1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
|
#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"
#include "jemalloc/internal/sec.h"
static edata_t *sec_alloc(tsdn_t *tsdn, pai_t *self, size_t size,
size_t alignment, bool zero, bool guarded, bool frequent_reuse,
bool *deferred_work_generated);
static bool sec_expand(tsdn_t *tsdn, pai_t *self, edata_t *edata,
size_t old_size, size_t new_size, bool zero, bool *deferred_work_generated);
static bool sec_shrink(tsdn_t *tsdn, pai_t *self, edata_t *edata,
size_t old_size, size_t new_size, bool *deferred_work_generated);
static void sec_dalloc(tsdn_t *tsdn, pai_t *self, edata_t *edata,
bool *deferred_work_generated);
static void
sec_bin_init(sec_bin_t *bin) {
bin->being_batch_filled = false;
bin->bytes_cur = 0;
edata_list_active_init(&bin->freelist);
}
bool
sec_init(tsdn_t *tsdn, sec_t *sec, base_t *base, pai_t *fallback,
const sec_opts_t *opts) {
assert(opts->max_alloc >= PAGE);
size_t max_alloc = PAGE_FLOOR(opts->max_alloc);
pszind_t npsizes = sz_psz2ind(max_alloc) + 1;
size_t sz_shards = opts->nshards * sizeof(sec_shard_t);
size_t sz_bins = opts->nshards * (size_t)npsizes * sizeof(sec_bin_t);
size_t sz_alloc = sz_shards + sz_bins;
void *dynalloc = base_alloc(tsdn, base, sz_alloc, CACHELINE);
if (dynalloc == NULL) {
return true;
}
sec_shard_t *shard_cur = (sec_shard_t *)dynalloc;
sec->shards = shard_cur;
sec_bin_t *bin_cur = (sec_bin_t *)&shard_cur[opts->nshards];
/* Just for asserts, below. */
sec_bin_t *bin_start = bin_cur;
for (size_t i = 0; i < opts->nshards; i++) {
sec_shard_t *shard = shard_cur;
shard_cur++;
bool err = malloc_mutex_init(&shard->mtx, "sec_shard",
WITNESS_RANK_SEC_SHARD, malloc_mutex_rank_exclusive);
if (err) {
return true;
}
shard->enabled = true;
shard->bins = bin_cur;
for (pszind_t j = 0; j < npsizes; j++) {
sec_bin_init(&shard->bins[j]);
bin_cur++;
}
shard->bytes_cur = 0;
shard->to_flush_next = 0;
}
/*
* Should have exactly matched the bin_start to the first unused byte
* after the shards.
*/
assert((void *)shard_cur == (void *)bin_start);
/* And the last bin to use up the last bytes of the allocation. */
assert((char *)bin_cur == ((char *)dynalloc + sz_alloc));
sec->fallback = fallback;
sec->opts = *opts;
sec->npsizes = npsizes;
/*
* Initialize these last so that an improper use of an SEC whose
* initialization failed will segfault in an easy-to-spot way.
*/
sec->pai.alloc = &sec_alloc;
sec->pai.alloc_batch = &pai_alloc_batch_default;
sec->pai.expand = &sec_expand;
sec->pai.shrink = &sec_shrink;
sec->pai.dalloc = &sec_dalloc;
sec->pai.dalloc_batch = &pai_dalloc_batch_default;
return false;
}
static sec_shard_t *
sec_shard_pick(tsdn_t *tsdn, sec_t *sec) {
/*
* Eventually, we should implement affinity, tracking source shard using
* the edata_t's newly freed up fields. For now, just randomly
* distribute across all shards.
*/
if (tsdn_null(tsdn)) {
return &sec->shards[0];
}
tsd_t *tsd = tsdn_tsd(tsdn);
uint8_t *idxp = tsd_sec_shardp_get(tsd);
if (*idxp == (uint8_t)-1) {
/*
* First use; initialize using the trick from Daniel Lemire's
* "A fast alternative to the modulo reduction. Use a 64 bit
* number to store 32 bits, since we'll deliberately overflow
* when we multiply by the number of shards.
*/
uint64_t rand32 = prng_lg_range_u64(tsd_prng_statep_get(tsd), 32);
uint32_t idx =
(uint32_t)((rand32 * (uint64_t)sec->opts.nshards) >> 32);
assert(idx < (uint32_t)sec->opts.nshards);
*idxp = (uint8_t)idx;
}
return &sec->shards[*idxp];
}
/*
* Perhaps surprisingly, this can be called on the alloc pathways; if we hit an
* empty cache, we'll try to fill it, which can push the shard over it's limit.
*/
static void
sec_flush_some_and_unlock(tsdn_t *tsdn, sec_t *sec, sec_shard_t *shard) {
malloc_mutex_assert_owner(tsdn, &shard->mtx);
edata_list_active_t to_flush;
edata_list_active_init(&to_flush);
while (shard->bytes_cur > sec->opts.bytes_after_flush) {
/* Pick a victim. */
sec_bin_t *bin = &shard->bins[shard->to_flush_next];
/* Update our victim-picking state. */
shard->to_flush_next++;
if (shard->to_flush_next == sec->npsizes) {
shard->to_flush_next = 0;
}
assert(shard->bytes_cur >= bin->bytes_cur);
if (bin->bytes_cur != 0) {
shard->bytes_cur -= bin->bytes_cur;
bin->bytes_cur = 0;
edata_list_active_concat(&to_flush, &bin->freelist);
}
/*
* Either bin->bytes_cur was 0, in which case we didn't touch
* the bin list but it should be empty anyways (or else we
* missed a bytes_cur update on a list modification), or it
* *was* 0 and we emptied it ourselves. Either way, it should
* be empty now.
*/
assert(edata_list_active_empty(&bin->freelist));
}
malloc_mutex_unlock(tsdn, &shard->mtx);
bool deferred_work_generated = false;
pai_dalloc_batch(tsdn, sec->fallback, &to_flush,
&deferred_work_generated);
}
static edata_t *
sec_shard_alloc_locked(tsdn_t *tsdn, sec_t *sec, sec_shard_t *shard,
sec_bin_t *bin) {
malloc_mutex_assert_owner(tsdn, &shard->mtx);
if (!shard->enabled) {
return NULL;
}
edata_t *edata = edata_list_active_first(&bin->freelist);
if (edata != NULL) {
edata_list_active_remove(&bin->freelist, edata);
assert(edata_size_get(edata) <= bin->bytes_cur);
bin->bytes_cur -= edata_size_get(edata);
assert(edata_size_get(edata) <= shard->bytes_cur);
shard->bytes_cur -= edata_size_get(edata);
}
return edata;
}
static edata_t *
sec_batch_fill_and_alloc(tsdn_t *tsdn, sec_t *sec, sec_shard_t *shard,
sec_bin_t *bin, size_t size) {
malloc_mutex_assert_not_owner(tsdn, &shard->mtx);
edata_list_active_t result;
edata_list_active_init(&result);
bool deferred_work_generated = false;
size_t nalloc = pai_alloc_batch(tsdn, sec->fallback, size,
1 + sec->opts.batch_fill_extra, &result, &deferred_work_generated);
edata_t *ret = edata_list_active_first(&result);
if (ret != NULL) {
edata_list_active_remove(&result, ret);
}
malloc_mutex_lock(tsdn, &shard->mtx);
bin->being_batch_filled = false;
/*
* Handle the easy case first: nothing to cache. Note that this can
* only happen in case of OOM, since sec_alloc checks the expected
* number of allocs, and doesn't bother going down the batch_fill
* pathway if there won't be anything left to cache. So to be in this
* code path, we must have asked for > 1 alloc, but only gotten 1 back.
*/
if (nalloc <= 1) {
malloc_mutex_unlock(tsdn, &shard->mtx);
return ret;
}
size_t new_cached_bytes = (nalloc - 1) * size;
edata_list_active_concat(&bin->freelist, &result);
bin->bytes_cur += new_cached_bytes;
shard->bytes_cur += new_cached_bytes;
if (shard->bytes_cur > sec->opts.max_bytes) {
sec_flush_some_and_unlock(tsdn, sec, shard);
} else {
malloc_mutex_unlock(tsdn, &shard->mtx);
}
return ret;
}
static edata_t *
sec_alloc(tsdn_t *tsdn, pai_t *self, size_t size, size_t alignment, bool zero,
bool guarded, bool frequent_reuse, bool *deferred_work_generated) {
assert((size & PAGE_MASK) == 0);
assert(!guarded);
sec_t *sec = (sec_t *)self;
if (zero || alignment > PAGE || sec->opts.nshards == 0
|| size > sec->opts.max_alloc) {
return pai_alloc(tsdn, sec->fallback, size, alignment, zero,
/* guarded */ false, frequent_reuse,
deferred_work_generated);
}
pszind_t pszind = sz_psz2ind(size);
assert(pszind < sec->npsizes);
sec_shard_t *shard = sec_shard_pick(tsdn, sec);
sec_bin_t *bin = &shard->bins[pszind];
bool do_batch_fill = false;
malloc_mutex_lock(tsdn, &shard->mtx);
edata_t *edata = sec_shard_alloc_locked(tsdn, sec, shard, bin);
if (edata == NULL) {
if (!bin->being_batch_filled
&& sec->opts.batch_fill_extra > 0) {
bin->being_batch_filled = true;
do_batch_fill = true;
}
}
malloc_mutex_unlock(tsdn, &shard->mtx);
if (edata == NULL) {
if (do_batch_fill) {
edata = sec_batch_fill_and_alloc(tsdn, sec, shard, bin,
size);
} else {
edata = pai_alloc(tsdn, sec->fallback, size, alignment,
zero, /* guarded */ false, frequent_reuse,
deferred_work_generated);
}
}
return edata;
}
static bool
sec_expand(tsdn_t *tsdn, pai_t *self, edata_t *edata, size_t old_size,
size_t new_size, bool zero, bool *deferred_work_generated) {
sec_t *sec = (sec_t *)self;
return pai_expand(tsdn, sec->fallback, edata, old_size, new_size, zero,
deferred_work_generated);
}
static bool
sec_shrink(tsdn_t *tsdn, pai_t *self, edata_t *edata, size_t old_size,
size_t new_size, bool *deferred_work_generated) {
sec_t *sec = (sec_t *)self;
return pai_shrink(tsdn, sec->fallback, edata, old_size, new_size,
deferred_work_generated);
}
static void
sec_flush_all_locked(tsdn_t *tsdn, sec_t *sec, sec_shard_t *shard) {
malloc_mutex_assert_owner(tsdn, &shard->mtx);
shard->bytes_cur = 0;
edata_list_active_t to_flush;
edata_list_active_init(&to_flush);
for (pszind_t i = 0; i < sec->npsizes; i++) {
sec_bin_t *bin = &shard->bins[i];
bin->bytes_cur = 0;
edata_list_active_concat(&to_flush, &bin->freelist);
}
/*
* Ordinarily we would try to avoid doing the batch deallocation while
* holding the shard mutex, but the flush_all pathways only happen when
* we're disabling the HPA or resetting the arena, both of which are
* rare pathways.
*/
bool deferred_work_generated = false;
pai_dalloc_batch(tsdn, sec->fallback, &to_flush,
&deferred_work_generated);
}
static void
sec_shard_dalloc_and_unlock(tsdn_t *tsdn, sec_t *sec, sec_shard_t *shard,
edata_t *edata) {
malloc_mutex_assert_owner(tsdn, &shard->mtx);
assert(shard->bytes_cur <= sec->opts.max_bytes);
size_t size = edata_size_get(edata);
pszind_t pszind = sz_psz2ind(size);
assert(pszind < sec->npsizes);
/*
* Prepending here results in LIFO allocation per bin, which seems
* reasonable.
*/
sec_bin_t *bin = &shard->bins[pszind];
edata_list_active_prepend(&bin->freelist, edata);
bin->bytes_cur += size;
shard->bytes_cur += size;
if (shard->bytes_cur > sec->opts.max_bytes) {
/*
* We've exceeded the shard limit. We make two nods in the
* direction of fragmentation avoidance: we flush everything in
* the shard, rather than one particular bin, and we hold the
* lock while flushing (in case one of the extents we flush is
* highly preferred from a fragmentation-avoidance perspective
* in the backing allocator). This has the extra advantage of
* not requiring advanced cache balancing strategies.
*/
sec_flush_some_and_unlock(tsdn, sec, shard);
malloc_mutex_assert_not_owner(tsdn, &shard->mtx);
} else {
malloc_mutex_unlock(tsdn, &shard->mtx);
}
}
static void
sec_dalloc(tsdn_t *tsdn, pai_t *self, edata_t *edata,
bool *deferred_work_generated) {
sec_t *sec = (sec_t *)self;
if (sec->opts.nshards == 0
|| edata_size_get(edata) > sec->opts.max_alloc) {
pai_dalloc(tsdn, sec->fallback, edata,
deferred_work_generated);
return;
}
sec_shard_t *shard = sec_shard_pick(tsdn, sec);
malloc_mutex_lock(tsdn, &shard->mtx);
if (shard->enabled) {
sec_shard_dalloc_and_unlock(tsdn, sec, shard, edata);
} else {
malloc_mutex_unlock(tsdn, &shard->mtx);
pai_dalloc(tsdn, sec->fallback, edata,
deferred_work_generated);
}
}
void
sec_flush(tsdn_t *tsdn, sec_t *sec) {
for (size_t i = 0; i < sec->opts.nshards; i++) {
malloc_mutex_lock(tsdn, &sec->shards[i].mtx);
sec_flush_all_locked(tsdn, sec, &sec->shards[i]);
malloc_mutex_unlock(tsdn, &sec->shards[i].mtx);
}
}
void
sec_disable(tsdn_t *tsdn, sec_t *sec) {
for (size_t i = 0; i < sec->opts.nshards; i++) {
malloc_mutex_lock(tsdn, &sec->shards[i].mtx);
sec->shards[i].enabled = false;
sec_flush_all_locked(tsdn, sec, &sec->shards[i]);
malloc_mutex_unlock(tsdn, &sec->shards[i].mtx);
}
}
void
sec_stats_merge(tsdn_t *tsdn, sec_t *sec, sec_stats_t *stats) {
size_t sum = 0;
for (size_t i = 0; i < sec->opts.nshards; i++) {
/*
* We could save these lock acquisitions by making bytes_cur
* atomic, but stats collection is rare anyways and we expect
* the number and type of stats to get more interesting.
*/
malloc_mutex_lock(tsdn, &sec->shards[i].mtx);
sum += sec->shards[i].bytes_cur;
malloc_mutex_unlock(tsdn, &sec->shards[i].mtx);
}
stats->bytes += sum;
}
void
sec_mutex_stats_read(tsdn_t *tsdn, sec_t *sec,
mutex_prof_data_t *mutex_prof_data) {
for (size_t i = 0; i < sec->opts.nshards; i++) {
malloc_mutex_lock(tsdn, &sec->shards[i].mtx);
malloc_mutex_prof_accum(tsdn, mutex_prof_data,
&sec->shards[i].mtx);
malloc_mutex_unlock(tsdn, &sec->shards[i].mtx);
}
}
void
sec_prefork2(tsdn_t *tsdn, sec_t *sec) {
for (size_t i = 0; i < sec->opts.nshards; i++) {
malloc_mutex_prefork(tsdn, &sec->shards[i].mtx);
}
}
void
sec_postfork_parent(tsdn_t *tsdn, sec_t *sec) {
for (size_t i = 0; i < sec->opts.nshards; i++) {
malloc_mutex_postfork_parent(tsdn, &sec->shards[i].mtx);
}
}
void
sec_postfork_child(tsdn_t *tsdn, sec_t *sec) {
for (size_t i = 0; i < sec->opts.nshards; i++) {
malloc_mutex_postfork_child(tsdn, &sec->shards[i].mtx);
}
}
|