtil.h"
#include "FuzzerIO.h"
#include "FuzzerInternal.h"
#include <cassert>
#include <chrono>
#include <cstring>
#include <errno.h>
#include <mutex>
#include <signal.h>
#include <sstream>
#include <stdio.h>
#include <sys/types.h>
#include <thread>

namespace fuzzer {

void PrintHexArray(const uint8_t *Data, size_t Size,
                   const char *PrintAfter) {
  for (size_t i = 0; i < Size; i++)
    Printf("0x%x,", (unsigned)Data[i]);
  Printf("%s", PrintAfter);
}

void Print(const Unit &v, const char *PrintAfter) {
  PrintHexArray(v.data(), v.size(), PrintAfter);
}

void PrintASCIIByte(uint8_t Byte) {
  if (Byte == '\\')
    Printf("\\\\");
  else if (Byte == '"')
    Printf("\\\"");
  else if (Byte >= 32 && Byte < 127)
    Printf("%c", Byte);
  else
    Printf("\\%03o", Byte);
}

void PrintASCII(const uint8_t *Data, size_t Size, const char *PrintAfter) {
  for (size_t i = 0; i < Size; i++)
    PrintASCIIByte(Data[i]);
  Printf("%s", PrintAfter);
}

void PrintASCII(const Unit &U, const char *PrintAfter) {
  PrintASCII(U.data(), U.size(), PrintAfter);
}

bool ToASCII(uint8_t *Data, size_t Size) {
  bool Changed = false;
  for (size_t i = 0; i < Size; i++) {
    uint8_t &X = Data[i];
    auto NewX = X;
    NewX &= 127;
    if (!isspace(NewX) && !isprint(NewX))
      NewX = ' ';
    Changed |= NewX != X;
    X = NewX;
  }
  return Changed;
}

bool IsASCII(const Unit &U) { return IsASCII(U.data(), U.size()); }

bool IsASCII(const uint8_t *Data, size_t Size) {
  for (size_t i = 0; i < Size; i++)
    if (!(isprint(Data[i]) || isspace(Data[i]))) return false;
  return true;
}

bool ParseOneDictionaryEntry(const std::string &Str, Unit *U) {
  U->clear();
  if (Str.empty()) return false;
  size_t L = 0, R = Str.size() - 1;  // We are parsing the range [L,R].
  // Skip spaces from both sides.
  while (L < R && isspace(Str[L])) L++;
  while (R > L && isspace(Str[R])) R--;
  if (R - L < 2) return false;
  // Check the closing "
  if (Str[R] != '"') return false;
  R--;
  // Find the opening "
  while (L < R && Str[L] != '"') L++;
  if (L >= R) return false;
  assert(Str[L] == '\"');
  L++;
  assert(L <= R);
  for (size_t Pos = L; Pos <= R; Pos++) {
    uint8_t V = (uint8_t)Str[Pos];
    if (!isprint(V) && !isspace(V)) return false;
    if (V =='\\') {
      // Handle '\\'
      if (Pos + 1 <= R && (Str[Pos + 1] == '\\' || Str[Pos + 1] == '"')) {
        U->push_back(Str[Pos + 1]);
        Pos++;
        continue;
      }
      // Handle '\xAB'
      if (Pos + 3 <= R && Str[Pos + 1] == 'x'
           && isxdigit(Str[Pos + 2]) && isxdigit(Str[Pos + 3])) {
        char Hex[] = "0xAA";
        Hex[2] = Str[Pos + 2];
        Hex[3] = Str[Pos + 3];
        U->push_back(static_cast<uint8_t>(strtol(Hex, nullptr, 16)));
        Pos += 3;
        continue;
      }
      return false;  // Invalid escape.
    } else {
      // Any other character.
      U->push_back(V);
    }
  }
  return true;
}

bool ParseDictionaryFile(const std::string &Text, std::vector<Unit> *Units) {
  if (Text.empty()) {
    Printf("ParseDictionaryFile: file does not exist or is empty\n");
    return false;
  }
  std::istringstream ISS(Text);
  Units->clear();
  Unit U;
  int LineNo = 0;
  std::string S;
  while (std::getline(ISS, S, '\n')) {
    LineNo++;
    size_t Pos = 0;
    while (Pos < S.size() && isspace(S[Pos])) Pos++;  // Skip spaces.
    if (Pos == S.size()) continue;  // Empty line.
    if (S[Pos] == '#') continue;  // Comment line.
    if (ParseOneDictionaryEntry(S, &U)) {
      Units->push_back(U);
    } else {
      Printf("ParseDictionaryFile: error in line %d\n\t\t%s\n", LineNo,
             S.c_str());
      return false;
    }
  }
  return true;
}

// Code duplicated (and tested) in llvm/include/llvm/Support/Base64.h
std::string Base64(const Unit &U) {
  static const char Table[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
                              "abcdefghijklmnopqrstuvwxyz"
                              "0123456789+/";
  std::string Buffer;
  Buffer.resize(((U.size() + 2) / 3) * 4);

  size_t i = 0, j = 0;
  for (size_t n = U.size() / 3 * 3; i < n; i += 3, j += 4) {
    uint32_t x = ((unsigned char)U[i] << 16) | ((unsigned char)U[i + 1] << 8) |
                 (unsigned char)U[i + 2];
    Buffer[j + 0] = Table[(x >> 18) & 63];
    Buffer[j + 1] = Table[(x >> 12) & 63];
    Buffer[j + 2] = Table[(x >> 6) & 63];
    Buffer[j + 3] = Table[x & 63];
  }
  if (i + 1 == U.size()) {
    uint32_t x = ((unsigned char)U[i] << 16);
    Buffer[j + 0] = Table[(x >> 18) & 63];
    Buffer[j + 1] = Table[(x >> 12) & 63];
    Buffer[j + 2] = '=';
    Buffer[j + 3] = '=';
  } else if (i + 2 == U.size()) {
    uint32_t x = ((unsigned char)U[i] << 16) | ((unsigned char)U[i + 1] << 8);
    Buffer[j + 0] = Table[(x >> 18) & 63];
    Buffer[j + 1] = Table[(x >> 12) & 63];
    Buffer[j + 2] = Table[(x >> 6) & 63];
    Buffer[j + 3] = '=';
  }
  return Buffer;
}

static std::mutex SymbolizeMutex;

std::string DescribePC(const char *SymbolizedFMT, uintptr_t PC) {
  std::unique_lock<std::mutex> l(SymbolizeMutex, std::try_to_lock);
  if (!EF->__sanitizer_symbolize_pc || !l.owns_lock())
    return "<can not symbolize>";
  char PcDescr[1024] = {};
  EF->__sanitizer_symbolize_pc(reinterpret_cast<void*>(PC),
                               SymbolizedFMT, PcDescr, sizeof(PcDescr));
  PcDescr[sizeof(PcDescr) - 1] = 0;  // Just in case.
  return PcDescr;
}

void PrintPC(const char *SymbolizedFMT, const char *FallbackFMT, uintptr_t PC) {
  if (EF->__sanitizer_symbolize_pc)
    Printf("%s", DescribePC(SymbolizedFMT, PC).c_str());
  else
    Printf(FallbackFMT, PC);
}

void PrintStackTrace() {
  std::unique_lock<std::mutex> l(SymbolizeMutex, std::try_to_lock);
  if (EF->__sanitizer_print_stack_trace && l.owns_lock())
    EF->__sanitizer_print_stack_trace();
}

void PrintMemoryProfile() {
  std::unique_lock<std::mutex> l(SymbolizeMutex, std::try_to_lock);
  if (EF->__sanitizer_print_memory_profile && l.owns_lock())
    EF->__sanitizer_print_memory_profile(95, 8);
}

unsigned NumberOfCpuCores() {
  unsigned N = std::thread::hardware_concurrency();
  if (!N) {
    Printf("WARNING: std::thread::hardware_concurrency not well defined for "
           "your platform. Assuming CPU count of 1.\n");
    N = 1;
  }
  return N;
}

uint64_t SimpleFastHash(const void *Data, size_t Size, uint64_t Initial) {
  uint64_t Res = Initial;
  const uint8_t *Bytes = static_cast<const uint8_t *>(Data);
  for (size_t i = 0; i < Size; i++)
    Res = Res * 11 + Bytes[i];
  return Res;
}

}  // namespace fuzzer