1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"
#include "jemalloc/internal/assert.h"
#include "jemalloc/internal/mutex.h"
/*
* Only the most significant bits of keys passed to rtree_{read,write}() are
* used.
*/
bool
rtree_new(rtree_t *rtree, base_t *base, bool zeroed) {
#ifdef JEMALLOC_JET
if (!zeroed) {
memset(rtree, 0, sizeof(rtree_t)); /* Clear root. */
}
#else
assert(zeroed);
#endif
rtree->base = base;
if (malloc_mutex_init(&rtree->init_lock, "rtree", WITNESS_RANK_RTREE,
malloc_mutex_rank_exclusive)) {
return true;
}
return false;
}
static rtree_node_elm_t *
rtree_node_alloc(tsdn_t *tsdn, rtree_t *rtree, size_t nelms) {
return (rtree_node_elm_t *)base_alloc(tsdn, rtree->base,
nelms * sizeof(rtree_node_elm_t), CACHELINE);
}
static rtree_leaf_elm_t *
rtree_leaf_alloc(tsdn_t *tsdn, rtree_t *rtree, size_t nelms) {
return (rtree_leaf_elm_t *)base_alloc(tsdn, rtree->base,
nelms * sizeof(rtree_leaf_elm_t), CACHELINE);
}
static rtree_node_elm_t *
rtree_node_init(tsdn_t *tsdn, rtree_t *rtree, unsigned level,
atomic_p_t *elmp) {
malloc_mutex_lock(tsdn, &rtree->init_lock);
/*
* If *elmp is non-null, then it was initialized with the init lock
* held, so we can get by with 'relaxed' here.
*/
rtree_node_elm_t *node = atomic_load_p(elmp, ATOMIC_RELAXED);
if (node == NULL) {
node = rtree_node_alloc(tsdn, rtree, ZU(1) <<
rtree_levels[level].bits);
if (node == NULL) {
malloc_mutex_unlock(tsdn, &rtree->init_lock);
return NULL;
}
/*
* Even though we hold the lock, a later reader might not; we
* need release semantics.
*/
atomic_store_p(elmp, node, ATOMIC_RELEASE);
}
malloc_mutex_unlock(tsdn, &rtree->init_lock);
return node;
}
static rtree_leaf_elm_t *
rtree_leaf_init(tsdn_t *tsdn, rtree_t *rtree, atomic_p_t *elmp) {
malloc_mutex_lock(tsdn, &rtree->init_lock);
/*
* If *elmp is non-null, then it was initialized with the init lock
* held, so we can get by with 'relaxed' here.
*/
rtree_leaf_elm_t *leaf = atomic_load_p(elmp, ATOMIC_RELAXED);
if (leaf == NULL) {
leaf = rtree_leaf_alloc(tsdn, rtree, ZU(1) <<
rtree_levels[RTREE_HEIGHT-1].bits);
if (leaf == NULL) {
malloc_mutex_unlock(tsdn, &rtree->init_lock);
return NULL;
}
/*
* Even though we hold the lock, a later reader might not; we
* need release semantics.
*/
atomic_store_p(elmp, leaf, ATOMIC_RELEASE);
}
malloc_mutex_unlock(tsdn, &rtree->init_lock);
return leaf;
}
static bool
rtree_node_valid(rtree_node_elm_t *node) {
return ((uintptr_t)node != (uintptr_t)0);
}
static bool
rtree_leaf_valid(rtree_leaf_elm_t *leaf) {
return ((uintptr_t)leaf != (uintptr_t)0);
}
static rtree_node_elm_t *
rtree_child_node_tryread(rtree_node_elm_t *elm, bool dependent) {
rtree_node_elm_t *node;
if (dependent) {
node = (rtree_node_elm_t *)atomic_load_p(&elm->child,
ATOMIC_RELAXED);
} else {
node = (rtree_node_elm_t *)atomic_load_p(&elm->child,
ATOMIC_ACQUIRE);
}
assert(!dependent || node != NULL);
return node;
}
static rtree_node_elm_t *
rtree_child_node_read(tsdn_t *tsdn, rtree_t *rtree, rtree_node_elm_t *elm,
unsigned level, bool dependent) {
rtree_node_elm_t *node;
node = rtree_child_node_tryread(elm, dependent);
if (!dependent && unlikely(!rtree_node_valid(node))) {
node = rtree_node_init(tsdn, rtree, level + 1, &elm->child);
}
assert(!dependent || node != NULL);
return node;
}
static rtree_leaf_elm_t *
rtree_child_leaf_tryread(rtree_node_elm_t *elm, bool dependent) {
rtree_leaf_elm_t *leaf;
if (dependent) {
leaf = (rtree_leaf_elm_t *)atomic_load_p(&elm->child,
ATOMIC_RELAXED);
} else {
leaf = (rtree_leaf_elm_t *)atomic_load_p(&elm->child,
ATOMIC_ACQUIRE);
}
assert(!dependent || leaf != NULL);
return leaf;
}
static rtree_leaf_elm_t *
rtree_child_leaf_read(tsdn_t *tsdn, rtree_t *rtree, rtree_node_elm_t *elm,
unsigned level, bool dependent) {
rtree_leaf_elm_t *leaf;
leaf = rtree_child_leaf_tryread(elm, dependent);
if (!dependent && unlikely(!rtree_leaf_valid(leaf))) {
leaf = rtree_leaf_init(tsdn, rtree, &elm->child);
}
assert(!dependent || leaf != NULL);
return leaf;
}
rtree_leaf_elm_t *
rtree_leaf_elm_lookup_hard(tsdn_t *tsdn, rtree_t *rtree, rtree_ctx_t *rtree_ctx,
uintptr_t key, bool dependent, bool init_missing) {
rtree_node_elm_t *node;
rtree_leaf_elm_t *leaf;
#if RTREE_HEIGHT > 1
node = rtree->root;
#else
leaf = rtree->root;
#endif
if (config_debug) {
uintptr_t leafkey = rtree_leafkey(key);
for (unsigned i = 0; i < RTREE_CTX_NCACHE; i++) {
assert(rtree_ctx->cache[i].leafkey != leafkey);
}
for (unsigned i = 0; i < RTREE_CTX_NCACHE_L2; i++) {
assert(rtree_ctx->l2_cache[i].leafkey != leafkey);
}
}
#define RTREE_GET_CHILD(level) { \
assert(level < RTREE_HEIGHT-1); \
if (level != 0 && !dependent && \
unlikely(!rtree_node_valid(node))) { \
return NULL; \
} \
uintptr_t subkey = rtree_subkey(key, level); \
if (level + 2 < RTREE_HEIGHT) { \
node = init_missing ? \
rtree_child_node_read(tsdn, rtree, \
&node[subkey], level, dependent) : \
rtree_child_node_tryread(&node[subkey], \
dependent); \
} else { \
leaf = init_missing ? \
rtree_child_leaf_read(tsdn, rtree, \
&node[subkey], level, dependent) : \
rtree_child_leaf_tryread(&node[subkey], \
dependent); \
} \
}
/*
* Cache replacement upon hard lookup (i.e. L1 & L2 rtree cache miss):
* (1) evict last entry in L2 cache; (2) move the collision slot from L1
* cache down to L2; and 3) fill L1.
*/
#define RTREE_GET_LEAF(level) { \
assert(level == RTREE_HEIGHT-1); \
if (!dependent && unlikely(!rtree_leaf_valid(leaf))) { \
return NULL; \
} \
if (RTREE_CTX_NCACHE_L2 > 1) { \
memmove(&rtree_ctx->l2_cache[1], \
&rtree_ctx->l2_cache[0], \
sizeof(rtree_ctx_cache_elm_t) * \
(RTREE_CTX_NCACHE_L2 - 1)); \
} \
size_t slot = rtree_cache_direct_map(key); \
rtree_ctx->l2_cache[0].leafkey = \
rtree_ctx->cache[slot].leafkey; \
rtree_ctx->l2_cache[0].leaf = \
rtree_ctx->cache[slot].leaf; \
uintptr_t leafkey = rtree_leafkey(key); \
rtree_ctx->cache[slot].leafkey = leafkey; \
rtree_ctx->cache[slot].leaf = leaf; \
uintptr_t subkey = rtree_subkey(key, level); \
return &leaf[subkey]; \
}
if (RTREE_HEIGHT > 1) {
RTREE_GET_CHILD(0)
}
if (RTREE_HEIGHT > 2) {
RTREE_GET_CHILD(1)
}
if (RTREE_HEIGHT > 3) {
for (unsigned i = 2; i < RTREE_HEIGHT-1; i++) {
RTREE_GET_CHILD(i)
}
}
RTREE_GET_LEAF(RTREE_HEIGHT-1)
#undef RTREE_GET_CHILD
#undef RTREE_GET_LEAF
not_reached();
}
void
rtree_ctx_data_init(rtree_ctx_t *ctx) {
for (unsigned i = 0; i < RTREE_CTX_NCACHE; i++) {
rtree_ctx_cache_elm_t *cache = &ctx->cache[i];
cache->leafkey = RTREE_LEAFKEY_INVALID;
cache->leaf = NULL;
}
for (unsigned i = 0; i < RTREE_CTX_NCACHE_L2; i++) {
rtree_ctx_cache_elm_t *cache = &ctx->l2_cache[i];
cache->leafkey = RTREE_LEAFKEY_INVALID;
cache->leaf = NULL;
}
}
|