aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/lcms2/src/cmsgmt.c
blob: 64573476c81359aecdddb3ac8555e24a3e068baf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
//---------------------------------------------------------------------------------
//
//  Little Color Management System
//  Copyright (c) 1998-2021 Marti Maria Saguer
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---------------------------------------------------------------------------------
//

#include "lcms2_internal.h"


// Auxiliary: append a Lab identity after the given sequence of profiles
// and return the transform. Lab profile is closed, rest of profiles are kept open.
cmsHTRANSFORM _cmsChain2Lab(cmsContext            ContextID,
                            cmsUInt32Number        nProfiles,
                            cmsUInt32Number        InputFormat,
                            cmsUInt32Number        OutputFormat,
                            const cmsUInt32Number  Intents[],
                            const cmsHPROFILE      hProfiles[],
                            const cmsBool          BPC[],
                            const cmsFloat64Number AdaptationStates[],
                            cmsUInt32Number        dwFlags)
{
    cmsHTRANSFORM xform;
    cmsHPROFILE   hLab;
    cmsHPROFILE   ProfileList[256];
    cmsBool       BPCList[256];
    cmsFloat64Number AdaptationList[256];
    cmsUInt32Number IntentList[256];
    cmsUInt32Number i;

    // This is a rather big number and there is no need of dynamic memory
    // since we are adding a profile, 254 + 1 = 255 and this is the limit
    if (nProfiles > 254) return NULL;

    // The output space
    hLab = cmsCreateLab4ProfileTHR(ContextID, NULL);
    if (hLab == NULL) return NULL;

    // Create a copy of parameters
    for (i=0; i < nProfiles; i++) {

        ProfileList[i]    = hProfiles[i];
        BPCList[i]        = BPC[i];
        AdaptationList[i] = AdaptationStates[i];
        IntentList[i]     = Intents[i];
    }

    // Place Lab identity at chain's end.
    ProfileList[nProfiles]    = hLab;
    BPCList[nProfiles]        = 0;
    AdaptationList[nProfiles] = 1.0;
    IntentList[nProfiles]     = INTENT_RELATIVE_COLORIMETRIC;

    // Create the transform
    xform = cmsCreateExtendedTransform(ContextID, nProfiles + 1, ProfileList,
                                       BPCList,
                                       IntentList,
                                       AdaptationList,
                                       NULL, 0,
                                       InputFormat,
                                       OutputFormat,
                                       dwFlags);

    cmsCloseProfile(hLab);

    return xform;
}


// Compute K -> L* relationship. Flags may include black point compensation. In this case,
// the relationship is assumed from the profile with BPC to a black point zero.
static
cmsToneCurve* ComputeKToLstar(cmsContext            ContextID,
                               cmsUInt32Number       nPoints,
                               cmsUInt32Number       nProfiles,
                               const cmsUInt32Number Intents[],
                               const cmsHPROFILE     hProfiles[],
                               const cmsBool         BPC[],
                               const cmsFloat64Number AdaptationStates[],
                               cmsUInt32Number dwFlags)
{
    cmsToneCurve* out = NULL;
    cmsUInt32Number i;
    cmsHTRANSFORM xform;
    cmsCIELab Lab;
    cmsFloat32Number cmyk[4];
    cmsFloat32Number* SampledPoints;

    xform = _cmsChain2Lab(ContextID, nProfiles, TYPE_CMYK_FLT, TYPE_Lab_DBL, Intents, hProfiles, BPC, AdaptationStates, dwFlags);
    if (xform == NULL) return NULL;

    SampledPoints = (cmsFloat32Number*) _cmsCalloc(ContextID, nPoints, sizeof(cmsFloat32Number));
    if (SampledPoints  == NULL) goto Error;

    for (i=0; i < nPoints; i++) {

        cmyk[0] = 0;
        cmyk[1] = 0;
        cmyk[2] = 0;
        cmyk[3] = (cmsFloat32Number) ((i * 100.0) / (nPoints-1));

        cmsDoTransform(xform, cmyk, &Lab, 1);
        SampledPoints[i]= (cmsFloat32Number) (1.0 - Lab.L / 100.0); // Negate K for easier operation
    }

    out = cmsBuildTabulatedToneCurveFloat(ContextID, nPoints, SampledPoints);

Error:

    cmsDeleteTransform(xform);
    if (SampledPoints) _cmsFree(ContextID, SampledPoints);

    return out;
}


// Compute Black tone curve on a CMYK -> CMYK transform. This is done by
// using the proof direction on both profiles to find K->L* relationship
// then joining both curves. dwFlags may include black point compensation.
cmsToneCurve* _cmsBuildKToneCurve(cmsContext        ContextID,
                                   cmsUInt32Number   nPoints,
                                   cmsUInt32Number   nProfiles,
                                   const cmsUInt32Number Intents[],
                                   const cmsHPROFILE hProfiles[],
                                   const cmsBool     BPC[],
                                   const cmsFloat64Number AdaptationStates[],
                                   cmsUInt32Number   dwFlags)
{
    cmsToneCurve *in, *out, *KTone;

    // Make sure CMYK -> CMYK
    if (cmsGetColorSpace(hProfiles[0]) != cmsSigCmykData ||
        cmsGetColorSpace(hProfiles[nProfiles-1])!= cmsSigCmykData) return NULL;


    // Make sure last is an output profile
    if (cmsGetDeviceClass(hProfiles[nProfiles - 1]) != cmsSigOutputClass) return NULL;

    // Create individual curves. BPC works also as each K to L* is
    // computed as a BPC to zero black point in case of L*
    in  = ComputeKToLstar(ContextID, nPoints, nProfiles - 1, Intents, hProfiles, BPC, AdaptationStates, dwFlags);
    if (in == NULL) return NULL;

    out = ComputeKToLstar(ContextID, nPoints, 1,
                            Intents + (nProfiles - 1),
                            &hProfiles [nProfiles - 1],
                            BPC + (nProfiles - 1),
                            AdaptationStates + (nProfiles - 1),
                            dwFlags);
    if (out == NULL) {
        cmsFreeToneCurve(in);
        return NULL;
    }

    // Build the relationship. This effectively limits the maximum accuracy to 16 bits, but
    // since this is used on black-preserving LUTs, we are not losing  accuracy in any case
    KTone = cmsJoinToneCurve(ContextID, in, out, nPoints);

    // Get rid of components
    cmsFreeToneCurve(in); cmsFreeToneCurve(out);

    // Something went wrong...
    if (KTone == NULL) return NULL;

    // Make sure it is monotonic
    if (!cmsIsToneCurveMonotonic(KTone)) {
        cmsFreeToneCurve(KTone);
        return NULL;
    }

    return KTone;
}


// Gamut LUT Creation -----------------------------------------------------------------------------------------

// Used by gamut & softproofing

typedef struct {

    cmsHTRANSFORM hInput;               // From whatever input color space. 16 bits to DBL
    cmsHTRANSFORM hForward, hReverse;   // Transforms going from Lab to colorant and back
    cmsFloat64Number Threshold;         // The threshold after which is considered out of gamut

    } GAMUTCHAIN;

// This sampler does compute gamut boundaries by comparing original
// values with a transform going back and forth. Values above ERR_THRESHOLD
// of maximum are considered out of gamut.

#define ERR_THRESHOLD      5


static
int GamutSampler(CMSREGISTER const cmsUInt16Number In[], CMSREGISTER cmsUInt16Number Out[], CMSREGISTER void* Cargo)
{
    GAMUTCHAIN*  t = (GAMUTCHAIN* ) Cargo;
    cmsCIELab LabIn1, LabOut1;
    cmsCIELab LabIn2, LabOut2;
    cmsUInt16Number Proof[cmsMAXCHANNELS], Proof2[cmsMAXCHANNELS];
    cmsFloat64Number dE1, dE2, ErrorRatio;

    // Assume in-gamut by default. NEVER READ, USED FOR DEBUG PURPOSES.
    ErrorRatio = 1.0;

    // Convert input to Lab
    cmsDoTransform(t -> hInput, In, &LabIn1, 1);

    // converts from PCS to colorant. This always
    // does return in-gamut values,
    cmsDoTransform(t -> hForward, &LabIn1, Proof, 1);

    // Now, do the inverse, from colorant to PCS.
    cmsDoTransform(t -> hReverse, Proof, &LabOut1, 1);

    memmove(&LabIn2, &LabOut1, sizeof(cmsCIELab));

    // Try again, but this time taking Check as input
    cmsDoTransform(t -> hForward, &LabOut1, Proof2, 1);
    cmsDoTransform(t -> hReverse, Proof2, &LabOut2, 1);

    // Take difference of direct value
    dE1 = cmsDeltaE(&LabIn1, &LabOut1);

    // Take difference of converted value
    dE2 = cmsDeltaE(&LabIn2, &LabOut2);


    // if dE1 is small and dE2 is small, value is likely to be in gamut
    if (dE1 < t->Threshold && dE2 < t->Threshold)
        Out[0] = 0;
    else {

        // if dE1 is small and dE2 is big, undefined. Assume in gamut
        if (dE1 < t->Threshold && dE2 > t->Threshold)
            Out[0] = 0;
        else
            // dE1 is big and dE2 is small, clearly out of gamut
            if (dE1 > t->Threshold && dE2 < t->Threshold)
                Out[0] = (cmsUInt16Number) _cmsQuickFloor((dE1 - t->Threshold) + .5);
            else  {

                // dE1 is big and dE2 is also big, could be due to perceptual mapping
                // so take error ratio
                if (dE2 == 0.0)
                    ErrorRatio = dE1;
                else
                    ErrorRatio = dE1 / dE2;

                if (ErrorRatio > t->Threshold)
                    Out[0] = (cmsUInt16Number)  _cmsQuickFloor((ErrorRatio - t->Threshold) + .5);
                else
                    Out[0] = 0;
            }
    }


    return TRUE;
}

// Does compute a gamut LUT going back and forth across pcs -> relativ. colorimetric intent -> pcs
// the dE obtained is then annotated on the LUT. Values truly out of gamut are clipped to dE = 0xFFFE
// and values changed are supposed to be handled by any gamut remapping, so, are out of gamut as well.
//
// **WARNING: This algorithm does assume that gamut remapping algorithms does NOT move in-gamut colors,
// of course, many perceptual and saturation intents does not work in such way, but relativ. ones should.

cmsPipeline* _cmsCreateGamutCheckPipeline(cmsContext ContextID,
                                          cmsHPROFILE hProfiles[],
                                          cmsBool  BPC[],
                                          cmsUInt32Number Intents[],
                                          cmsFloat64Number AdaptationStates[],
                                          cmsUInt32Number nGamutPCSposition,
                                          cmsHPROFILE hGamut)
{
    cmsHPROFILE hLab;
    cmsPipeline* Gamut;
    cmsStage* CLUT;
    cmsUInt32Number dwFormat;
    GAMUTCHAIN Chain;
    cmsUInt32Number nGridpoints;
    cmsInt32Number nChannels;
    cmsColorSpaceSignature ColorSpace;
    cmsUInt32Number i;
    cmsHPROFILE ProfileList[256];
    cmsBool     BPCList[256];
    cmsFloat64Number AdaptationList[256];
    cmsUInt32Number IntentList[256];

    memset(&Chain, 0, sizeof(GAMUTCHAIN));


    if (nGamutPCSposition <= 0 || nGamutPCSposition > 255) {
        cmsSignalError(ContextID, cmsERROR_RANGE, "Wrong position of PCS. 1..255 expected, %d found.", nGamutPCSposition);
        return NULL;
    }

    hLab = cmsCreateLab4ProfileTHR(ContextID, NULL);
    if (hLab == NULL) return NULL;


    // The figure of merit. On matrix-shaper profiles, should be almost zero as
    // the conversion is pretty exact. On LUT based profiles, different resolutions
    // of input and output CLUT may result in differences.

    if (cmsIsMatrixShaper(hGamut)) {

        Chain.Threshold = 1.0;
    }
    else {
        Chain.Threshold = ERR_THRESHOLD;
    }


    // Create a copy of parameters
    for (i=0; i < nGamutPCSposition; i++) {
        ProfileList[i]    = hProfiles[i];
        BPCList[i]        = BPC[i];
        AdaptationList[i] = AdaptationStates[i];
        IntentList[i]     = Intents[i];
    }

    // Fill Lab identity
    ProfileList[nGamutPCSposition] = hLab;
    BPCList[nGamutPCSposition] = 0;
    AdaptationList[nGamutPCSposition] = 1.0;
    IntentList[nGamutPCSposition] = INTENT_RELATIVE_COLORIMETRIC;


    ColorSpace  = cmsGetColorSpace(hGamut);
    nChannels   = cmsChannelsOfColorSpace(ColorSpace);
    nGridpoints = _cmsReasonableGridpointsByColorspace(ColorSpace, cmsFLAGS_HIGHRESPRECALC);
    dwFormat    = (CHANNELS_SH(nChannels)|BYTES_SH(2));

    // 16 bits to Lab double
    Chain.hInput = cmsCreateExtendedTransform(ContextID,
        nGamutPCSposition + 1,
        ProfileList,
        BPCList,
        IntentList,
        AdaptationList,
        NULL, 0,
        dwFormat, TYPE_Lab_DBL,
        cmsFLAGS_NOCACHE);


    // Does create the forward step. Lab double to device
    dwFormat    = (CHANNELS_SH(nChannels)|BYTES_SH(2));
    Chain.hForward = cmsCreateTransformTHR(ContextID,
        hLab, TYPE_Lab_DBL,
        hGamut, dwFormat,
        INTENT_RELATIVE_COLORIMETRIC,
        cmsFLAGS_NOCACHE);

    // Does create the backwards step
    Chain.hReverse = cmsCreateTransformTHR(ContextID, hGamut, dwFormat,
        hLab, TYPE_Lab_DBL,
        INTENT_RELATIVE_COLORIMETRIC,
        cmsFLAGS_NOCACHE);


    // All ok?
    if (Chain.hInput && Chain.hForward && Chain.hReverse) {

        // Go on, try to compute gamut LUT from PCS. This consist on a single channel containing
        // dE when doing a transform back and forth on the colorimetric intent.

        Gamut = cmsPipelineAlloc(ContextID, 3, 1);
        if (Gamut != NULL) {

            CLUT = cmsStageAllocCLut16bit(ContextID, nGridpoints, nChannels, 1, NULL);
            if (!cmsPipelineInsertStage(Gamut, cmsAT_BEGIN, CLUT)) {
                cmsPipelineFree(Gamut);
                Gamut = NULL;
            } 
            else {
                cmsStageSampleCLut16bit(CLUT, GamutSampler, (void*) &Chain, 0);
            }
        }
    }
    else
        Gamut = NULL;   // Didn't work...

    // Free all needed stuff.
    if (Chain.hInput)   cmsDeleteTransform(Chain.hInput);
    if (Chain.hForward) cmsDeleteTransform(Chain.hForward);
    if (Chain.hReverse) cmsDeleteTransform(Chain.hReverse);
    if (hLab) cmsCloseProfile(hLab);

    // And return computed hull
    return Gamut;
}

// Total Area Coverage estimation ----------------------------------------------------------------

typedef struct {
    cmsUInt32Number  nOutputChans;
    cmsHTRANSFORM    hRoundTrip;
    cmsFloat32Number MaxTAC;
    cmsFloat32Number MaxInput[cmsMAXCHANNELS];

} cmsTACestimator;


// This callback just accounts the maximum ink dropped in the given node. It does not populate any
// memory, as the destination table is NULL. Its only purpose it to know the global maximum.
static
int EstimateTAC(CMSREGISTER const cmsUInt16Number In[], CMSREGISTER cmsUInt16Number Out[], CMSREGISTER void * Cargo)
{
    cmsTACestimator* bp = (cmsTACestimator*) Cargo;
    cmsFloat32Number RoundTrip[cmsMAXCHANNELS];
    cmsUInt32Number i;
    cmsFloat32Number Sum;


    // Evaluate the xform
    cmsDoTransform(bp->hRoundTrip, In, RoundTrip, 1);

    // All all amounts of ink
    for (Sum=0, i=0; i < bp ->nOutputChans; i++)
            Sum += RoundTrip[i];

    // If above maximum, keep track of input values
    if (Sum > bp ->MaxTAC) {

            bp ->MaxTAC = Sum;

            for (i=0; i < bp ->nOutputChans; i++) {
                bp ->MaxInput[i] = In[i];
            }
    }

    return TRUE;

    cmsUNUSED_PARAMETER(Out);
}


// Detect Total area coverage of the profile
cmsFloat64Number CMSEXPORT cmsDetectTAC(cmsHPROFILE hProfile)
{
    cmsTACestimator bp;
    cmsUInt32Number dwFormatter;
    cmsUInt32Number GridPoints[MAX_INPUT_DIMENSIONS];
    cmsHPROFILE hLab;
    cmsContext ContextID = cmsGetProfileContextID(hProfile);

    // TAC only works on output profiles
    if (cmsGetDeviceClass(hProfile) != cmsSigOutputClass) {
        return 0;
    }

    // Create a fake formatter for result
    dwFormatter = cmsFormatterForColorspaceOfProfile(hProfile, 4, TRUE);

    // Unsupported color space?
    if (dwFormatter == 0) return 0;

    bp.nOutputChans = T_CHANNELS(dwFormatter);
    bp.MaxTAC = 0;    // Initial TAC is 0

    //  for safety
    if (bp.nOutputChans >= cmsMAXCHANNELS) return 0;

    hLab = cmsCreateLab4ProfileTHR(ContextID, NULL);
    if (hLab == NULL) return 0;
    // Setup a roundtrip on perceptual intent in output profile for TAC estimation
    bp.hRoundTrip = cmsCreateTransformTHR(ContextID, hLab, TYPE_Lab_16,
                                          hProfile, dwFormatter, INTENT_PERCEPTUAL, cmsFLAGS_NOOPTIMIZE|cmsFLAGS_NOCACHE);

    cmsCloseProfile(hLab);
    if (bp.hRoundTrip == NULL) return 0;

    // For L* we only need black and white. For C* we need many points
    GridPoints[0] = 6;
    GridPoints[1] = 74;
    GridPoints[2] = 74;


    if (!cmsSliceSpace16(3, GridPoints, EstimateTAC, &bp)) {
        bp.MaxTAC = 0;
    }

    cmsDeleteTransform(bp.hRoundTrip);

    // Results in %
    return bp.MaxTAC;
}


// Carefully,  clamp on CIELab space.

cmsBool CMSEXPORT cmsDesaturateLab(cmsCIELab* Lab,
                                   double amax, double amin,
                                   double bmax, double bmin)
{

    // Whole Luma surface to zero

    if (Lab -> L < 0) {

        Lab-> L = Lab->a = Lab-> b = 0.0;
        return FALSE;
    }

    // Clamp white, DISCARD HIGHLIGHTS. This is done
    // in such way because icc spec doesn't allow the
    // use of L>100 as a highlight means.

    if (Lab->L > 100)
        Lab -> L = 100;

    // Check out gamut prism, on a, b faces

    if (Lab -> a < amin || Lab->a > amax||
        Lab -> b < bmin || Lab->b > bmax) {

            cmsCIELCh LCh;
            double h, slope;

            // Falls outside a, b limits. Transports to LCh space,
            // and then do the clipping


            if (Lab -> a == 0.0) { // Is hue exactly 90?

                // atan will not work, so clamp here
                Lab -> b = Lab->b < 0 ? bmin : bmax;
                return TRUE;
            }

            cmsLab2LCh(&LCh, Lab);

            slope = Lab -> b / Lab -> a;
            h = LCh.h;

            // There are 4 zones

            if ((h >= 0. && h < 45.) ||
                (h >= 315 && h <= 360.)) {

                    // clip by amax
                    Lab -> a = amax;
                    Lab -> b = amax * slope;
            }
            else
                if (h >= 45. && h < 135.)
                {
                    // clip by bmax
                    Lab -> b = bmax;
                    Lab -> a = bmax / slope;
                }
                else
                    if (h >= 135. && h < 225.) {
                        // clip by amin
                        Lab -> a = amin;
                        Lab -> b = amin * slope;

                    }
                    else
                        if (h >= 225. && h < 315.) {
                            // clip by bmin
                            Lab -> b = bmin;
                            Lab -> a = bmin / slope;
                        }
                        else  {
                            cmsSignalError(0, cmsERROR_RANGE, "Invalid angle");
                            return FALSE;
                        }

    }

    return TRUE;
}

// Detect whatever a given ICC profile works in linear (gamma 1.0) space
// Actually, doing that "well" is quite hard, since every component may behave completely different.
// Since the true point of this function is to detect suitable optimizations, I am imposing some requirements 
// that simplifies things: only RGB, and only profiles that can got in both directions.
// The algorithm obtains Y from a synthetical gray R=G=B. Then least squares fitting is used to estimate gamma. 
// For gamma close to 1.0, RGB is linear. On profiles not supported, -1 is returned.

cmsFloat64Number CMSEXPORT cmsDetectRGBProfileGamma(cmsHPROFILE hProfile, cmsFloat64Number threshold)
{
    cmsContext ContextID;
    cmsHPROFILE hXYZ;
    cmsHTRANSFORM xform;
    cmsToneCurve* Y_curve;
    cmsUInt16Number rgb[256][3];
    cmsCIEXYZ XYZ[256];
    cmsFloat32Number Y_normalized[256];
    cmsFloat64Number gamma;
    cmsProfileClassSignature cl;
    int i;

    if (cmsGetColorSpace(hProfile) != cmsSigRgbData)
        return -1;

    cl = cmsGetDeviceClass(hProfile);
    if (cl != cmsSigInputClass && cl != cmsSigDisplayClass && 
        cl != cmsSigOutputClass && cl != cmsSigColorSpaceClass)
        return -1;

    ContextID = cmsGetProfileContextID(hProfile);
    hXYZ = cmsCreateXYZProfileTHR(ContextID);
    if (hXYZ == NULL)
        return -1;
    xform = cmsCreateTransformTHR(ContextID, hProfile, TYPE_RGB_16, hXYZ, TYPE_XYZ_DBL, 
                                    INTENT_RELATIVE_COLORIMETRIC, cmsFLAGS_NOOPTIMIZE);

    if (xform == NULL) { // If not RGB or forward direction is not supported, regret with the previous error

        cmsCloseProfile(hXYZ);        
        return -1;
    }

    for (i = 0; i < 256; i++) {
        rgb[i][0] = rgb[i][1] = rgb[i][2] = FROM_8_TO_16(i);       
    }

    cmsDoTransform(xform, rgb, XYZ, 256);

    cmsDeleteTransform(xform);
    cmsCloseProfile(hXYZ);

    for (i = 0; i < 256; i++) {
        Y_normalized[i] = (cmsFloat32Number) XYZ[i].Y;
    }

    Y_curve = cmsBuildTabulatedToneCurveFloat(ContextID, 256, Y_normalized);
    if (Y_curve == NULL)     
        return -1;
    
    gamma = cmsEstimateGamma(Y_curve, threshold);

    cmsFreeToneCurve(Y_curve);

    return gamma;
}