1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"
#include "jemalloc/internal/thread_event.h"
/*
* Signatures for event specific functions. These functions should be defined
* by the modules owning each event. The signatures here verify that the
* definitions follow the right format.
*
* The first two are functions computing new / postponed event wait time. New
* event wait time is the time till the next event if an event is currently
* being triggered; postponed event wait time is the time till the next event
* if an event should be triggered but needs to be postponed, e.g. when the TSD
* is not nominal or during reentrancy.
*
* The third is the event handler function, which is called whenever an event
* is triggered. The parameter is the elapsed time since the last time an
* event of the same type was triggered.
*/
#define E(event, condition_unused, is_alloc_event_unused) \
uint64_t event##_new_event_wait(tsd_t *tsd); \
uint64_t event##_postponed_event_wait(tsd_t *tsd); \
void event##_event_handler(tsd_t *tsd, uint64_t elapsed);
ITERATE_OVER_ALL_EVENTS
#undef E
/* Signatures for internal functions fetching elapsed time. */
#define E(event, condition_unused, is_alloc_event_unused) \
static uint64_t event##_fetch_elapsed(tsd_t *tsd);
ITERATE_OVER_ALL_EVENTS
#undef E
static uint64_t
tcache_gc_fetch_elapsed(tsd_t *tsd) {
return TE_INVALID_ELAPSED;
}
static uint64_t
tcache_gc_dalloc_fetch_elapsed(tsd_t *tsd) {
return TE_INVALID_ELAPSED;
}
static uint64_t
prof_sample_fetch_elapsed(tsd_t *tsd) {
uint64_t last_event = thread_allocated_last_event_get(tsd);
uint64_t last_sample_event = prof_sample_last_event_get(tsd);
prof_sample_last_event_set(tsd, last_event);
return last_event - last_sample_event;
}
static uint64_t
stats_interval_fetch_elapsed(tsd_t *tsd) {
uint64_t last_event = thread_allocated_last_event_get(tsd);
uint64_t last_stats_event = stats_interval_last_event_get(tsd);
stats_interval_last_event_set(tsd, last_event);
return last_event - last_stats_event;
}
static uint64_t
peak_alloc_fetch_elapsed(tsd_t *tsd) {
return TE_INVALID_ELAPSED;
}
static uint64_t
peak_dalloc_fetch_elapsed(tsd_t *tsd) {
return TE_INVALID_ELAPSED;
}
/* Per event facilities done. */
static bool
te_ctx_has_active_events(te_ctx_t *ctx) {
assert(config_debug);
#define E(event, condition, alloc_event) \
if (condition && alloc_event == ctx->is_alloc) { \
return true; \
}
ITERATE_OVER_ALL_EVENTS
#undef E
return false;
}
static uint64_t
te_next_event_compute(tsd_t *tsd, bool is_alloc) {
uint64_t wait = TE_MAX_START_WAIT;
#define E(event, condition, alloc_event) \
if (is_alloc == alloc_event && condition) { \
uint64_t event_wait = \
event##_event_wait_get(tsd); \
assert(event_wait <= TE_MAX_START_WAIT); \
if (event_wait > 0U && event_wait < wait) { \
wait = event_wait; \
} \
}
ITERATE_OVER_ALL_EVENTS
#undef E
assert(wait <= TE_MAX_START_WAIT);
return wait;
}
static void
te_assert_invariants_impl(tsd_t *tsd, te_ctx_t *ctx) {
uint64_t current_bytes = te_ctx_current_bytes_get(ctx);
uint64_t last_event = te_ctx_last_event_get(ctx);
uint64_t next_event = te_ctx_next_event_get(ctx);
uint64_t next_event_fast = te_ctx_next_event_fast_get(ctx);
assert(last_event != next_event);
if (next_event > TE_NEXT_EVENT_FAST_MAX || !tsd_fast(tsd)) {
assert(next_event_fast == 0U);
} else {
assert(next_event_fast == next_event);
}
/* The subtraction is intentionally susceptible to underflow. */
uint64_t interval = next_event - last_event;
/* The subtraction is intentionally susceptible to underflow. */
assert(current_bytes - last_event < interval);
uint64_t min_wait = te_next_event_compute(tsd, te_ctx_is_alloc(ctx));
/*
* next_event should have been pushed up only except when no event is
* on and the TSD is just initialized. The last_event == 0U guard
* below is stronger than needed, but having an exactly accurate guard
* is more complicated to implement.
*/
assert((!te_ctx_has_active_events(ctx) && last_event == 0U) ||
interval == min_wait ||
(interval < min_wait && interval == TE_MAX_INTERVAL));
}
void
te_assert_invariants_debug(tsd_t *tsd) {
te_ctx_t ctx;
te_ctx_get(tsd, &ctx, true);
te_assert_invariants_impl(tsd, &ctx);
te_ctx_get(tsd, &ctx, false);
te_assert_invariants_impl(tsd, &ctx);
}
/*
* Synchronization around the fast threshold in tsd --
* There are two threads to consider in the synchronization here:
* - The owner of the tsd being updated by a slow path change
* - The remote thread, doing that slow path change.
*
* As a design constraint, we want to ensure that a slow-path transition cannot
* be ignored for arbitrarily long, and that if the remote thread causes a
* slow-path transition and then communicates with the owner thread that it has
* occurred, then the owner will go down the slow path on the next allocator
* operation (so that we don't want to just wait until the owner hits its slow
* path reset condition on its own).
*
* Here's our strategy to do that:
*
* The remote thread will update the slow-path stores to TSD variables, issue a
* SEQ_CST fence, and then update the TSD next_event_fast counter. The owner
* thread will update next_event_fast, issue an SEQ_CST fence, and then check
* its TSD to see if it's on the slow path.
* This is fairly straightforward when 64-bit atomics are supported. Assume that
* the remote fence is sandwiched between two owner fences in the reset pathway.
* The case where there is no preceding or trailing owner fence (i.e. because
* the owner thread is near the beginning or end of its life) can be analyzed
* similarly. The owner store to next_event_fast preceding the earlier owner
* fence will be earlier in coherence order than the remote store to it, so that
* the owner thread will go down the slow path once the store becomes visible to
* it, which is no later than the time of the second fence.
* The case where we don't support 64-bit atomics is trickier, since word
* tearing is possible. We'll repeat the same analysis, and look at the two
* owner fences sandwiching the remote fence. The next_event_fast stores done
* alongside the earlier owner fence cannot overwrite any of the remote stores
* (since they precede the earlier owner fence in sb, which precedes the remote
* fence in sc, which precedes the remote stores in sb). After the second owner
* fence there will be a re-check of the slow-path variables anyways, so the
* "owner will notice that it's on the slow path eventually" guarantee is
* satisfied. To make sure that the out-of-band-messaging constraint is as well,
* note that either the message passing is sequenced before the second owner
* fence (in which case the remote stores happen before the second set of owner
* stores, so malloc sees a value of zero for next_event_fast and goes down the
* slow path), or it is not (in which case the owner sees the tsd slow-path
* writes on its previous update). This leaves open the possibility that the
* remote thread will (at some arbitrary point in the future) zero out one half
* of the owner thread's next_event_fast, but that's always safe (it just sends
* it down the slow path earlier).
*/
static void
te_ctx_next_event_fast_update(te_ctx_t *ctx) {
uint64_t next_event = te_ctx_next_event_get(ctx);
uint64_t next_event_fast = (next_event <= TE_NEXT_EVENT_FAST_MAX) ?
next_event : 0U;
te_ctx_next_event_fast_set(ctx, next_event_fast);
}
void
te_recompute_fast_threshold(tsd_t *tsd) {
if (tsd_state_get(tsd) != tsd_state_nominal) {
/* Check first because this is also called on purgatory. */
te_next_event_fast_set_non_nominal(tsd);
return;
}
te_ctx_t ctx;
te_ctx_get(tsd, &ctx, true);
te_ctx_next_event_fast_update(&ctx);
te_ctx_get(tsd, &ctx, false);
te_ctx_next_event_fast_update(&ctx);
atomic_fence(ATOMIC_SEQ_CST);
if (tsd_state_get(tsd) != tsd_state_nominal) {
te_next_event_fast_set_non_nominal(tsd);
}
}
static void
te_adjust_thresholds_helper(tsd_t *tsd, te_ctx_t *ctx,
uint64_t wait) {
/*
* The next threshold based on future events can only be adjusted after
* progressing the last_event counter (which is set to current).
*/
assert(te_ctx_current_bytes_get(ctx) == te_ctx_last_event_get(ctx));
assert(wait <= TE_MAX_START_WAIT);
uint64_t next_event = te_ctx_last_event_get(ctx) + (wait <=
TE_MAX_INTERVAL ? wait : TE_MAX_INTERVAL);
te_ctx_next_event_set(tsd, ctx, next_event);
}
static uint64_t
te_clip_event_wait(uint64_t event_wait) {
assert(event_wait > 0U);
if (TE_MIN_START_WAIT > 1U &&
unlikely(event_wait < TE_MIN_START_WAIT)) {
event_wait = TE_MIN_START_WAIT;
}
if (TE_MAX_START_WAIT < UINT64_MAX &&
unlikely(event_wait > TE_MAX_START_WAIT)) {
event_wait = TE_MAX_START_WAIT;
}
return event_wait;
}
void
te_event_trigger(tsd_t *tsd, te_ctx_t *ctx) {
/* usize has already been added to thread_allocated. */
uint64_t bytes_after = te_ctx_current_bytes_get(ctx);
/* The subtraction is intentionally susceptible to underflow. */
uint64_t accumbytes = bytes_after - te_ctx_last_event_get(ctx);
te_ctx_last_event_set(ctx, bytes_after);
bool allow_event_trigger = tsd_nominal(tsd) &&
tsd_reentrancy_level_get(tsd) == 0;
bool is_alloc = ctx->is_alloc;
uint64_t wait = TE_MAX_START_WAIT;
#define E(event, condition, alloc_event) \
bool is_##event##_triggered = false; \
if (is_alloc == alloc_event && condition) { \
uint64_t event_wait = event##_event_wait_get(tsd); \
assert(event_wait <= TE_MAX_START_WAIT); \
if (event_wait > accumbytes) { \
event_wait -= accumbytes; \
} else if (!allow_event_trigger) { \
event_wait = event##_postponed_event_wait(tsd); \
} else { \
is_##event##_triggered = true; \
event_wait = event##_new_event_wait(tsd); \
} \
event_wait = te_clip_event_wait(event_wait); \
event##_event_wait_set(tsd, event_wait); \
if (event_wait < wait) { \
wait = event_wait; \
} \
}
ITERATE_OVER_ALL_EVENTS
#undef E
assert(wait <= TE_MAX_START_WAIT);
te_adjust_thresholds_helper(tsd, ctx, wait);
te_assert_invariants(tsd);
#define E(event, condition, alloc_event) \
if (is_alloc == alloc_event && condition && \
is_##event##_triggered) { \
assert(allow_event_trigger); \
uint64_t elapsed = event##_fetch_elapsed(tsd); \
event##_event_handler(tsd, elapsed); \
}
ITERATE_OVER_ALL_EVENTS
#undef E
te_assert_invariants(tsd);
}
static void
te_init(tsd_t *tsd, bool is_alloc) {
te_ctx_t ctx;
te_ctx_get(tsd, &ctx, is_alloc);
/*
* Reset the last event to current, which starts the events from a clean
* state. This is necessary when re-init the tsd event counters.
*
* The event counters maintain a relationship with the current bytes:
* last_event <= current < next_event. When a reinit happens (e.g.
* reincarnated tsd), the last event needs progressing because all
* events start fresh from the current bytes.
*/
te_ctx_last_event_set(&ctx, te_ctx_current_bytes_get(&ctx));
uint64_t wait = TE_MAX_START_WAIT;
#define E(event, condition, alloc_event) \
if (is_alloc == alloc_event && condition) { \
uint64_t event_wait = event##_new_event_wait(tsd); \
event_wait = te_clip_event_wait(event_wait); \
event##_event_wait_set(tsd, event_wait); \
if (event_wait < wait) { \
wait = event_wait; \
} \
}
ITERATE_OVER_ALL_EVENTS
#undef E
te_adjust_thresholds_helper(tsd, &ctx, wait);
}
void
tsd_te_init(tsd_t *tsd) {
/* Make sure no overflow for the bytes accumulated on event_trigger. */
assert(TE_MAX_INTERVAL <= UINT64_MAX - SC_LARGE_MAXCLASS + 1);
te_init(tsd, true);
te_init(tsd, false);
te_assert_invariants(tsd);
}
|