1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
|
/**********************************************************************
Copyright(c) 2011-2015 Intel Corporation All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h> // for memset, memcmp
#include <assert.h>
#include "erasure_code.h"
#include "test.h"
#ifndef ALIGN_SIZE
# define ALIGN_SIZE 16
#endif
//By default, test multibinary version
#ifndef FUNCTION_UNDER_TEST
# define FUNCTION_UNDER_TEST ec_encode_data_update
# define REF_FUNCTION ec_encode_data
#endif
#define TEST_LEN 8192
#define TEST_SIZE (TEST_LEN/2)
#ifndef TEST_SOURCES
# define TEST_SOURCES 127
#endif
#ifndef RANDOMS
# define RANDOMS 200
#endif
#define MMAX TEST_SOURCES
#define KMAX TEST_SOURCES
#define EFENCE_TEST_MAX_SIZE 0x100
#ifdef EC_ALIGNED_ADDR
// Define power of 2 range to check ptr, len alignment
# define PTR_ALIGN_CHK_B 0
# define LEN_ALIGN_CHK_B 0 // 0 for aligned only
#else
// Define power of 2 range to check ptr, len alignment
# define PTR_ALIGN_CHK_B ALIGN_SIZE
# define LEN_ALIGN_CHK_B ALIGN_SIZE // 0 for aligned only
#endif
#ifndef TEST_SEED
#define TEST_SEED 11
#endif
#define str(s) #s
#define xstr(s) str(s)
typedef unsigned char u8;
void dump(unsigned char *buf, int len)
{
int i;
for (i = 0; i < len;) {
printf(" %2x", 0xff & buf[i++]);
if (i % 32 == 0)
printf("\n");
}
printf("\n");
}
void dump_matrix(unsigned char **s, int k, int m)
{
int i, j;
for (i = 0; i < k; i++) {
for (j = 0; j < m; j++) {
printf(" %2x", s[i][j]);
}
printf("\n");
}
printf("\n");
}
void dump_u8xu8(unsigned char *s, int k, int m)
{
int i, j;
for (i = 0; i < k; i++) {
for (j = 0; j < m; j++) {
printf(" %2x", 0xff & s[j + (i * m)]);
}
printf("\n");
}
printf("\n");
}
// Generate Random errors
static void gen_err_list(unsigned char *src_err_list,
unsigned char *src_in_err, int *pnerrs, int *pnsrcerrs, int k, int m)
{
int i, err;
int nerrs = 0, nsrcerrs = 0;
for (i = 0, nerrs = 0, nsrcerrs = 0; i < m && nerrs < m - k; i++) {
err = 1 & rand();
src_in_err[i] = err;
if (err) {
src_err_list[nerrs++] = i;
if (i < k) {
nsrcerrs++;
}
}
}
if (nerrs == 0) { // should have at least one error
while ((err = (rand() % KMAX)) >= m) ;
src_err_list[nerrs++] = err;
src_in_err[err] = 1;
if (err < k)
nsrcerrs = 1;
}
*pnerrs = nerrs;
*pnsrcerrs = nsrcerrs;
return;
}
#define NO_INVERT_MATRIX -2
// Generate decode matrix from encode matrix
static int gf_gen_decode_matrix(unsigned char *encode_matrix,
unsigned char *decode_matrix,
unsigned char *invert_matrix,
unsigned int *decode_index,
unsigned char *src_err_list,
unsigned char *src_in_err,
int nerrs, int nsrcerrs, int k, int m)
{
int i, j, p;
int r;
unsigned char *backup, *b, s;
int incr = 0;
b = malloc(MMAX * KMAX);
backup = malloc(MMAX * KMAX);
if (b == NULL || backup == NULL) {
printf("Test failure! Error with malloc\n");
free(b);
free(backup);
return -1;
}
// Construct matrix b by removing error rows
for (i = 0, r = 0; i < k; i++, r++) {
while (src_in_err[r])
r++;
for (j = 0; j < k; j++) {
b[k * i + j] = encode_matrix[k * r + j];
backup[k * i + j] = encode_matrix[k * r + j];
}
decode_index[i] = r;
}
incr = 0;
while (gf_invert_matrix(b, invert_matrix, k) < 0) {
if (nerrs == (m - k)) {
free(b);
free(backup);
printf("BAD MATRIX\n");
return NO_INVERT_MATRIX;
}
incr++;
memcpy(b, backup, MMAX * KMAX);
for (i = nsrcerrs; i < nerrs - nsrcerrs; i++) {
if (src_err_list[i] == (decode_index[k - 1] + incr)) {
// skip the erased parity line
incr++;
continue;
}
}
if (decode_index[k - 1] + incr >= m) {
free(b);
free(backup);
printf("BAD MATRIX\n");
return NO_INVERT_MATRIX;
}
decode_index[k - 1] += incr;
for (j = 0; j < k; j++)
b[k * (k - 1) + j] = encode_matrix[k * decode_index[k - 1] + j];
};
for (i = 0; i < nsrcerrs; i++) {
for (j = 0; j < k; j++) {
decode_matrix[k * i + j] = invert_matrix[k * src_err_list[i] + j];
}
}
/* src_err_list from encode_matrix * invert of b for parity decoding */
for (p = nsrcerrs; p < nerrs; p++) {
for (i = 0; i < k; i++) {
s = 0;
for (j = 0; j < k; j++)
s ^= gf_mul_erasure(invert_matrix[j * k + i],
encode_matrix[k * src_err_list[p] + j]);
decode_matrix[k * p + i] = s;
}
}
free(b);
free(backup);
return 0;
}
int main(int argc, char *argv[])
{
int re = -1;
int i, j, p, rtest, m, k;
int nerrs, nsrcerrs;
void *buf;
unsigned int decode_index[MMAX];
unsigned char *temp_buffs[TEST_SOURCES] = { NULL }, *buffs[TEST_SOURCES] = { NULL };
unsigned char *update_buffs[TEST_SOURCES] = { NULL };
unsigned char *encode_matrix = NULL, *decode_matrix = NULL, *invert_matrix =
NULL, *g_tbls = NULL;
unsigned char src_in_err[TEST_SOURCES], src_err_list[TEST_SOURCES];
unsigned char *recov[TEST_SOURCES];
int rows, align, size;
unsigned char *efence_buffs[TEST_SOURCES];
unsigned char *efence_update_buffs[TEST_SOURCES];
unsigned int offset;
u8 *ubuffs[TEST_SOURCES];
u8 *update_ubuffs[TEST_SOURCES];
u8 *temp_ubuffs[TEST_SOURCES];
printf("test " xstr(FUNCTION_UNDER_TEST) ": %dx%d ", TEST_SOURCES, TEST_LEN);
srand(TEST_SEED);
// Allocate the arrays
for (i = 0; i < TEST_SOURCES; i++) {
if (posix_memalign(&buf, 64, TEST_LEN)) {
printf("alloc error: Fail");
goto exit;
}
buffs[i] = buf;
}
for (i = 0; i < TEST_SOURCES; i++) {
if (posix_memalign(&buf, 64, TEST_LEN)) {
printf("alloc error: Fail");
goto exit;
}
temp_buffs[i] = buf;
memset(temp_buffs[i], 0, TEST_LEN); // initialize the destination buffer to be zero for update function
}
for (i = 0; i < TEST_SOURCES; i++) {
if (posix_memalign(&buf, 64, TEST_LEN)) {
printf("alloc error: Fail");
goto exit;
}
update_buffs[i] = buf;
memset(update_buffs[i], 0, TEST_LEN); // initialize the destination buffer to be zero for update function
}
// Test erasure code by encode and recovery
encode_matrix = malloc(MMAX * KMAX);
decode_matrix = malloc(MMAX * KMAX);
invert_matrix = malloc(MMAX * KMAX);
g_tbls = malloc(KMAX * TEST_SOURCES * 32);
if (encode_matrix == NULL || decode_matrix == NULL
|| invert_matrix == NULL || g_tbls == NULL) {
printf("Test failure! Error with malloc\n");
goto exit;
}
// Pick a first test
m = 14;
k = 10;
assert(!(m > MMAX || k > KMAX));
// Make random data
for (i = 0; i < k; i++) {
for (j = 0; j < TEST_LEN; j++) {
buffs[i][j] = rand();
update_buffs[i][j] = buffs[i][j];
}
}
// Generate encode matrix encode_matrix
// The matrix generated by gf_gen_rs_matrix
// is not always invertable.
gf_gen_rs_matrix(encode_matrix, m, k);
// Generate g_tbls from encode matrix encode_matrix
ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
// Perform matrix dot_prod for EC encoding
// using g_tbls from encode matrix encode_matrix
REF_FUNCTION(TEST_LEN, k, m - k, g_tbls, buffs, &buffs[k]);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(TEST_LEN, k, m - k, i, g_tbls, update_buffs[i],
&update_buffs[k]);
}
for (i = 0; i < m - k; i++) {
if (0 != memcmp(update_buffs[k + i], buffs[k + i], TEST_LEN)) {
printf("\nupdate_buffs%d :", i);
dump(update_buffs[k + i], 25);
printf("buffs%d :", i);
dump(buffs[k + i], 25);
goto exit;
}
}
// Choose random buffers to be in erasure
memset(src_in_err, 0, TEST_SOURCES);
gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
// Generate decode matrix
re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
invert_matrix, decode_index, src_err_list, src_in_err,
nerrs, nsrcerrs, k, m);
if (re != 0) {
printf("Fail to gf_gen_decode_matrix\n");
goto exit;
}
// Pack recovery array as list of valid sources
// Its order must be the same as the order
// to generate matrix b in gf_gen_decode_matrix
for (i = 0; i < k; i++) {
recov[i] = update_buffs[decode_index[i]];
}
// Recover data
ec_init_tables(k, nerrs, decode_matrix, g_tbls);
REF_FUNCTION(TEST_LEN, k, nerrs, g_tbls, recov, &temp_buffs[k]);
for (i = 0; i < nerrs; i++) {
if (0 != memcmp(temp_buffs[k + i], update_buffs[src_err_list[i]], TEST_LEN)) {
printf("Fail error recovery (%d, %d, %d)\n", m, k, nerrs);
printf(" - erase list = ");
for (j = 0; j < nerrs; j++)
printf(" %d", src_err_list[j]);
printf(" - Index = ");
for (p = 0; p < k; p++)
printf(" %d", decode_index[p]);
printf("\nencode_matrix:\n");
dump_u8xu8((u8 *) encode_matrix, m, k);
printf("inv b:\n");
dump_u8xu8((u8 *) invert_matrix, k, k);
printf("\ndecode_matrix:\n");
dump_u8xu8((u8 *) decode_matrix, m, k);
printf("recov %d:", src_err_list[i]);
dump(temp_buffs[k + i], 25);
printf("orig :");
dump(update_buffs[src_err_list[i]], 25);
re = -1;
goto exit;
}
}
#ifdef TEST_VERBOSE
putchar('.');
#endif
// Pick a first test
m = 7;
k = 5;
if (m > MMAX || k > KMAX) {
re = -1;
goto exit;
}
// Zero the destination buffer for update function
for (i = k; i < TEST_SOURCES; i++) {
memset(buffs[i], 0, TEST_LEN);
memset(update_buffs[i], 0, TEST_LEN);
}
// Make random data
for (i = 0; i < k; i++) {
for (j = 0; j < TEST_LEN; j++) {
buffs[i][j] = rand();
update_buffs[i][j] = buffs[i][j];
}
}
// The matrix generated by gf_gen_cauchy1_matrix
// is always invertable.
gf_gen_cauchy1_matrix(encode_matrix, m, k);
// Generate g_tbls from encode matrix encode_matrix
ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
// Perform matrix dot_prod for EC encoding
// using g_tbls from encode matrix encode_matrix
REF_FUNCTION(TEST_LEN, k, m - k, g_tbls, buffs, &buffs[k]);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(TEST_LEN, k, m - k, i, g_tbls, update_buffs[i],
&update_buffs[k]);
}
for (i = 0; i < m - k; i++) {
if (0 != memcmp(update_buffs[k + i], buffs[k + i], TEST_LEN)) {
printf("\nupdate_buffs%d :", i);
dump(update_buffs[k + i], 25);
printf("buffs%d :", i);
dump(buffs[k + i], 25);
re = -1;
goto exit;
}
}
// Choose random buffers to be in erasure
memset(src_in_err, 0, TEST_SOURCES);
gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
// Generate decode matrix
re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
invert_matrix, decode_index, src_err_list, src_in_err,
nerrs, nsrcerrs, k, m);
if (re != 0) {
printf("Fail to gf_gen_decode_matrix\n");
goto exit;
}
// Pack recovery array as list of valid sources
// Its order must be the same as the order
// to generate matrix b in gf_gen_decode_matrix
for (i = 0; i < k; i++) {
recov[i] = update_buffs[decode_index[i]];
}
// Recover data
for (i = 0; i < TEST_SOURCES; i++) {
memset(temp_buffs[i], 0, TEST_LEN);
}
ec_init_tables(k, nerrs, decode_matrix, g_tbls);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(TEST_LEN, k, nerrs, i, g_tbls, recov[i], &temp_buffs[k]);
}
for (i = 0; i < nerrs; i++) {
if (0 != memcmp(temp_buffs[k + i], update_buffs[src_err_list[i]], TEST_LEN)) {
printf("Fail error recovery (%d, %d, %d)\n", m, k, nerrs);
printf(" - erase list = ");
for (j = 0; j < nerrs; j++)
printf(" %d", src_err_list[j]);
printf(" - Index = ");
for (p = 0; p < k; p++)
printf(" %d", decode_index[p]);
printf("\nencode_matrix:\n");
dump_u8xu8((u8 *) encode_matrix, m, k);
printf("inv b:\n");
dump_u8xu8((u8 *) invert_matrix, k, k);
printf("\ndecode_matrix:\n");
dump_u8xu8((u8 *) decode_matrix, m, k);
printf("recov %d:", src_err_list[i]);
dump(temp_buffs[k + i], 25);
printf("orig :");
dump(update_buffs[src_err_list[i]], 25);
re = -1;
goto exit;
}
}
#ifdef TEST_VERBOSE
putchar('.');
#endif
// Do more random tests
for (rtest = 0; rtest < RANDOMS; rtest++) {
while ((m = (rand() % MMAX)) < 2) ;
while ((k = (rand() % KMAX)) >= m || k < 1) ;
if (m > MMAX || k > KMAX)
continue;
// Zero the destination buffer for update function
for (i = k; i < TEST_SOURCES; i++) {
memset(buffs[i], 0, TEST_LEN);
memset(update_buffs[i], 0, TEST_LEN);
}
// Make random data
for (i = 0; i < k; i++) {
for (j = 0; j < TEST_LEN; j++) {
buffs[i][j] = rand();
update_buffs[i][j] = buffs[i][j];
}
}
// The matrix generated by gf_gen_cauchy1_matrix
// is always invertable.
gf_gen_cauchy1_matrix(encode_matrix, m, k);
// Make parity vects
// Generate g_tbls from encode matrix a
ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
// Perform matrix dot_prod for EC encoding
// using g_tbls from encode matrix a
REF_FUNCTION(TEST_LEN, k, m - k, g_tbls, buffs, &buffs[k]);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(TEST_LEN, k, m - k, i, g_tbls, update_buffs[i],
&update_buffs[k]);
}
for (i = 0; i < m - k; i++) {
if (0 != memcmp(update_buffs[k + i], buffs[k + i], TEST_LEN)) {
printf("\nupdate_buffs%d :", i);
dump(update_buffs[k + i], 25);
printf("buffs%d :", i);
dump(buffs[k + i], 25);
re = -1;
goto exit;
}
}
// Random errors
memset(src_in_err, 0, TEST_SOURCES);
gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
// Generate decode matrix
re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
invert_matrix, decode_index, src_err_list,
src_in_err, nerrs, nsrcerrs, k, m);
if (re != 0) {
printf("Fail to gf_gen_decode_matrix\n");
goto exit;
}
// Pack recovery array as list of valid sources
// Its order must be the same as the order
// to generate matrix b in gf_gen_decode_matrix
for (i = 0; i < k; i++) {
recov[i] = update_buffs[decode_index[i]];
}
// Recover data
for (i = 0; i < TEST_SOURCES; i++) {
memset(temp_buffs[i], 0, TEST_LEN);
}
ec_init_tables(k, nerrs, decode_matrix, g_tbls);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(TEST_LEN, k, nerrs, i, g_tbls, recov[i],
&temp_buffs[k]);
}
for (i = 0; i < nerrs; i++) {
if (0 !=
memcmp(temp_buffs[k + i], update_buffs[src_err_list[i]],
TEST_LEN)) {
printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
printf(" - erase list = ");
for (j = 0; j < nerrs; j++)
printf(" %d", src_err_list[j]);
printf(" - Index = ");
for (p = 0; p < k; p++)
printf(" %d", decode_index[p]);
printf("\nencode_matrix:\n");
dump_u8xu8((u8 *) encode_matrix, m, k);
printf("inv b:\n");
dump_u8xu8((u8 *) invert_matrix, k, k);
printf("\ndecode_matrix:\n");
dump_u8xu8((u8 *) decode_matrix, m, k);
printf("orig data:\n");
dump_matrix(update_buffs, m, 25);
printf("orig :");
dump(update_buffs[src_err_list[i]], 25);
printf("recov %d:", src_err_list[i]);
dump(temp_buffs[k + i], 25);
re = -1;
goto exit;
}
}
#ifdef TEST_VERBOSE
putchar('.');
#endif
}
// Run tests at end of buffer for Electric Fence
k = 16;
align = (LEN_ALIGN_CHK_B != 0) ? 1 : ALIGN_SIZE;
if (k > KMAX) {
re = -1;
goto exit;
}
for (rows = 1; rows <= 16; rows++) {
m = k + rows;
if (m > MMAX) {
re = -1;
goto exit;
}
for (i = k; i < TEST_SOURCES; i++) {
memset(buffs[i], 0, TEST_LEN);
memset(update_buffs[i], 0, TEST_LEN);
}
// Make random data
for (i = 0; i < k; i++) {
for (j = 0; j < TEST_LEN; j++) {
buffs[i][j] = rand();
update_buffs[i][j] = buffs[i][j];
}
}
for (size = 0; size <= EFENCE_TEST_MAX_SIZE; size += align) {
for (i = 0; i < m; i++) { // Line up TEST_SIZE from end
efence_buffs[i] = buffs[i] + TEST_LEN - size;
efence_update_buffs[i] = update_buffs[i] + TEST_LEN - size;
}
// Zero the destination buffer for update function
for (i = k; i < m; i++) {
memset(efence_buffs[i], 0, size);
memset(efence_update_buffs[i], 0, size);
}
// The matrix generated by gf_gen_cauchy1_matrix
// is always invertable.
gf_gen_cauchy1_matrix(encode_matrix, m, k);
// Make parity vects
// Generate g_tbls from encode matrix a
ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
// Perform matrix dot_prod for EC encoding
// using g_tbls from encode matrix a
REF_FUNCTION(size, k, m - k, g_tbls, efence_buffs, &efence_buffs[k]);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(size, k, m - k, i, g_tbls,
efence_update_buffs[i],
&efence_update_buffs[k]);
}
for (i = 0; i < m - k; i++) {
if (0 !=
memcmp(efence_update_buffs[k + i], efence_buffs[k + i],
size)) {
printf("\nefence_update_buffs%d :", i);
dump(efence_update_buffs[k + i], 25);
printf("efence_buffs%d :", i);
dump(efence_buffs[k + i], 25);
re = -1;
goto exit;
}
}
// Random errors
memset(src_in_err, 0, TEST_SOURCES);
gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
// Generate decode matrix
re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
invert_matrix, decode_index, src_err_list,
src_in_err, nerrs, nsrcerrs, k, m);
if (re != 0) {
printf("Fail to gf_gen_decode_matrix\n");
goto exit;
}
// Pack recovery array as list of valid sources
// Its order must be the same as the order
// to generate matrix b in gf_gen_decode_matrix
for (i = 0; i < k; i++) {
recov[i] = efence_update_buffs[decode_index[i]];
}
// Recover data
for (i = 0; i < TEST_SOURCES; i++) {
memset(temp_buffs[i], 0, TEST_LEN);
}
ec_init_tables(k, nerrs, decode_matrix, g_tbls);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(size, k, nerrs, i, g_tbls, recov[i],
&temp_buffs[k]);
}
for (i = 0; i < nerrs; i++) {
if (0 !=
memcmp(temp_buffs[k + i],
efence_update_buffs[src_err_list[i]], size)) {
printf("Efence: Fail error recovery (%d, %d, %d)\n", m,
k, nerrs);
printf("size = %d\n", size);
printf("Test erase list = ");
for (j = 0; j < nerrs; j++)
printf(" %d", src_err_list[j]);
printf(" - Index = ");
for (p = 0; p < k; p++)
printf(" %d", decode_index[p]);
printf("\nencode_matrix:\n");
dump_u8xu8((u8 *) encode_matrix, m, k);
printf("inv b:\n");
dump_u8xu8((u8 *) invert_matrix, k, k);
printf("\ndecode_matrix:\n");
dump_u8xu8((u8 *) decode_matrix, m, k);
printf("recov %d:", src_err_list[i]);
dump(temp_buffs[k + i], align);
printf("orig :");
dump(efence_update_buffs[src_err_list[i]], align);
re = 1;
goto exit;
}
}
}
#ifdef TEST_VERBOSE
putchar('.');
#endif
}
// Test rand ptr alignment if available
for (rtest = 0; rtest < RANDOMS; rtest++) {
while ((m = (rand() % MMAX)) < 2) ;
while ((k = (rand() % KMAX)) >= m || k < 1) ;
if (m > MMAX || k > KMAX)
continue;
size = (TEST_LEN - PTR_ALIGN_CHK_B) & ~15;
offset = (PTR_ALIGN_CHK_B != 0) ? 1 : PTR_ALIGN_CHK_B;
// Add random offsets
for (i = 0; i < m; i++) {
memset(buffs[i], 0, TEST_LEN); // zero pad to check write-over
memset(update_buffs[i], 0, TEST_LEN); // zero pad to check write-over
memset(temp_buffs[i], 0, TEST_LEN); // zero pad to check write-over
ubuffs[i] = buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));
update_ubuffs[i] =
update_buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));
temp_ubuffs[i] = temp_buffs[i] + (rand() & (PTR_ALIGN_CHK_B - offset));
}
// Zero the destination buffer for update function
for (i = k; i < m; i++) {
memset(ubuffs[i], 0, size);
memset(update_ubuffs[i], 0, size);
}
// Make random data
for (i = 0; i < k; i++) {
for (j = 0; j < size; j++) {
ubuffs[i][j] = rand();
update_ubuffs[i][j] = ubuffs[i][j];
}
}
// The matrix generated by gf_gen_cauchy1_matrix
// is always invertable.
gf_gen_cauchy1_matrix(encode_matrix, m, k);
// Make parity vects
// Generate g_tbls from encode matrix a
ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
// Perform matrix dot_prod for EC encoding
// using g_tbls from encode matrix a
REF_FUNCTION(size, k, m - k, g_tbls, ubuffs, &ubuffs[k]);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(size, k, m - k, i, g_tbls, update_ubuffs[i],
&update_ubuffs[k]);
}
for (i = 0; i < m - k; i++) {
if (0 != memcmp(update_ubuffs[k + i], ubuffs[k + i], size)) {
printf("\nupdate_ubuffs%d :", i);
dump(update_ubuffs[k + i], 25);
printf("ubuffs%d :", i);
dump(ubuffs[k + i], 25);
re = -1;
goto exit;
}
}
// Random errors
memset(src_in_err, 0, TEST_SOURCES);
gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
// Generate decode matrix
re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
invert_matrix, decode_index, src_err_list,
src_in_err, nerrs, nsrcerrs, k, m);
if (re != 0) {
printf("Fail to gf_gen_decode_matrix\n");
goto exit;
}
// Pack recovery array as list of valid sources
// Its order must be the same as the order
// to generate matrix b in gf_gen_decode_matrix
for (i = 0; i < k; i++) {
recov[i] = update_ubuffs[decode_index[i]];
}
// Recover data
for (i = 0; i < m; i++) {
memset(temp_ubuffs[i], 0, size);
}
ec_init_tables(k, nerrs, decode_matrix, g_tbls);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(size, k, nerrs, i, g_tbls, recov[i],
&temp_ubuffs[k]);
}
for (i = 0; i < nerrs; i++) {
if (0 !=
memcmp(temp_ubuffs[k + i], update_ubuffs[src_err_list[i]], size)) {
printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
printf(" - erase list = ");
for (j = 0; j < nerrs; j++)
printf(" %d", src_err_list[j]);
printf(" - Index = ");
for (p = 0; p < k; p++)
printf(" %d", decode_index[p]);
printf("\nencode_matrix:\n");
dump_u8xu8((unsigned char *)encode_matrix, m, k);
printf("inv b:\n");
dump_u8xu8((unsigned char *)invert_matrix, k, k);
printf("\ndecode_matrix:\n");
dump_u8xu8((unsigned char *)decode_matrix, m, k);
printf("orig data:\n");
dump_matrix(update_ubuffs, m, 25);
printf("orig :");
dump(update_ubuffs[src_err_list[i]], 25);
printf("recov %d:", src_err_list[i]);
dump(temp_ubuffs[k + i], 25);
re = -1;
goto exit;
}
}
// Confirm that padding around dests is unchanged
memset(temp_buffs[0], 0, PTR_ALIGN_CHK_B); // Make reference zero buff
for (i = 0; i < m; i++) {
offset = update_ubuffs[i] - update_buffs[i];
if (memcmp(update_buffs[i], temp_buffs[0], offset)) {
printf("Fail rand ualign encode pad start\n");
re = -1;
goto exit;
}
if (memcmp
(update_buffs[i] + offset + size, temp_buffs[0],
PTR_ALIGN_CHK_B - offset)) {
printf("Fail rand ualign encode pad end\n");
re = -1;
goto exit;
}
}
for (i = 0; i < nerrs; i++) {
offset = temp_ubuffs[k + i] - temp_buffs[k + i];
if (memcmp(temp_buffs[k + i], temp_buffs[0], offset)) {
printf("Fail rand ualign decode pad start\n");
re = -1;
goto exit;
}
if (memcmp
(temp_buffs[k + i] + offset + size, temp_buffs[0],
PTR_ALIGN_CHK_B - offset)) {
printf("Fail rand ualign decode pad end\n");
re = -1;
goto exit;
}
}
#ifdef TEST_VERBOSE
putchar('.');
#endif
}
// Test size alignment
align = (LEN_ALIGN_CHK_B != 0) ? 13 : ALIGN_SIZE;
for (size = TEST_LEN; size >= 0; size -= align) {
while ((m = (rand() % MMAX)) < 2) ;
while ((k = (rand() % KMAX)) >= m || k < 1) ;
if (m > MMAX || k > KMAX)
continue;
// Zero the destination buffer for update function
for (i = k; i < TEST_SOURCES; i++) {
memset(buffs[i], 0, size);
memset(update_buffs[i], 0, size);
}
// Make random data
for (i = 0; i < k; i++) {
for (j = 0; j < size; j++) {
buffs[i][j] = rand();
update_buffs[i][j] = buffs[i][j];
}
}
// The matrix generated by gf_gen_cauchy1_matrix
// is always invertable.
gf_gen_cauchy1_matrix(encode_matrix, m, k);
// Make parity vects
// Generate g_tbls from encode matrix a
ec_init_tables(k, m - k, &encode_matrix[k * k], g_tbls);
// Perform matrix dot_prod for EC encoding
// using g_tbls from encode matrix a
REF_FUNCTION(size, k, m - k, g_tbls, buffs, &buffs[k]);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(size, k, m - k, i, g_tbls, update_buffs[i],
&update_buffs[k]);
}
for (i = 0; i < m - k; i++) {
if (0 != memcmp(update_buffs[k + i], buffs[k + i], size)) {
printf("\nupdate_buffs%d (size=%d) :", i, size);
dump(update_buffs[k + i], 25);
printf("buffs%d (size=%d) :", i, size);
dump(buffs[k + i], 25);
re = -1;
goto exit;
}
}
// Random errors
memset(src_in_err, 0, TEST_SOURCES);
gen_err_list(src_err_list, src_in_err, &nerrs, &nsrcerrs, k, m);
// Generate decode matrix
re = gf_gen_decode_matrix(encode_matrix, decode_matrix,
invert_matrix, decode_index, src_err_list,
src_in_err, nerrs, nsrcerrs, k, m);
if (re != 0) {
printf("Fail to gf_gen_decode_matrix\n");
goto exit;
}
// Pack recovery array as list of valid sources
// Its order must be the same as the order
// to generate matrix b in gf_gen_decode_matrix
for (i = 0; i < k; i++) {
recov[i] = update_buffs[decode_index[i]];
}
// Recover data
for (i = 0; i < TEST_SOURCES; i++) {
memset(temp_buffs[i], 0, TEST_LEN);
}
ec_init_tables(k, nerrs, decode_matrix, g_tbls);
for (i = 0; i < k; i++) {
FUNCTION_UNDER_TEST(size, k, nerrs, i, g_tbls, recov[i],
&temp_buffs[k]);
}
for (i = 0; i < nerrs; i++) {
if (0 !=
memcmp(temp_buffs[k + i], update_buffs[src_err_list[i]], size)) {
printf("Fail error recovery (%d, %d, %d) - ", m, k, nerrs);
printf(" - erase list = ");
for (j = 0; j < nerrs; j++)
printf(" %d", src_err_list[j]);
printf(" - Index = ");
for (p = 0; p < k; p++)
printf(" %d", decode_index[p]);
printf("\nencode_matrix:\n");
dump_u8xu8((unsigned char *)encode_matrix, m, k);
printf("inv b:\n");
dump_u8xu8((unsigned char *)invert_matrix, k, k);
printf("\ndecode_matrix:\n");
dump_u8xu8((unsigned char *)decode_matrix, m, k);
printf("orig data:\n");
dump_matrix(update_buffs, m, 25);
printf("orig :");
dump(update_buffs[src_err_list[i]], 25);
printf("recov %d:", src_err_list[i]);
dump(temp_buffs[k + i], 25);
re = -1;
goto exit;
}
}
#ifdef TEST_VERBOSE
putchar('.');
#endif
}
printf("done EC tests: Pass\n");
re = 0;
exit:
for (i = 0; i < TEST_SOURCES; i++) {
if (buffs[i])
aligned_free(buffs[i]);
if (temp_buffs[i])
aligned_free(temp_buffs[i]);
if (update_buffs[i])
aligned_free(update_buffs[i]);
}
free(encode_matrix);
free(decode_matrix);
free(invert_matrix);
free(g_tbls);
return 0;
}
|