1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
|
// © 2020 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
#include <cmath>
#include "cmemory.h"
#include "number_decimalquantity.h"
#include "number_roundingutils.h"
#include "putilimp.h"
#include "uarrsort.h"
#include "uassert.h"
#include "unicode/fmtable.h"
#include "unicode/localpointer.h"
#include "unicode/measunit.h"
#include "unicode/measure.h"
#include "units_complexconverter.h"
#include "units_converter.h"
U_NAMESPACE_BEGIN
namespace units {
ComplexUnitsConverter::ComplexUnitsConverter(const MeasureUnitImpl &targetUnit,
const ConversionRates &ratesInfo, UErrorCode &status)
: units_(targetUnit.extractIndividualUnitsWithIndices(status)) {
if (U_FAILURE(status)) {
return;
}
U_ASSERT(units_.length() != 0);
// Just borrowing a pointer to the instance
MeasureUnitImpl *biggestUnit = &units_[0]->unitImpl;
for (int32_t i = 1; i < units_.length(); i++) {
if (UnitsConverter::compareTwoUnits(units_[i]->unitImpl, *biggestUnit, ratesInfo, status) > 0 &&
U_SUCCESS(status)) {
biggestUnit = &units_[i]->unitImpl;
}
if (U_FAILURE(status)) {
return;
}
}
this->init(*biggestUnit, ratesInfo, status);
}
ComplexUnitsConverter::ComplexUnitsConverter(StringPiece inputUnitIdentifier,
StringPiece outputUnitsIdentifier, UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
MeasureUnitImpl inputUnit = MeasureUnitImpl::forIdentifier(inputUnitIdentifier, status);
MeasureUnitImpl outputUnits = MeasureUnitImpl::forIdentifier(outputUnitsIdentifier, status);
this->units_ = outputUnits.extractIndividualUnitsWithIndices(status);
U_ASSERT(units_.length() != 0);
this->init(inputUnit, ConversionRates(status), status);
}
ComplexUnitsConverter::ComplexUnitsConverter(const MeasureUnitImpl &inputUnit,
const MeasureUnitImpl &outputUnits,
const ConversionRates &ratesInfo, UErrorCode &status)
: units_(outputUnits.extractIndividualUnitsWithIndices(status)) {
if (U_FAILURE(status)) {
return;
}
U_ASSERT(units_.length() != 0);
this->init(inputUnit, ratesInfo, status);
}
void ComplexUnitsConverter::init(const MeasureUnitImpl &inputUnit,
const ConversionRates &ratesInfo,
UErrorCode &status) {
// Sorts units in descending order. Therefore, we return -1 if
// the left is bigger than right and so on.
auto descendingCompareUnits = [](const void *context, const void *left, const void *right) {
UErrorCode status = U_ZERO_ERROR;
const auto *leftPointer = static_cast<const MeasureUnitImplWithIndex *const *>(left);
const auto *rightPointer = static_cast<const MeasureUnitImplWithIndex *const *>(right);
// Multiply by -1 to sort in descending order
return (-1) * UnitsConverter::compareTwoUnits((**leftPointer).unitImpl, //
(**rightPointer).unitImpl, //
*static_cast<const ConversionRates *>(context), //
status);
};
uprv_sortArray(units_.getAlias(), //
units_.length(), //
sizeof units_[0], /* NOTE: we have already asserted that the units_ is not empty.*/ //
descendingCompareUnits, //
&ratesInfo, //
false, //
&status //
);
// In case the `outputUnits` are `UMEASURE_UNIT_MIXED` such as `foot+inch`. In this case we need more
// converters to convert from the `inputUnit` to the first unit in the `outputUnits`. Then, a
// converter from the first unit in the `outputUnits` to the second unit and so on.
// For Example:
// - inputUnit is `meter`
// - outputUnits is `foot+inch`
// - Therefore, we need to have two converters:
// 1. a converter from `meter` to `foot`
// 2. a converter from `foot` to `inch`
// - Therefore, if the input is `2 meter`:
// 1. convert `meter` to `foot` --> 2 meter to 6.56168 feet
// 2. convert the residual of 6.56168 feet (0.56168) to inches, which will be (6.74016
// inches)
// 3. then, the final result will be (6 feet and 6.74016 inches)
for (int i = 0, n = units_.length(); i < n; i++) {
if (i == 0) { // first element
unitsConverters_.emplaceBackAndCheckErrorCode(status, inputUnit, units_[i]->unitImpl,
ratesInfo, status);
} else {
unitsConverters_.emplaceBackAndCheckErrorCode(status, units_[i - 1]->unitImpl,
units_[i]->unitImpl, ratesInfo, status);
}
if (U_FAILURE(status)) {
return;
}
}
}
UBool ComplexUnitsConverter::greaterThanOrEqual(double quantity, double limit) const {
U_ASSERT(unitsConverters_.length() > 0);
// First converter converts to the biggest quantity.
double newQuantity = unitsConverters_[0]->convert(quantity);
return newQuantity >= limit;
}
MaybeStackVector<Measure> ComplexUnitsConverter::convert(double quantity,
icu::number::impl::RoundingImpl *rounder,
UErrorCode &status) const {
// TODO: return an error for "foot-and-foot"?
MaybeStackVector<Measure> result;
int sign = 1;
if (quantity < 0) {
quantity *= -1;
sign = -1;
}
// For N converters:
// - the first converter converts from the input unit to the largest unit,
// - the following N-2 converters convert to bigger units for which we want integers,
// - the Nth converter (index N-1) converts to the smallest unit, for which
// we keep a double.
MaybeStackArray<int64_t, 5> intValues(unitsConverters_.length() - 1, status);
if (U_FAILURE(status)) {
return result;
}
uprv_memset(intValues.getAlias(), 0, (unitsConverters_.length() - 1) * sizeof(int64_t));
for (int i = 0, n = unitsConverters_.length(); i < n; ++i) {
quantity = (*unitsConverters_[i]).convert(quantity);
if (i < n - 1) {
// If quantity is at the limits of double's precision from an
// integer value, we take that integer value.
int64_t flooredQuantity = static_cast<int64_t>(floor(quantity * (1 + DBL_EPSILON)));
if (uprv_isNaN(quantity)) {
// With clang on Linux: floor does not support NaN, resulting in
// a giant negative number. For now, we produce "0 feet, NaN
// inches". TODO(icu-units#131): revisit desired output.
flooredQuantity = 0;
}
intValues[i] = flooredQuantity;
// Keep the residual of the quantity.
// For example: `3.6 feet`, keep only `0.6 feet`
double remainder = quantity - flooredQuantity;
if (remainder < 0) {
// Because we nudged flooredQuantity up by eps, remainder may be
// negative: we must treat such a remainder as zero.
quantity = 0;
} else {
quantity = remainder;
}
}
}
applyRounder(intValues, quantity, rounder, status);
// Initialize empty result. We use a MaybeStackArray directly so we can
// assign pointers - for this privilege we have to take care of cleanup.
MaybeStackArray<Measure *, 4> tmpResult(unitsConverters_.length(), status);
if (U_FAILURE(status)) {
return result;
}
// Package values into temporary Measure instances in tmpResult:
for (int i = 0, n = unitsConverters_.length(); i < n; ++i) {
if (i < n - 1) {
Formattable formattableQuantity(intValues[i] * sign);
// Measure takes ownership of the MeasureUnit*
MeasureUnit *type = new MeasureUnit(units_[i]->unitImpl.copy(status).build(status));
tmpResult[units_[i]->index] = new Measure(formattableQuantity, type, status);
} else { // LAST ELEMENT
Formattable formattableQuantity(quantity * sign);
// Measure takes ownership of the MeasureUnit*
MeasureUnit *type = new MeasureUnit(units_[i]->unitImpl.copy(status).build(status));
tmpResult[units_[i]->index] = new Measure(formattableQuantity, type, status);
}
}
// Transfer values into result and return:
for(int32_t i = 0, n = unitsConverters_.length(); i < n; ++i) {
U_ASSERT(tmpResult[i] != nullptr);
result.emplaceBackAndCheckErrorCode(status, *tmpResult[i]);
delete tmpResult[i];
}
return result;
}
void ComplexUnitsConverter::applyRounder(MaybeStackArray<int64_t, 5> &intValues, double &quantity,
icu::number::impl::RoundingImpl *rounder,
UErrorCode &status) const {
if (rounder == nullptr) {
// Nothing to do for the quantity.
return;
}
number::impl::DecimalQuantity decimalQuantity;
decimalQuantity.setToDouble(quantity);
rounder->apply(decimalQuantity, status);
if (U_FAILURE(status)) {
return;
}
quantity = decimalQuantity.toDouble();
int32_t lastIndex = unitsConverters_.length() - 1;
if (lastIndex == 0) {
// Only one element, no need to bubble up the carry
return;
}
// Check if there's a carry, and bubble it back up the resulting intValues.
int64_t carry = static_cast<int64_t>(floor(unitsConverters_[lastIndex]->convertInverse(quantity) * (1 + DBL_EPSILON)));
if (carry <= 0) {
return;
}
quantity -= unitsConverters_[lastIndex]->convert(static_cast<double>(carry));
intValues[lastIndex - 1] += carry;
// We don't use the first converter: that one is for the input unit
for (int32_t j = lastIndex - 1; j > 0; j--) {
carry = static_cast<int64_t>(floor(unitsConverters_[j]->convertInverse(static_cast<double>(intValues[j])) * (1 + DBL_EPSILON)));
if (carry <= 0) {
return;
}
intValues[j] -= static_cast<int64_t>(round(unitsConverters_[j]->convert(static_cast<double>(carry))));
intValues[j - 1] += carry;
}
}
} // namespace units
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_FORMATTING */
|