1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
#include "jemalloc/internal/jemalloc_preamble.h"
#include "jemalloc/internal/jemalloc_internal_includes.h"
#include "jemalloc/internal/fxp.h"
static bool
fxp_isdigit(char c) {
return '0' <= c && c <= '9';
}
bool
fxp_parse(fxp_t *result, const char *str, char **end) {
/*
* Using malloc_strtoumax in this method isn't as handy as you might
* expect (I tried). In the fractional part, significant leading zeros
* mean that you still need to do your own parsing, now with trickier
* math. In the integer part, the casting (uintmax_t to uint32_t)
* forces more reasoning about bounds than just checking for overflow as
* we parse.
*/
uint32_t integer_part = 0;
const char *cur = str;
/* The string must start with a digit or a decimal point. */
if (*cur != '.' && !fxp_isdigit(*cur)) {
return true;
}
while ('0' <= *cur && *cur <= '9') {
integer_part *= 10;
integer_part += *cur - '0';
if (integer_part >= (1U << 16)) {
return true;
}
cur++;
}
/*
* We've parsed all digits at the beginning of the string, without
* overflow. Either we're done, or there's a fractional part.
*/
if (*cur != '.') {
*result = (integer_part << 16);
if (end != NULL) {
*end = (char *)cur;
}
return false;
}
/* There's a fractional part. */
cur++;
if (!fxp_isdigit(*cur)) {
/* Shouldn't end on the decimal point. */
return true;
}
/*
* We use a lot of precision for the fractional part, even though we'll
* discard most of it; this lets us get exact values for the important
* special case where the denominator is a small power of 2 (for
* instance, 1/512 == 0.001953125 is exactly representable even with
* only 16 bits of fractional precision). We need to left-shift by 16
* before dividing so we pick the number of digits to be
* floor(log(2**48)) = 14.
*/
uint64_t fractional_part = 0;
uint64_t frac_div = 1;
for (int i = 0; i < FXP_FRACTIONAL_PART_DIGITS; i++) {
fractional_part *= 10;
frac_div *= 10;
if (fxp_isdigit(*cur)) {
fractional_part += *cur - '0';
cur++;
}
}
/*
* We only parse the first maxdigits characters, but we can still ignore
* any digits after that.
*/
while (fxp_isdigit(*cur)) {
cur++;
}
assert(fractional_part < frac_div);
uint32_t fractional_repr = (uint32_t)(
(fractional_part << 16) / frac_div);
/* Success! */
*result = (integer_part << 16) + fractional_repr;
if (end != NULL) {
*end = (char *)cur;
}
return false;
}
void
fxp_print(fxp_t a, char buf[FXP_BUF_SIZE]) {
uint32_t integer_part = fxp_round_down(a);
uint32_t fractional_part = (a & ((1U << 16) - 1));
int leading_fraction_zeros = 0;
uint64_t fraction_digits = fractional_part;
for (int i = 0; i < FXP_FRACTIONAL_PART_DIGITS; i++) {
if (fraction_digits < (1U << 16)
&& fraction_digits * 10 >= (1U << 16)) {
leading_fraction_zeros = i;
}
fraction_digits *= 10;
}
fraction_digits >>= 16;
while (fraction_digits > 0 && fraction_digits % 10 == 0) {
fraction_digits /= 10;
}
size_t printed = malloc_snprintf(buf, FXP_BUF_SIZE, "%"FMTu32".",
integer_part);
for (int i = 0; i < leading_fraction_zeros; i++) {
buf[printed] = '0';
printed++;
}
malloc_snprintf(&buf[printed], FXP_BUF_SIZE - printed, "%"FMTu64,
fraction_digits);
}
|