1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
|
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
* Copyright (C) 1997-2015, International Business Machines
* Corporation and others. All Rights Reserved.
******************************************************************************
* file name: nfrs.cpp
* encoding: UTF-8
* tab size: 8 (not used)
* indentation:4
*
* Modification history
* Date Name Comments
* 10/11/2001 Doug Ported from ICU4J
*/
#include "nfrs.h"
#if U_HAVE_RBNF
#include "unicode/uchar.h"
#include "nfrule.h"
#include "nfrlist.h"
#include "patternprops.h"
#include "putilimp.h"
#ifdef RBNF_DEBUG
#include "cmemory.h"
#endif
enum {
/** -x */
NEGATIVE_RULE_INDEX = 0,
/** x.x */
IMPROPER_FRACTION_RULE_INDEX = 1,
/** 0.x */
PROPER_FRACTION_RULE_INDEX = 2,
/** x.0 */
DEFAULT_RULE_INDEX = 3,
/** Inf */
INFINITY_RULE_INDEX = 4,
/** NaN */
NAN_RULE_INDEX = 5,
NON_NUMERICAL_RULE_LENGTH = 6
};
U_NAMESPACE_BEGIN
#if 0
// euclid's algorithm works with doubles
// note, doubles only get us up to one quadrillion or so, which
// isn't as much range as we get with longs. We probably still
// want either 64-bit math, or BigInteger.
static int64_t
util_lcm(int64_t x, int64_t y)
{
x.abs();
y.abs();
if (x == 0 || y == 0) {
return 0;
} else {
do {
if (x < y) {
int64_t t = x; x = y; y = t;
}
x -= y * (x/y);
} while (x != 0);
return y;
}
}
#else
/**
* Calculates the least common multiple of x and y.
*/
static int64_t
util_lcm(int64_t x, int64_t y)
{
// binary gcd algorithm from Knuth, "The Art of Computer Programming,"
// vol. 2, 1st ed., pp. 298-299
int64_t x1 = x;
int64_t y1 = y;
int p2 = 0;
while ((x1 & 1) == 0 && (y1 & 1) == 0) {
++p2;
x1 >>= 1;
y1 >>= 1;
}
int64_t t;
if ((x1 & 1) == 1) {
t = -y1;
} else {
t = x1;
}
while (t != 0) {
while ((t & 1) == 0) {
t = t >> 1;
}
if (t > 0) {
x1 = t;
} else {
y1 = -t;
}
t = x1 - y1;
}
int64_t gcd = x1 << p2;
// x * y == gcd(x, y) * lcm(x, y)
return x / gcd * y;
}
#endif
static const char16_t gPercent = 0x0025;
static const char16_t gColon = 0x003a;
static const char16_t gSemicolon = 0x003b;
static const char16_t gLineFeed = 0x000a;
static const char16_t gPercentPercent[] =
{
0x25, 0x25, 0
}; /* "%%" */
static const char16_t gNoparse[] =
{
0x40, 0x6E, 0x6F, 0x70, 0x61, 0x72, 0x73, 0x65, 0
}; /* "@noparse" */
NFRuleSet::NFRuleSet(RuleBasedNumberFormat *_owner, UnicodeString* descriptions, int32_t index, UErrorCode& status)
: name()
, rules(0)
, owner(_owner)
, fractionRules()
, fIsFractionRuleSet(false)
, fIsPublic(false)
, fIsParseable(true)
{
for (int32_t i = 0; i < NON_NUMERICAL_RULE_LENGTH; ++i) {
nonNumericalRules[i] = nullptr;
}
if (U_FAILURE(status)) {
return;
}
UnicodeString& description = descriptions[index]; // !!! make sure index is valid
if (description.length() == 0) {
// throw new IllegalArgumentException("Empty rule set description");
status = U_PARSE_ERROR;
return;
}
// if the description begins with a rule set name (the rule set
// name can be omitted in formatter descriptions that consist
// of only one rule set), copy it out into our "name" member
// and delete it from the description
if (description.charAt(0) == gPercent) {
int32_t pos = description.indexOf(gColon);
if (pos == -1) {
// throw new IllegalArgumentException("Rule set name doesn't end in colon");
status = U_PARSE_ERROR;
} else {
name.setTo(description, 0, pos);
while (pos < description.length() && PatternProps::isWhiteSpace(description.charAt(++pos))) {
}
description.remove(0, pos);
}
} else {
name.setTo(UNICODE_STRING_SIMPLE("%default"));
}
if (description.length() == 0) {
// throw new IllegalArgumentException("Empty rule set description");
status = U_PARSE_ERROR;
}
fIsPublic = name.indexOf(gPercentPercent, 2, 0) != 0;
if ( name.endsWith(gNoparse,8) ) {
fIsParseable = false;
name.truncate(name.length()-8); // remove the @noparse from the name
}
// all of the other members of NFRuleSet are initialized
// by parseRules()
}
void
NFRuleSet::parseRules(UnicodeString& description, UErrorCode& status)
{
// start by creating a Vector whose elements are Strings containing
// the descriptions of the rules (one rule per element). The rules
// are separated by semicolons (there's no escape facility: ALL
// semicolons are rule delimiters)
if (U_FAILURE(status)) {
return;
}
// ensure we are starting with an empty rule list
rules.deleteAll();
// dlf - the original code kept a separate description array for no reason,
// so I got rid of it. The loop was too complex so I simplified it.
UnicodeString currentDescription;
int32_t oldP = 0;
while (oldP < description.length()) {
int32_t p = description.indexOf(gSemicolon, oldP);
if (p == -1) {
p = description.length();
}
currentDescription.setTo(description, oldP, p - oldP);
NFRule::makeRules(currentDescription, this, rules.last(), owner, rules, status);
oldP = p + 1;
}
// for rules that didn't specify a base value, their base values
// were initialized to 0. Make another pass through the list and
// set all those rules' base values. We also remove any special
// rules from the list and put them into their own member variables
int64_t defaultBaseValue = 0;
// (this isn't a for loop because we might be deleting items from
// the vector-- we want to make sure we only increment i when
// we _didn't_ delete anything from the vector)
int32_t rulesSize = rules.size();
for (int32_t i = 0; i < rulesSize; i++) {
NFRule* rule = rules[i];
int64_t baseValue = rule->getBaseValue();
if (baseValue == 0) {
// if the rule's base value is 0, fill in a default
// base value (this will be 1 plus the preceding
// rule's base value for regular rule sets, and the
// same as the preceding rule's base value in fraction
// rule sets)
rule->setBaseValue(defaultBaseValue, status);
}
else {
// if it's a regular rule that already knows its base value,
// check to make sure the rules are in order, and update
// the default base value for the next rule
if (baseValue < defaultBaseValue) {
// throw new IllegalArgumentException("Rules are not in order");
status = U_PARSE_ERROR;
return;
}
defaultBaseValue = baseValue;
}
if (!fIsFractionRuleSet) {
++defaultBaseValue;
}
}
}
/**
* Set one of the non-numerical rules.
* @param rule The rule to set.
*/
void NFRuleSet::setNonNumericalRule(NFRule *rule) {
switch (rule->getBaseValue()) {
case NFRule::kNegativeNumberRule:
delete nonNumericalRules[NEGATIVE_RULE_INDEX];
nonNumericalRules[NEGATIVE_RULE_INDEX] = rule;
return;
case NFRule::kImproperFractionRule:
setBestFractionRule(IMPROPER_FRACTION_RULE_INDEX, rule, true);
return;
case NFRule::kProperFractionRule:
setBestFractionRule(PROPER_FRACTION_RULE_INDEX, rule, true);
return;
case NFRule::kDefaultRule:
setBestFractionRule(DEFAULT_RULE_INDEX, rule, true);
return;
case NFRule::kInfinityRule:
delete nonNumericalRules[INFINITY_RULE_INDEX];
nonNumericalRules[INFINITY_RULE_INDEX] = rule;
return;
case NFRule::kNaNRule:
delete nonNumericalRules[NAN_RULE_INDEX];
nonNumericalRules[NAN_RULE_INDEX] = rule;
return;
case NFRule::kNoBase:
case NFRule::kOtherRule:
default:
// If we do not remember the rule inside the object.
// delete it here to prevent memory leak.
delete rule;
return;
}
}
/**
* Determine the best fraction rule to use. Rules matching the decimal point from
* DecimalFormatSymbols become the main set of rules to use.
* @param originalIndex The index into nonNumericalRules
* @param newRule The new rule to consider
* @param rememberRule Should the new rule be added to fractionRules.
*/
void NFRuleSet::setBestFractionRule(int32_t originalIndex, NFRule *newRule, UBool rememberRule) {
if (rememberRule) {
fractionRules.add(newRule);
}
NFRule *bestResult = nonNumericalRules[originalIndex];
if (bestResult == nullptr) {
nonNumericalRules[originalIndex] = newRule;
}
else {
// We have more than one. Which one is better?
const DecimalFormatSymbols *decimalFormatSymbols = owner->getDecimalFormatSymbols();
if (decimalFormatSymbols->getSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol).charAt(0)
== newRule->getDecimalPoint())
{
nonNumericalRules[originalIndex] = newRule;
}
// else leave it alone
}
}
NFRuleSet::~NFRuleSet()
{
for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) {
if (i != IMPROPER_FRACTION_RULE_INDEX
&& i != PROPER_FRACTION_RULE_INDEX
&& i != DEFAULT_RULE_INDEX)
{
delete nonNumericalRules[i];
}
// else it will be deleted via NFRuleList fractionRules
}
}
static UBool
util_equalRules(const NFRule* rule1, const NFRule* rule2)
{
if (rule1) {
if (rule2) {
return *rule1 == *rule2;
}
} else if (!rule2) {
return true;
}
return false;
}
bool
NFRuleSet::operator==(const NFRuleSet& rhs) const
{
if (rules.size() == rhs.rules.size() &&
fIsFractionRuleSet == rhs.fIsFractionRuleSet &&
name == rhs.name) {
// ...then compare the non-numerical rule lists...
for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) {
if (!util_equalRules(nonNumericalRules[i], rhs.nonNumericalRules[i])) {
return false;
}
}
// ...then compare the rule lists...
for (uint32_t i = 0; i < rules.size(); ++i) {
if (*rules[i] != *rhs.rules[i]) {
return false;
}
}
return true;
}
return false;
}
void
NFRuleSet::setDecimalFormatSymbols(const DecimalFormatSymbols &newSymbols, UErrorCode& status) {
for (uint32_t i = 0; i < rules.size(); ++i) {
rules[i]->setDecimalFormatSymbols(newSymbols, status);
}
// Switch the fraction rules to mirror the DecimalFormatSymbols.
for (int32_t nonNumericalIdx = IMPROPER_FRACTION_RULE_INDEX; nonNumericalIdx <= DEFAULT_RULE_INDEX; nonNumericalIdx++) {
if (nonNumericalRules[nonNumericalIdx]) {
for (uint32_t fIdx = 0; fIdx < fractionRules.size(); fIdx++) {
NFRule *fractionRule = fractionRules[fIdx];
if (nonNumericalRules[nonNumericalIdx]->getBaseValue() == fractionRule->getBaseValue()) {
setBestFractionRule(nonNumericalIdx, fractionRule, false);
}
}
}
}
for (uint32_t nnrIdx = 0; nnrIdx < NON_NUMERICAL_RULE_LENGTH; nnrIdx++) {
NFRule *rule = nonNumericalRules[nnrIdx];
if (rule) {
rule->setDecimalFormatSymbols(newSymbols, status);
}
}
}
#define RECURSION_LIMIT 64
void
NFRuleSet::format(int64_t number, UnicodeString& toAppendTo, int32_t pos, int32_t recursionCount, UErrorCode& status) const
{
if (recursionCount >= RECURSION_LIMIT) {
// stop recursion
status = U_INVALID_STATE_ERROR;
return;
}
const NFRule *rule = findNormalRule(number);
if (rule) { // else error, but can't report it
rule->doFormat(number, toAppendTo, pos, ++recursionCount, status);
}
}
void
NFRuleSet::format(double number, UnicodeString& toAppendTo, int32_t pos, int32_t recursionCount, UErrorCode& status) const
{
if (recursionCount >= RECURSION_LIMIT) {
// stop recursion
status = U_INVALID_STATE_ERROR;
return;
}
const NFRule *rule = findDoubleRule(number);
if (rule) { // else error, but can't report it
rule->doFormat(number, toAppendTo, pos, ++recursionCount, status);
}
}
const NFRule*
NFRuleSet::findDoubleRule(double number) const
{
// if this is a fraction rule set, use findFractionRuleSetRule()
if (isFractionRuleSet()) {
return findFractionRuleSetRule(number);
}
if (uprv_isNaN(number)) {
const NFRule *rule = nonNumericalRules[NAN_RULE_INDEX];
if (!rule) {
rule = owner->getDefaultNaNRule();
}
return rule;
}
// if the number is negative, return the negative number rule
// (if there isn't a negative-number rule, we pretend it's a
// positive number)
if (number < 0) {
if (nonNumericalRules[NEGATIVE_RULE_INDEX]) {
return nonNumericalRules[NEGATIVE_RULE_INDEX];
} else {
number = -number;
}
}
if (uprv_isInfinite(number)) {
const NFRule *rule = nonNumericalRules[INFINITY_RULE_INDEX];
if (!rule) {
rule = owner->getDefaultInfinityRule();
}
return rule;
}
// if the number isn't an integer, we use one of the fraction rules...
if (number != uprv_floor(number)) {
// if the number is between 0 and 1, return the proper
// fraction rule
if (number < 1 && nonNumericalRules[PROPER_FRACTION_RULE_INDEX]) {
return nonNumericalRules[PROPER_FRACTION_RULE_INDEX];
}
// otherwise, return the improper fraction rule
else if (nonNumericalRules[IMPROPER_FRACTION_RULE_INDEX]) {
return nonNumericalRules[IMPROPER_FRACTION_RULE_INDEX];
}
}
// if there's a default rule, use it to format the number
if (nonNumericalRules[DEFAULT_RULE_INDEX]) {
return nonNumericalRules[DEFAULT_RULE_INDEX];
}
// and if we haven't yet returned a rule, use findNormalRule()
// to find the applicable rule
int64_t r = util64_fromDouble(number + 0.5);
return findNormalRule(r);
}
const NFRule *
NFRuleSet::findNormalRule(int64_t number) const
{
// if this is a fraction rule set, use findFractionRuleSetRule()
// to find the rule (we should only go into this clause if the
// value is 0)
if (fIsFractionRuleSet) {
return findFractionRuleSetRule(static_cast<double>(number));
}
// if the number is negative, return the negative-number rule
// (if there isn't one, pretend the number is positive)
if (number < 0) {
if (nonNumericalRules[NEGATIVE_RULE_INDEX]) {
return nonNumericalRules[NEGATIVE_RULE_INDEX];
} else {
number = -number;
}
}
// we have to repeat the preceding two checks, even though we
// do them in findRule(), because the version of format() that
// takes a long bypasses findRule() and goes straight to this
// function. This function does skip the fraction rules since
// we know the value is an integer (it also skips the default
// rule, since it's considered a fraction rule. Skipping the
// default rule in this function is also how we avoid infinite
// recursion)
// {dlf} unfortunately this fails if there are no rules except
// special rules. If there are no rules, use the default rule.
// binary-search the rule list for the applicable rule
// (a rule is used for all values from its base value to
// the next rule's base value)
int32_t hi = rules.size();
if (hi > 0) {
int32_t lo = 0;
while (lo < hi) {
int32_t mid = (lo + hi) / 2;
if (rules[mid]->getBaseValue() == number) {
return rules[mid];
}
else if (rules[mid]->getBaseValue() > number) {
hi = mid;
}
else {
lo = mid + 1;
}
}
if (hi == 0) { // bad rule set, minimum base > 0
return nullptr; // want to throw exception here
}
NFRule *result = rules[hi - 1];
// use shouldRollBack() to see whether we need to invoke the
// rollback rule (see shouldRollBack()'s documentation for
// an explanation of the rollback rule). If we do, roll back
// one rule and return that one instead of the one we'd normally
// return
if (result->shouldRollBack(number)) {
if (hi == 1) { // bad rule set, no prior rule to rollback to from this base
return nullptr;
}
result = rules[hi - 2];
}
return result;
}
// else use the default rule
return nonNumericalRules[DEFAULT_RULE_INDEX];
}
/**
* If this rule is a fraction rule set, this function is used by
* findRule() to select the most appropriate rule for formatting
* the number. Basically, the base value of each rule in the rule
* set is treated as the denominator of a fraction. Whichever
* denominator can produce the fraction closest in value to the
* number passed in is the result. If there's a tie, the earlier
* one in the list wins. (If there are two rules in a row with the
* same base value, the first one is used when the numerator of the
* fraction would be 1, and the second rule is used the rest of the
* time.
* @param number The number being formatted (which will always be
* a number between 0 and 1)
* @return The rule to use to format this number
*/
const NFRule*
NFRuleSet::findFractionRuleSetRule(double number) const
{
// the obvious way to do this (multiply the value being formatted
// by each rule's base value until you get an integral result)
// doesn't work because of rounding error. This method is more
// accurate
// find the least common multiple of the rules' base values
// and multiply this by the number being formatted. This is
// all the precision we need, and we can do all of the rest
// of the math using integer arithmetic
int64_t leastCommonMultiple = rules[0]->getBaseValue();
int64_t numerator;
{
for (uint32_t i = 1; i < rules.size(); ++i) {
leastCommonMultiple = util_lcm(leastCommonMultiple, rules[i]->getBaseValue());
}
numerator = util64_fromDouble(number * static_cast<double>(leastCommonMultiple) + 0.5);
}
// for each rule, do the following...
int64_t tempDifference;
int64_t difference = util64_fromDouble(uprv_maxMantissa());
int32_t winner = 0;
for (uint32_t i = 0; i < rules.size(); ++i) {
// "numerator" is the numerator of the fraction if the
// denominator is the LCD. The numerator if the rule's
// base value is the denominator is "numerator" times the
// base value divided bythe LCD. Here we check to see if
// that's an integer, and if not, how close it is to being
// an integer.
tempDifference = numerator * rules[i]->getBaseValue() % leastCommonMultiple;
// normalize the result of the above calculation: we want
// the numerator's distance from the CLOSEST multiple
// of the LCD
if (leastCommonMultiple - tempDifference < tempDifference) {
tempDifference = leastCommonMultiple - tempDifference;
}
// if this is as close as we've come, keep track of how close
// that is, and the line number of the rule that did it. If
// we've scored a direct hit, we don't have to look at any more
// rules
if (tempDifference < difference) {
difference = tempDifference;
winner = i;
if (difference == 0) {
break;
}
}
}
// if we have two successive rules that both have the winning base
// value, then the first one (the one we found above) is used if
// the numerator of the fraction is 1 and the second one is used if
// the numerator of the fraction is anything else (this lets us
// do things like "one third"/"two thirds" without having to define
// a whole bunch of extra rule sets)
if (static_cast<unsigned>(winner + 1) < rules.size() &&
rules[winner + 1]->getBaseValue() == rules[winner]->getBaseValue()) {
double n = static_cast<double>(rules[winner]->getBaseValue()) * number;
if (n < 0.5 || n >= 2) {
++winner;
}
}
// finally, return the winning rule
return rules[winner];
}
/**
* Parses a string. Matches the string to be parsed against each
* of its rules (with a base value less than upperBound) and returns
* the value produced by the rule that matched the most characters
* in the source string.
* @param text The string to parse
* @param parsePosition The initial position is ignored and assumed
* to be 0. On exit, this object has been updated to point to the
* first character position this rule set didn't consume.
* @param upperBound Limits the rules that can be allowed to match.
* Only rules whose base values are strictly less than upperBound
* are considered.
* @return The numerical result of parsing this string. This will
* be the matching rule's base value, composed appropriately with
* the results of matching any of its substitutions. The object
* will be an instance of Long if it's an integral value; otherwise,
* it will be an instance of Double. This function always returns
* a valid object: If nothing matched the input string at all,
* this function returns new Long(0), and the parse position is
* left unchanged.
*/
#ifdef RBNF_DEBUG
#include <stdio.h>
static void dumpUS(FILE* f, const UnicodeString& us) {
int len = us.length();
char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
if (buf != nullptr) {
us.extract(0, len, buf);
buf[len] = 0;
fprintf(f, "%s", buf);
uprv_free(buf); //delete[] buf;
}
}
#endif
UBool
NFRuleSet::parse(const UnicodeString& text, ParsePosition& pos, double upperBound, uint32_t nonNumericalExecutedRuleMask, int32_t recursionCount, Formattable& result) const
{
// try matching each rule in the rule set against the text being
// parsed. Whichever one matches the most characters is the one
// that determines the value we return.
result.setLong(0);
// dump out if we've reached the recursion limit
if (recursionCount >= RECURSION_LIMIT) {
// stop recursion
return false;
}
// dump out if there's no text to parse
if (text.length() == 0) {
return 0;
}
ParsePosition highWaterMark;
ParsePosition workingPos = pos;
#ifdef RBNF_DEBUG
fprintf(stderr, "<nfrs> %x '", this);
dumpUS(stderr, name);
fprintf(stderr, "' text '");
dumpUS(stderr, text);
fprintf(stderr, "'\n");
fprintf(stderr, " parse negative: %d\n", this, negativeNumberRule != 0);
#endif
// Try each of the negative rules, fraction rules, infinity rules and NaN rules
for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) {
if (nonNumericalRules[i] && ((nonNumericalExecutedRuleMask >> i) & 1) == 0) {
// Mark this rule as being executed so that we don't try to execute it again.
nonNumericalExecutedRuleMask |= 1 << i;
Formattable tempResult;
UBool success = nonNumericalRules[i]->doParse(text, workingPos, 0, upperBound, nonNumericalExecutedRuleMask, recursionCount + 1, tempResult);
if (success && (workingPos.getIndex() > highWaterMark.getIndex())) {
result = tempResult;
highWaterMark = workingPos;
}
workingPos = pos;
}
}
#ifdef RBNF_DEBUG
fprintf(stderr, "<nfrs> continue other with text '");
dumpUS(stderr, text);
fprintf(stderr, "' hwm: %d\n", highWaterMark.getIndex());
#endif
// finally, go through the regular rules one at a time. We start
// at the end of the list because we want to try matching the most
// sigificant rule first (this helps ensure that we parse
// "five thousand three hundred six" as
// "(five thousand) (three hundred) (six)" rather than
// "((five thousand three) hundred) (six)"). Skip rules whose
// base values are higher than the upper bound (again, this helps
// limit ambiguity by making sure the rules that match a rule's
// are less significant than the rule containing the substitutions)/
{
int64_t ub = util64_fromDouble(upperBound);
#ifdef RBNF_DEBUG
{
char ubstr[64];
util64_toa(ub, ubstr, 64);
char ubstrhex[64];
util64_toa(ub, ubstrhex, 64, 16);
fprintf(stderr, "ub: %g, i64: %s (%s)\n", upperBound, ubstr, ubstrhex);
}
#endif
for (int32_t i = rules.size(); --i >= 0 && highWaterMark.getIndex() < text.length();) {
if ((!fIsFractionRuleSet) && (rules[i]->getBaseValue() >= ub)) {
continue;
}
Formattable tempResult;
UBool success = rules[i]->doParse(text, workingPos, fIsFractionRuleSet, upperBound, nonNumericalExecutedRuleMask, recursionCount + 1, tempResult);
if (success && workingPos.getIndex() > highWaterMark.getIndex()) {
result = tempResult;
highWaterMark = workingPos;
}
workingPos = pos;
}
}
#ifdef RBNF_DEBUG
fprintf(stderr, "<nfrs> exit\n");
#endif
// finally, update the parse position we were passed to point to the
// first character we didn't use, and return the result that
// corresponds to that string of characters
pos = highWaterMark;
return 1;
}
void
NFRuleSet::appendRules(UnicodeString& result) const
{
uint32_t i;
// the rule set name goes first...
result.append(name);
result.append(gColon);
result.append(gLineFeed);
// followed by the regular rules...
for (i = 0; i < rules.size(); i++) {
rules[i]->_appendRuleText(result);
result.append(gLineFeed);
}
// followed by the special rules (if they exist)
for (i = 0; i < NON_NUMERICAL_RULE_LENGTH; ++i) {
NFRule *rule = nonNumericalRules[i];
if (nonNumericalRules[i]) {
if (rule->getBaseValue() == NFRule::kImproperFractionRule
|| rule->getBaseValue() == NFRule::kProperFractionRule
|| rule->getBaseValue() == NFRule::kDefaultRule)
{
for (uint32_t fIdx = 0; fIdx < fractionRules.size(); fIdx++) {
NFRule *fractionRule = fractionRules[fIdx];
if (fractionRule->getBaseValue() == rule->getBaseValue()) {
fractionRule->_appendRuleText(result);
result.append(gLineFeed);
}
}
}
else {
rule->_appendRuleText(result);
result.append(gLineFeed);
}
}
}
}
// utility functions
int64_t util64_fromDouble(double d) {
int64_t result = 0;
if (!uprv_isNaN(d)) {
double mant = uprv_maxMantissa();
if (d < -mant) {
d = -mant;
} else if (d > mant) {
d = mant;
}
UBool neg = d < 0;
if (neg) {
d = -d;
}
result = static_cast<int64_t>(uprv_floor(d));
if (neg) {
result = -result;
}
}
return result;
}
uint64_t util64_pow(uint32_t base, uint16_t exponent) {
if (base == 0) {
return 0;
}
uint64_t result = 1;
uint64_t pow = base;
while (true) {
if ((exponent & 1) == 1) {
result *= pow;
}
exponent >>= 1;
if (exponent == 0) {
break;
}
pow *= pow;
}
return result;
}
static const uint8_t asciiDigits[] = {
0x30u, 0x31u, 0x32u, 0x33u, 0x34u, 0x35u, 0x36u, 0x37u,
0x38u, 0x39u, 0x61u, 0x62u, 0x63u, 0x64u, 0x65u, 0x66u,
0x67u, 0x68u, 0x69u, 0x6au, 0x6bu, 0x6cu, 0x6du, 0x6eu,
0x6fu, 0x70u, 0x71u, 0x72u, 0x73u, 0x74u, 0x75u, 0x76u,
0x77u, 0x78u, 0x79u, 0x7au,
};
static const char16_t kUMinus = static_cast<char16_t>(0x002d);
#ifdef RBNF_DEBUG
static const char kMinus = '-';
static const uint8_t digitInfo[] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0x80u, 0x81u, 0x82u, 0x83u, 0x84u, 0x85u, 0x86u, 0x87u,
0x88u, 0x89u, 0, 0, 0, 0, 0, 0,
0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u,
0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u,
0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u,
0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0,
0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u,
0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u,
0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u,
0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0,
};
int64_t util64_atoi(const char* str, uint32_t radix)
{
if (radix > 36) {
radix = 36;
} else if (radix < 2) {
radix = 2;
}
int64_t lradix = radix;
int neg = 0;
if (*str == kMinus) {
++str;
neg = 1;
}
int64_t result = 0;
uint8_t b;
while ((b = digitInfo[*str++]) && ((b &= 0x7f) < radix)) {
result *= lradix;
result += (int32_t)b;
}
if (neg) {
result = -result;
}
return result;
}
int64_t util64_utoi(const char16_t* str, uint32_t radix)
{
if (radix > 36) {
radix = 36;
} else if (radix < 2) {
radix = 2;
}
int64_t lradix = radix;
int neg = 0;
if (*str == kUMinus) {
++str;
neg = 1;
}
int64_t result = 0;
char16_t c;
uint8_t b;
while (((c = *str++) < 0x0080) && (b = digitInfo[c]) && ((b &= 0x7f) < radix)) {
result *= lradix;
result += (int32_t)b;
}
if (neg) {
result = -result;
}
return result;
}
uint32_t util64_toa(int64_t w, char* buf, uint32_t len, uint32_t radix, UBool raw)
{
if (radix > 36) {
radix = 36;
} else if (radix < 2) {
radix = 2;
}
int64_t base = radix;
char* p = buf;
if (len && (w < 0) && (radix == 10) && !raw) {
w = -w;
*p++ = kMinus;
--len;
} else if (len && (w == 0)) {
*p++ = (char)raw ? 0 : asciiDigits[0];
--len;
}
while (len && w != 0) {
int64_t n = w / base;
int64_t m = n * base;
int32_t d = (int32_t)(w-m);
*p++ = raw ? (char)d : asciiDigits[d];
w = n;
--len;
}
if (len) {
*p = 0; // null terminate if room for caller convenience
}
len = p - buf;
if (*buf == kMinus) {
++buf;
}
while (--p > buf) {
char c = *p;
*p = *buf;
*buf = c;
++buf;
}
return len;
}
#endif
uint32_t util64_tou(int64_t w, char16_t* buf, uint32_t len, uint32_t radix, UBool raw)
{
if (radix > 36) {
radix = 36;
} else if (radix < 2) {
radix = 2;
}
int64_t base = radix;
char16_t* p = buf;
if (len && (w < 0) && (radix == 10) && !raw) {
w = -w;
*p++ = kUMinus;
--len;
} else if (len && (w == 0)) {
*p++ = static_cast<char16_t>(raw) ? 0 : asciiDigits[0];
--len;
}
while (len && (w != 0)) {
int64_t n = w / base;
int64_t m = n * base;
int32_t d = static_cast<int32_t>(w - m);
*p++ = static_cast<char16_t>(raw ? d : asciiDigits[d]);
w = n;
--len;
}
if (len) {
*p = 0; // null terminate if room for caller convenience
}
len = static_cast<uint32_t>(p - buf);
if (*buf == kUMinus) {
++buf;
}
while (--p > buf) {
char16_t c = *p;
*p = *buf;
*buf = c;
++buf;
}
return len;
}
U_NAMESPACE_END
/* U_HAVE_RBNF */
#endif
|