1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
|
// © 2020 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
// Extra functions for MeasureUnit not needed for all clients.
// Separate .o file so that it can be removed for modularity.
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
// Allow implicit conversion from char16_t* to UnicodeString for this file:
// Helpful in toString methods and elsewhere.
#define UNISTR_FROM_STRING_EXPLICIT
#include "charstr.h"
#include "cmemory.h"
#include "cstring.h"
#include "measunit_impl.h"
#include "resource.h"
#include "uarrsort.h"
#include "uassert.h"
#include "ucln_in.h"
#include "umutex.h"
#include "unicode/bytestrie.h"
#include "unicode/bytestriebuilder.h"
#include "unicode/localpointer.h"
#include "unicode/stringpiece.h"
#include "unicode/stringtriebuilder.h"
#include "unicode/ures.h"
#include "unicode/ustringtrie.h"
#include "uresimp.h"
#include "util.h"
#include <cstdlib>
U_NAMESPACE_BEGIN
namespace {
// TODO: Propose a new error code for this?
constexpr UErrorCode kUnitIdentifierSyntaxError = U_ILLEGAL_ARGUMENT_ERROR;
// Trie value offset for SI or binary prefixes. This is big enough to ensure we only
// insert positive integers into the trie.
constexpr int32_t kPrefixOffset = 64;
static_assert(kPrefixOffset + UMEASURE_PREFIX_INTERNAL_MIN_BIN > 0,
"kPrefixOffset is too small for minimum UMeasurePrefix value");
static_assert(kPrefixOffset + UMEASURE_PREFIX_INTERNAL_MIN_SI > 0,
"kPrefixOffset is too small for minimum UMeasurePrefix value");
// Trie value offset for compound parts, e.g. "-per-", "-", "-and-".
constexpr int32_t kCompoundPartOffset = 128;
static_assert(kCompoundPartOffset > kPrefixOffset + UMEASURE_PREFIX_INTERNAL_MAX_BIN,
"Ambiguous token values: prefix tokens are overlapping with CompoundPart tokens");
static_assert(kCompoundPartOffset > kPrefixOffset + UMEASURE_PREFIX_INTERNAL_MAX_SI,
"Ambiguous token values: prefix tokens are overlapping with CompoundPart tokens");
enum CompoundPart {
// Represents "-per-"
COMPOUND_PART_PER = kCompoundPartOffset,
// Represents "-"
COMPOUND_PART_TIMES,
// Represents "-and-"
COMPOUND_PART_AND,
};
// Trie value offset for "per-".
constexpr int32_t kInitialCompoundPartOffset = 192;
enum InitialCompoundPart {
// Represents "per-", the only compound part that can appear at the start of
// an identifier.
INITIAL_COMPOUND_PART_PER = kInitialCompoundPartOffset,
};
// Trie value offset for powers like "square-", "cubic-", "pow2-" etc.
constexpr int32_t kPowerPartOffset = 256;
enum PowerPart {
POWER_PART_P2 = kPowerPartOffset + 2,
POWER_PART_P3,
POWER_PART_P4,
POWER_PART_P5,
POWER_PART_P6,
POWER_PART_P7,
POWER_PART_P8,
POWER_PART_P9,
POWER_PART_P10,
POWER_PART_P11,
POWER_PART_P12,
POWER_PART_P13,
POWER_PART_P14,
POWER_PART_P15,
};
// Trie value offset for simple units, e.g. "gram", "nautical-mile",
// "fluid-ounce-imperial".
constexpr int32_t kSimpleUnitOffset = 512;
const struct UnitPrefixStrings {
const char* const string;
UMeasurePrefix value;
} gUnitPrefixStrings[] = {
// SI prefixes
{ "yotta", UMEASURE_PREFIX_YOTTA },
{ "zetta", UMEASURE_PREFIX_ZETTA },
{ "exa", UMEASURE_PREFIX_EXA },
{ "peta", UMEASURE_PREFIX_PETA },
{ "tera", UMEASURE_PREFIX_TERA },
{ "giga", UMEASURE_PREFIX_GIGA },
{ "mega", UMEASURE_PREFIX_MEGA },
{ "kilo", UMEASURE_PREFIX_KILO },
{ "hecto", UMEASURE_PREFIX_HECTO },
{ "deka", UMEASURE_PREFIX_DEKA },
{ "deci", UMEASURE_PREFIX_DECI },
{ "centi", UMEASURE_PREFIX_CENTI },
{ "milli", UMEASURE_PREFIX_MILLI },
{ "micro", UMEASURE_PREFIX_MICRO },
{ "nano", UMEASURE_PREFIX_NANO },
{ "pico", UMEASURE_PREFIX_PICO },
{ "femto", UMEASURE_PREFIX_FEMTO },
{ "atto", UMEASURE_PREFIX_ATTO },
{ "zepto", UMEASURE_PREFIX_ZEPTO },
{ "yocto", UMEASURE_PREFIX_YOCTO },
// Binary prefixes
{ "yobi", UMEASURE_PREFIX_YOBI },
{ "zebi", UMEASURE_PREFIX_ZEBI },
{ "exbi", UMEASURE_PREFIX_EXBI },
{ "pebi", UMEASURE_PREFIX_PEBI },
{ "tebi", UMEASURE_PREFIX_TEBI },
{ "gibi", UMEASURE_PREFIX_GIBI },
{ "mebi", UMEASURE_PREFIX_MEBI },
{ "kibi", UMEASURE_PREFIX_KIBI },
};
/**
* A ResourceSink that collects simple unit identifiers from the keys of the
* convertUnits table into an array, and adds these values to a TrieBuilder,
* with associated values being their index into this array plus a specified
* offset.
*
* Example code:
*
* UErrorCode status = U_ZERO_ERROR;
* BytesTrieBuilder b(status);
* int32_t ARR_SIZE = 200;
* const char *unitIdentifiers[ARR_SIZE];
* int32_t *unitCategories[ARR_SIZE];
* SimpleUnitIdentifiersSink identifierSink(gSerializedUnitCategoriesTrie, unitIdentifiers,
* unitCategories, ARR_SIZE, b, kTrieValueOffset);
* LocalUResourceBundlePointer unitsBundle(ures_openDirect(NULL, "units", &status));
* ures_getAllItemsWithFallback(unitsBundle.getAlias(), "convertUnits", identifierSink, status);
*/
class SimpleUnitIdentifiersSink : public icu::ResourceSink {
public:
/**
* Constructor.
* @param quantitiesTrieData The data for constructing a quantitiesTrie,
* which maps from a simple unit identifier to an index into the
* gCategories array.
* @param out Array of char* to which pointers to the simple unit
* identifiers will be saved. (Does not take ownership.)
* @param outCategories Array of int32_t to which category indexes will be
* saved: this corresponds to simple unit IDs saved to `out`, mapping
* from the ID to the value produced by the quantitiesTrie (which is an
* index into the gCategories array).
* @param outSize The size of `out` and `outCategories`.
* @param trieBuilder The trie builder to which the simple unit identifier
* should be added. The trie builder must outlive this resource sink.
* @param trieValueOffset This is added to the index of the identifier in
* the `out` array, before adding to `trieBuilder` as the value
* associated with the identifier.
*/
explicit SimpleUnitIdentifiersSink(StringPiece quantitiesTrieData, const char **out,
int32_t *outCategories, int32_t outSize,
BytesTrieBuilder &trieBuilder, int32_t trieValueOffset)
: outArray(out), outCategories(outCategories), outSize(outSize), trieBuilder(trieBuilder),
trieValueOffset(trieValueOffset), quantitiesTrieData(quantitiesTrieData), outIndex(0) {}
/**
* Adds the table keys found in value to the output vector.
* @param key The key of the resource passed to `value`: the second
* parameter of the ures_getAllItemsWithFallback() call.
* @param value Should be a ResourceTable value, if
* ures_getAllItemsWithFallback() was called correctly for this sink.
* @param noFallback Ignored.
* @param status The standard ICU error code output parameter.
*/
void put(const char * /*key*/, ResourceValue &value, UBool /*noFallback*/, UErrorCode &status) override {
ResourceTable table = value.getTable(status);
if (U_FAILURE(status)) return;
if (outIndex + table.getSize() > outSize) {
status = U_INDEX_OUTOFBOUNDS_ERROR;
return;
}
BytesTrie quantitiesTrie(quantitiesTrieData.data());
// Collect keys from the table resource.
const char *simpleUnitID;
for (int32_t i = 0; table.getKeyAndValue(i, simpleUnitID, value); ++i) {
U_ASSERT(i < table.getSize());
U_ASSERT(outIndex < outSize);
if (uprv_strcmp(simpleUnitID, "kilogram") == 0) {
// For parsing, we use "gram", the prefixless metric mass unit. We
// thus ignore the SI Base Unit of Mass: it exists due to being the
// mass conversion target unit, but not needed for MeasureUnit
// parsing.
continue;
}
outArray[outIndex] = simpleUnitID;
trieBuilder.add(simpleUnitID, trieValueOffset + outIndex, status);
// Find the base target unit for this simple unit
ResourceTable table = value.getTable(status);
if (U_FAILURE(status)) { return; }
if (!table.findValue("target", value)) {
status = U_INVALID_FORMAT_ERROR;
break;
}
int32_t len;
const UChar* uTarget = value.getString(len, status);
CharString target;
target.appendInvariantChars(uTarget, len, status);
if (U_FAILURE(status)) { return; }
quantitiesTrie.reset();
UStringTrieResult result = quantitiesTrie.next(target.data(), target.length());
if (!USTRINGTRIE_HAS_VALUE(result)) {
status = U_INVALID_FORMAT_ERROR;
break;
}
outCategories[outIndex] = quantitiesTrie.getValue();
outIndex++;
}
}
private:
const char **outArray;
int32_t *outCategories;
int32_t outSize;
BytesTrieBuilder &trieBuilder;
int32_t trieValueOffset;
StringPiece quantitiesTrieData;
int32_t outIndex;
};
/**
* A ResourceSink that collects information from `unitQuantities` in the `units`
* resource to provide key->value lookups from base unit to category, as well as
* preserving ordering information for these categories. See `units.txt`.
*
* For example: "kilogram" -> "mass", "meter-per-second" -> "speed".
*
* In C++ unitQuantity values are collected in order into a UChar* array, while
* unitQuantity keys are added added to a TrieBuilder, with associated values
* being the index into the aforementioned UChar* array.
*/
class CategoriesSink : public icu::ResourceSink {
public:
/**
* Constructor.
* @param out Array of UChar* to which unitQuantity values will be saved.
* The pointers returned not owned: they point directly at the resource
* strings in static memory.
* @param outSize The size of the `out` array.
* @param trieBuilder The trie builder to which the keys (base units) of
* each unitQuantity will be added, each with value being the offset
* into `out`.
*/
explicit CategoriesSink(const UChar **out, int32_t &outSize, BytesTrieBuilder &trieBuilder)
: outQuantitiesArray(out), outSize(outSize), trieBuilder(trieBuilder), outIndex(0) {}
void put(const char * /*key*/, ResourceValue &value, UBool /*noFallback*/, UErrorCode &status) override {
ResourceArray array = value.getArray(status);
if (U_FAILURE(status)) {
return;
}
if (outIndex + array.getSize() > outSize) {
status = U_INDEX_OUTOFBOUNDS_ERROR;
return;
}
for (int32_t i = 0; array.getValue(i, value); ++i) {
U_ASSERT(outIndex < outSize);
ResourceTable table = value.getTable(status);
if (U_FAILURE(status)) {
return;
}
if (table.getSize() != 1) {
status = U_INVALID_FORMAT_ERROR;
return;
}
const char *key;
table.getKeyAndValue(0, key, value);
int32_t uTmpLen;
outQuantitiesArray[outIndex] = value.getString(uTmpLen, status);
trieBuilder.add(key, outIndex, status);
outIndex++;
}
}
private:
const UChar **outQuantitiesArray;
int32_t &outSize;
BytesTrieBuilder &trieBuilder;
int32_t outIndex;
};
icu::UInitOnce gUnitExtrasInitOnce = U_INITONCE_INITIALIZER;
// Array of simple unit IDs.
//
// The array memory itself is owned by this pointer, but the individual char* in
// that array point at static memory. (Note that these char* are also returned
// by SingleUnitImpl::getSimpleUnitID().)
const char **gSimpleUnits = nullptr;
// Maps from the value associated with each simple unit ID to an index into the
// gCategories array.
int32_t *gSimpleUnitCategories = nullptr;
char *gSerializedUnitExtrasStemTrie = nullptr;
// Array of UChar* pointing at the unit categories (aka "quantities", aka
// "types"), as found in the `unitQuantities` resource. The array memory itself
// is owned by this pointer, but the individual UChar* in that array point at
// static memory.
const UChar **gCategories = nullptr;
// Number of items in `gCategories`.
int32_t gCategoriesCount = 0;
// Serialized BytesTrie for mapping from base units to indices into gCategories.
char *gSerializedUnitCategoriesTrie = nullptr;
UBool U_CALLCONV cleanupUnitExtras() {
uprv_free(gSerializedUnitCategoriesTrie);
gSerializedUnitCategoriesTrie = nullptr;
uprv_free(gCategories);
gCategories = nullptr;
uprv_free(gSerializedUnitExtrasStemTrie);
gSerializedUnitExtrasStemTrie = nullptr;
uprv_free(gSimpleUnitCategories);
gSimpleUnitCategories = nullptr;
uprv_free(gSimpleUnits);
gSimpleUnits = nullptr;
gUnitExtrasInitOnce.reset();
return TRUE;
}
void U_CALLCONV initUnitExtras(UErrorCode& status) {
ucln_i18n_registerCleanup(UCLN_I18N_UNIT_EXTRAS, cleanupUnitExtras);
LocalUResourceBundlePointer unitsBundle(ures_openDirect(nullptr, "units", &status));
// Collect unitQuantities information into gSerializedUnitCategoriesTrie and gCategories.
const char *CATEGORY_TABLE_NAME = "unitQuantities";
LocalUResourceBundlePointer unitQuantities(
ures_getByKey(unitsBundle.getAlias(), CATEGORY_TABLE_NAME, nullptr, &status));
if (U_FAILURE(status)) { return; }
gCategoriesCount = unitQuantities.getAlias()->fSize;
size_t quantitiesMallocSize = sizeof(UChar *) * gCategoriesCount;
gCategories = static_cast<const UChar **>(uprv_malloc(quantitiesMallocSize));
if (gCategories == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
uprv_memset(gCategories, 0, quantitiesMallocSize);
BytesTrieBuilder quantitiesBuilder(status);
CategoriesSink categoriesSink(gCategories, gCategoriesCount, quantitiesBuilder);
ures_getAllItemsWithFallback(unitsBundle.getAlias(), CATEGORY_TABLE_NAME, categoriesSink, status);
StringPiece resultQuantities = quantitiesBuilder.buildStringPiece(USTRINGTRIE_BUILD_FAST, status);
if (U_FAILURE(status)) { return; }
// Copy the result into the global constant pointer
size_t numBytesQuantities = resultQuantities.length();
gSerializedUnitCategoriesTrie = static_cast<char *>(uprv_malloc(numBytesQuantities));
if (gSerializedUnitCategoriesTrie == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
uprv_memcpy(gSerializedUnitCategoriesTrie, resultQuantities.data(), numBytesQuantities);
// Build the BytesTrie that Parser needs for parsing unit identifiers.
BytesTrieBuilder b(status);
if (U_FAILURE(status)) { return; }
// Add SI and binary prefixes
for (const auto& unitPrefixInfo : gUnitPrefixStrings) {
b.add(unitPrefixInfo.string, unitPrefixInfo.value + kPrefixOffset, status);
}
if (U_FAILURE(status)) { return; }
// Add syntax parts (compound, power prefixes)
b.add("-per-", COMPOUND_PART_PER, status);
b.add("-", COMPOUND_PART_TIMES, status);
b.add("-and-", COMPOUND_PART_AND, status);
b.add("per-", INITIAL_COMPOUND_PART_PER, status);
b.add("square-", POWER_PART_P2, status);
b.add("cubic-", POWER_PART_P3, status);
b.add("pow2-", POWER_PART_P2, status);
b.add("pow3-", POWER_PART_P3, status);
b.add("pow4-", POWER_PART_P4, status);
b.add("pow5-", POWER_PART_P5, status);
b.add("pow6-", POWER_PART_P6, status);
b.add("pow7-", POWER_PART_P7, status);
b.add("pow8-", POWER_PART_P8, status);
b.add("pow9-", POWER_PART_P9, status);
b.add("pow10-", POWER_PART_P10, status);
b.add("pow11-", POWER_PART_P11, status);
b.add("pow12-", POWER_PART_P12, status);
b.add("pow13-", POWER_PART_P13, status);
b.add("pow14-", POWER_PART_P14, status);
b.add("pow15-", POWER_PART_P15, status);
if (U_FAILURE(status)) { return; }
// Add sanctioned simple units by offset: simple units all have entries in
// units/convertUnits resources.
LocalUResourceBundlePointer convertUnits(
ures_getByKey(unitsBundle.getAlias(), "convertUnits", nullptr, &status));
if (U_FAILURE(status)) { return; }
// Allocate enough space: with identifierSink below skipping kilogram, we're
// probably allocating one more than needed.
int32_t simpleUnitsCount = convertUnits.getAlias()->fSize;
int32_t arrayMallocSize = sizeof(char *) * simpleUnitsCount;
gSimpleUnits = static_cast<const char **>(uprv_malloc(arrayMallocSize));
if (gSimpleUnits == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
uprv_memset(gSimpleUnits, 0, arrayMallocSize);
arrayMallocSize = sizeof(int32_t) * simpleUnitsCount;
gSimpleUnitCategories = static_cast<int32_t *>(uprv_malloc(arrayMallocSize));
if (gSimpleUnitCategories == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
uprv_memset(gSimpleUnitCategories, 0, arrayMallocSize);
// Populate gSimpleUnits and build the associated trie.
SimpleUnitIdentifiersSink identifierSink(resultQuantities, gSimpleUnits, gSimpleUnitCategories,
simpleUnitsCount, b, kSimpleUnitOffset);
ures_getAllItemsWithFallback(unitsBundle.getAlias(), "convertUnits", identifierSink, status);
// Build the CharsTrie
// TODO: Use SLOW or FAST here?
StringPiece result = b.buildStringPiece(USTRINGTRIE_BUILD_FAST, status);
if (U_FAILURE(status)) { return; }
// Copy the result into the global constant pointer
size_t numBytes = result.length();
gSerializedUnitExtrasStemTrie = static_cast<char *>(uprv_malloc(numBytes));
if (gSerializedUnitExtrasStemTrie == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
uprv_memcpy(gSerializedUnitExtrasStemTrie, result.data(), numBytes);
}
class Token {
public:
Token(int32_t match) : fMatch(match) {}
enum Type {
TYPE_UNDEFINED,
TYPE_PREFIX,
// Token type for "-per-", "-", and "-and-".
TYPE_COMPOUND_PART,
// Token type for "per-".
TYPE_INITIAL_COMPOUND_PART,
TYPE_POWER_PART,
TYPE_SIMPLE_UNIT,
};
// Calling getType() is invalid, resulting in an assertion failure, if Token
// value isn't positive.
Type getType() const {
U_ASSERT(fMatch > 0);
if (fMatch < kCompoundPartOffset) {
return TYPE_PREFIX;
}
if (fMatch < kInitialCompoundPartOffset) {
return TYPE_COMPOUND_PART;
}
if (fMatch < kPowerPartOffset) {
return TYPE_INITIAL_COMPOUND_PART;
}
if (fMatch < kSimpleUnitOffset) {
return TYPE_POWER_PART;
}
return TYPE_SIMPLE_UNIT;
}
UMeasurePrefix getUnitPrefix() const {
U_ASSERT(getType() == TYPE_PREFIX);
return static_cast<UMeasurePrefix>(fMatch - kPrefixOffset);
}
// Valid only for tokens with type TYPE_COMPOUND_PART.
int32_t getMatch() const {
U_ASSERT(getType() == TYPE_COMPOUND_PART);
return fMatch;
}
int32_t getInitialCompoundPart() const {
// Even if there is only one InitialCompoundPart value, we have this
// function for the simplicity of code consistency.
U_ASSERT(getType() == TYPE_INITIAL_COMPOUND_PART);
// Defensive: if this assert fails, code using this function also needs
// to change.
U_ASSERT(fMatch == INITIAL_COMPOUND_PART_PER);
return fMatch;
}
int8_t getPower() const {
U_ASSERT(getType() == TYPE_POWER_PART);
return static_cast<int8_t>(fMatch - kPowerPartOffset);
}
int32_t getSimpleUnitIndex() const {
U_ASSERT(getType() == TYPE_SIMPLE_UNIT);
return fMatch - kSimpleUnitOffset;
}
private:
int32_t fMatch;
};
class Parser {
public:
/**
* Factory function for parsing the given identifier.
*
* @param source The identifier to parse. This function does not make a copy
* of source: the underlying string that source points at, must outlive the
* parser.
* @param status ICU error code.
*/
static Parser from(StringPiece source, UErrorCode& status) {
if (U_FAILURE(status)) {
return Parser();
}
umtx_initOnce(gUnitExtrasInitOnce, &initUnitExtras, status);
if (U_FAILURE(status)) {
return Parser();
}
return Parser(source);
}
MeasureUnitImpl parse(UErrorCode& status) {
MeasureUnitImpl result;
if (U_FAILURE(status)) {
return result;
}
if (fSource.empty()) {
// The dimenionless unit: nothing to parse. leave result as is.
return result;
}
while (hasNext()) {
bool sawAnd = false;
SingleUnitImpl singleUnit = nextSingleUnit(sawAnd, status);
if (U_FAILURE(status)) {
return result;
}
bool added = result.appendSingleUnit(singleUnit, status);
if (U_FAILURE(status)) {
return result;
}
if (sawAnd && !added) {
// Two similar units are not allowed in a mixed unit.
status = kUnitIdentifierSyntaxError;
return result;
}
if (result.singleUnits.length() >= 2) {
// nextSingleUnit fails appropriately for "per" and "and" in the
// same identifier. It doesn't fail for other compound units
// (COMPOUND_PART_TIMES). Consequently we take care of that
// here.
UMeasureUnitComplexity complexity =
sawAnd ? UMEASURE_UNIT_MIXED : UMEASURE_UNIT_COMPOUND;
if (result.singleUnits.length() == 2) {
// After appending two singleUnits, the complexity will be `UMEASURE_UNIT_COMPOUND`
U_ASSERT(result.complexity == UMEASURE_UNIT_COMPOUND);
result.complexity = complexity;
} else if (result.complexity != complexity) {
// Can't have mixed compound units
status = kUnitIdentifierSyntaxError;
return result;
}
}
}
return result;
}
private:
// Tracks parser progress: the offset into fSource.
int32_t fIndex = 0;
// Since we're not owning this memory, whatever is passed to the constructor
// should live longer than this Parser - and the parser shouldn't return any
// references to that string.
StringPiece fSource;
BytesTrie fTrie;
// Set to true when we've seen a "-per-" or a "per-", after which all units
// are in the denominator. Until we find an "-and-", at which point the
// identifier is invalid pending TODO(CLDR-13700).
bool fAfterPer = false;
Parser() : fSource(""), fTrie(u"") {}
Parser(StringPiece source)
: fSource(source), fTrie(gSerializedUnitExtrasStemTrie) {}
inline bool hasNext() const {
return fIndex < fSource.length();
}
// Returns the next Token parsed from fSource, advancing fIndex to the end
// of that token in fSource. In case of U_FAILURE(status), the token
// returned will cause an abort if getType() is called on it.
Token nextToken(UErrorCode& status) {
fTrie.reset();
int32_t match = -1;
// Saves the position in the fSource string for the end of the most
// recent matching token.
int32_t previ = -1;
// Find the longest token that matches a value in the trie:
while (fIndex < fSource.length()) {
auto result = fTrie.next(fSource.data()[fIndex++]);
if (result == USTRINGTRIE_NO_MATCH) {
break;
} else if (result == USTRINGTRIE_NO_VALUE) {
continue;
}
U_ASSERT(USTRINGTRIE_HAS_VALUE(result));
match = fTrie.getValue();
previ = fIndex;
if (result == USTRINGTRIE_FINAL_VALUE) {
break;
}
U_ASSERT(result == USTRINGTRIE_INTERMEDIATE_VALUE);
// continue;
}
if (match < 0) {
status = kUnitIdentifierSyntaxError;
} else {
fIndex = previ;
}
return Token(match);
}
/**
* Returns the next "single unit" via result.
*
* If a "-per-" was parsed, the result will have appropriate negative
* dimensionality.
*
* Returns an error if we parse both compound units and "-and-", since mixed
* compound units are not yet supported - TODO(CLDR-13700).
*
* @param result Will be overwritten by the result, if status shows success.
* @param sawAnd If an "-and-" was parsed prior to finding the "single
* unit", sawAnd is set to true. If not, it is left as is.
* @param status ICU error code.
*/
SingleUnitImpl nextSingleUnit(bool &sawAnd, UErrorCode &status) {
SingleUnitImpl result;
if (U_FAILURE(status)) {
return result;
}
// state:
// 0 = no tokens seen yet (will accept power, SI or binary prefix, or simple unit)
// 1 = power token seen (will not accept another power token)
// 2 = SI or binary prefix token seen (will not accept a power, or SI or binary prefix token)
int32_t state = 0;
bool atStart = fIndex == 0;
Token token = nextToken(status);
if (U_FAILURE(status)) {
return result;
}
if (atStart) {
// Identifiers optionally start with "per-".
if (token.getType() == Token::TYPE_INITIAL_COMPOUND_PART) {
U_ASSERT(token.getInitialCompoundPart() == INITIAL_COMPOUND_PART_PER);
fAfterPer = true;
result.dimensionality = -1;
token = nextToken(status);
if (U_FAILURE(status)) {
return result;
}
}
} else {
// All other SingleUnit's are separated from previous SingleUnit's
// via a compound part:
if (token.getType() != Token::TYPE_COMPOUND_PART) {
status = kUnitIdentifierSyntaxError;
return result;
}
switch (token.getMatch()) {
case COMPOUND_PART_PER:
if (sawAnd) {
// Mixed compound units not yet supported,
// TODO(CLDR-13700).
status = kUnitIdentifierSyntaxError;
return result;
}
fAfterPer = true;
result.dimensionality = -1;
break;
case COMPOUND_PART_TIMES:
if (fAfterPer) {
result.dimensionality = -1;
}
break;
case COMPOUND_PART_AND:
if (fAfterPer) {
// Can't start with "-and-", and mixed compound units
// not yet supported, TODO(CLDR-13700).
status = kUnitIdentifierSyntaxError;
return result;
}
sawAnd = true;
break;
}
token = nextToken(status);
if (U_FAILURE(status)) {
return result;
}
}
// Read tokens until we have a complete SingleUnit or we reach the end.
while (true) {
switch (token.getType()) {
case Token::TYPE_POWER_PART:
if (state > 0) {
status = kUnitIdentifierSyntaxError;
return result;
}
result.dimensionality *= token.getPower();
state = 1;
break;
case Token::TYPE_PREFIX:
if (state > 1) {
status = kUnitIdentifierSyntaxError;
return result;
}
result.unitPrefix = token.getUnitPrefix();
state = 2;
break;
case Token::TYPE_SIMPLE_UNIT:
result.index = token.getSimpleUnitIndex();
return result;
default:
status = kUnitIdentifierSyntaxError;
return result;
}
if (!hasNext()) {
// We ran out of tokens before finding a complete single unit.
status = kUnitIdentifierSyntaxError;
return result;
}
token = nextToken(status);
if (U_FAILURE(status)) {
return result;
}
}
return result;
}
};
// Sorting function wrapping SingleUnitImpl::compareTo for use with uprv_sortArray.
int32_t U_CALLCONV
compareSingleUnits(const void* /*context*/, const void* left, const void* right) {
auto realLeft = static_cast<const SingleUnitImpl* const*>(left);
auto realRight = static_cast<const SingleUnitImpl* const*>(right);
return (*realLeft)->compareTo(**realRight);
}
// Returns an index into the gCategories array, for the "unitQuantity" (aka
// "type" or "category") associated with the given base unit identifier. Returns
// -1 on failure, together with U_UNSUPPORTED_ERROR.
int32_t getUnitCategoryIndex(BytesTrie &trie, StringPiece baseUnitIdentifier, UErrorCode &status) {
UStringTrieResult result = trie.reset().next(baseUnitIdentifier.data(), baseUnitIdentifier.length());
if (!USTRINGTRIE_HAS_VALUE(result)) {
status = U_UNSUPPORTED_ERROR;
return -1;
}
return trie.getValue();
}
} // namespace
U_CAPI int32_t U_EXPORT2
umeas_getPrefixPower(UMeasurePrefix unitPrefix) {
if (unitPrefix >= UMEASURE_PREFIX_INTERNAL_MIN_BIN &&
unitPrefix <= UMEASURE_PREFIX_INTERNAL_MAX_BIN) {
return unitPrefix - UMEASURE_PREFIX_INTERNAL_ONE_BIN;
}
U_ASSERT(unitPrefix >= UMEASURE_PREFIX_INTERNAL_MIN_SI &&
unitPrefix <= UMEASURE_PREFIX_INTERNAL_MAX_SI);
return unitPrefix - UMEASURE_PREFIX_ONE;
}
U_CAPI int32_t U_EXPORT2
umeas_getPrefixBase(UMeasurePrefix unitPrefix) {
if (unitPrefix >= UMEASURE_PREFIX_INTERNAL_MIN_BIN &&
unitPrefix <= UMEASURE_PREFIX_INTERNAL_MAX_BIN) {
return 1024;
}
U_ASSERT(unitPrefix >= UMEASURE_PREFIX_INTERNAL_MIN_SI &&
unitPrefix <= UMEASURE_PREFIX_INTERNAL_MAX_SI);
return 10;
}
CharString U_I18N_API getUnitQuantity(const MeasureUnitImpl &baseMeasureUnitImpl, UErrorCode &status) {
CharString result;
MeasureUnitImpl baseUnitImpl = baseMeasureUnitImpl.copy(status);
UErrorCode localStatus = U_ZERO_ERROR;
umtx_initOnce(gUnitExtrasInitOnce, &initUnitExtras, status);
if (U_FAILURE(status)) {
return result;
}
BytesTrie trie(gSerializedUnitCategoriesTrie);
baseUnitImpl.serialize(status);
StringPiece identifier = baseUnitImpl.identifier.data();
int32_t idx = getUnitCategoryIndex(trie, identifier, localStatus);
if (U_FAILURE(status)) {
return result;
}
// In case the base unit identifier did not match any entry.
if (U_FAILURE(localStatus)) {
localStatus = U_ZERO_ERROR;
baseUnitImpl.takeReciprocal(status);
baseUnitImpl.serialize(status);
identifier.set(baseUnitImpl.identifier.data());
idx = getUnitCategoryIndex(trie, identifier, localStatus);
if (U_FAILURE(status)) {
return result;
}
}
// In case the reciprocal of the base unit identifier did not match any entry.
MeasureUnitImpl simplifiedUnit = baseMeasureUnitImpl.copyAndSimplify(status);
if (U_FAILURE(status)) {
return result;
}
if (U_FAILURE(localStatus)) {
localStatus = U_ZERO_ERROR;
simplifiedUnit.serialize(status);
identifier.set(simplifiedUnit.identifier.data());
idx = getUnitCategoryIndex(trie, identifier, localStatus);
if (U_FAILURE(status)) {
return result;
}
}
// In case the simplified base unit identifier did not match any entry.
if (U_FAILURE(localStatus)) {
localStatus = U_ZERO_ERROR;
simplifiedUnit.takeReciprocal(status);
simplifiedUnit.serialize(status);
identifier.set(simplifiedUnit.identifier.data());
idx = getUnitCategoryIndex(trie, identifier, localStatus);
if (U_FAILURE(status)) {
return result;
}
}
// If there is no match at all, throw an exception.
if (U_FAILURE(localStatus)) {
status = U_INVALID_FORMAT_ERROR;
return result;
}
if (idx < 0 || idx >= gCategoriesCount) {
status = U_INVALID_FORMAT_ERROR;
return result;
}
result.appendInvariantChars(gCategories[idx], u_strlen(gCategories[idx]), status);
return result;
}
// In ICU4J, this is MeasureUnit.getSingleUnitImpl().
SingleUnitImpl SingleUnitImpl::forMeasureUnit(const MeasureUnit& measureUnit, UErrorCode& status) {
MeasureUnitImpl temp;
const MeasureUnitImpl& impl = MeasureUnitImpl::forMeasureUnit(measureUnit, temp, status);
if (U_FAILURE(status)) {
return {};
}
if (impl.singleUnits.length() == 0) {
return {};
}
if (impl.singleUnits.length() == 1) {
return *impl.singleUnits[0];
}
status = U_ILLEGAL_ARGUMENT_ERROR;
return {};
}
MeasureUnit SingleUnitImpl::build(UErrorCode& status) const {
MeasureUnitImpl temp;
temp.appendSingleUnit(*this, status);
// TODO(icu-units#28): the MeasureUnitImpl::build() method uses
// findBySubtype, which is relatively slow.
// - At the time of loading the simple unit IDs, we could also save a
// mapping to the builtin MeasureUnit type and subtype they correspond to.
// - This method could then check dimensionality and index, and if both are
// 1, directly return MeasureUnit instances very quickly.
return std::move(temp).build(status);
}
const char *SingleUnitImpl::getSimpleUnitID() const {
return gSimpleUnits[index];
}
void SingleUnitImpl::appendNeutralIdentifier(CharString &result, UErrorCode &status) const {
int32_t absPower = std::abs(this->dimensionality);
U_ASSERT(absPower > 0); // "this function does not support the dimensionless single units";
if (absPower == 1) {
// no-op
} else if (absPower == 2) {
result.append(StringPiece("square-"), status);
} else if (absPower == 3) {
result.append(StringPiece("cubic-"), status);
} else if (absPower <= 15) {
result.append(StringPiece("pow"), status);
result.appendNumber(absPower, status);
result.append(StringPiece("-"), status);
} else {
status = U_ILLEGAL_ARGUMENT_ERROR; // Unit Identifier Syntax Error
return;
}
if (U_FAILURE(status)) {
return;
}
if (this->unitPrefix != UMEASURE_PREFIX_ONE) {
bool found = false;
for (const auto &unitPrefixInfo : gUnitPrefixStrings) {
// TODO: consider using binary search? If we do this, add a unit
// test to ensure gUnitPrefixStrings is sorted?
if (unitPrefixInfo.value == this->unitPrefix) {
result.append(unitPrefixInfo.string, status);
found = true;
break;
}
}
if (!found) {
status = U_UNSUPPORTED_ERROR;
return;
}
}
result.append(StringPiece(this->getSimpleUnitID()), status);
}
int32_t SingleUnitImpl::getUnitCategoryIndex() const {
return gSimpleUnitCategories[index];
}
MeasureUnitImpl::MeasureUnitImpl(const SingleUnitImpl &singleUnit, UErrorCode &status) {
this->appendSingleUnit(singleUnit, status);
}
MeasureUnitImpl MeasureUnitImpl::forIdentifier(StringPiece identifier, UErrorCode& status) {
return Parser::from(identifier, status).parse(status);
}
const MeasureUnitImpl& MeasureUnitImpl::forMeasureUnit(
const MeasureUnit& measureUnit, MeasureUnitImpl& memory, UErrorCode& status) {
if (measureUnit.fImpl) {
return *measureUnit.fImpl;
} else {
memory = Parser::from(measureUnit.getIdentifier(), status).parse(status);
return memory;
}
}
MeasureUnitImpl MeasureUnitImpl::forMeasureUnitMaybeCopy(
const MeasureUnit& measureUnit, UErrorCode& status) {
if (measureUnit.fImpl) {
return measureUnit.fImpl->copy(status);
} else {
return Parser::from(measureUnit.getIdentifier(), status).parse(status);
}
}
void MeasureUnitImpl::takeReciprocal(UErrorCode& /*status*/) {
identifier.clear();
for (int32_t i = 0; i < singleUnits.length(); i++) {
singleUnits[i]->dimensionality *= -1;
}
}
MeasureUnitImpl MeasureUnitImpl::copyAndSimplify(UErrorCode &status) const {
MeasureUnitImpl result;
for (int32_t i = 0; i < singleUnits.length(); i++) {
const SingleUnitImpl &singleUnit = *this->singleUnits[i];
// The following `for` loop will cause time complexity to be O(n^2).
// However, n is very small (number of units, generally, at maximum equal to 10)
bool unitExist = false;
for (int32_t j = 0; j < result.singleUnits.length(); j++) {
if (uprv_strcmp(result.singleUnits[j]->getSimpleUnitID(), singleUnit.getSimpleUnitID()) ==
0 &&
result.singleUnits[j]->unitPrefix == singleUnit.unitPrefix) {
unitExist = true;
result.singleUnits[j]->dimensionality =
result.singleUnits[j]->dimensionality + singleUnit.dimensionality;
break;
}
}
if (!unitExist) {
result.appendSingleUnit(singleUnit, status);
}
}
return result;
}
bool MeasureUnitImpl::appendSingleUnit(const SingleUnitImpl &singleUnit, UErrorCode &status) {
identifier.clear();
if (singleUnit.isDimensionless()) {
// Do not append dimensionless units.
return false;
}
// Find a similar unit that already exists, to attempt to coalesce
SingleUnitImpl *oldUnit = nullptr;
for (int32_t i = 0; i < this->singleUnits.length(); i++) {
auto *candidate = this->singleUnits[i];
if (candidate->isCompatibleWith(singleUnit)) {
oldUnit = candidate;
}
}
if (oldUnit) {
// Both dimensionalities will be positive, or both will be negative, by
// virtue of isCompatibleWith().
oldUnit->dimensionality += singleUnit.dimensionality;
return false;
}
// Add a copy of singleUnit
// NOTE: MaybeStackVector::emplaceBackAndCheckErrorCode creates new copy of singleUnit.
this->singleUnits.emplaceBackAndCheckErrorCode(status, singleUnit);
if (U_FAILURE(status)) {
return false;
}
// If the MeasureUnitImpl is `UMEASURE_UNIT_SINGLE` and after the appending a unit, the `singleUnits`
// contains more than one. thus means the complexity should be `UMEASURE_UNIT_COMPOUND`
if (this->singleUnits.length() > 1 &&
this->complexity == UMeasureUnitComplexity::UMEASURE_UNIT_SINGLE) {
this->complexity = UMeasureUnitComplexity::UMEASURE_UNIT_COMPOUND;
}
return true;
}
MaybeStackVector<MeasureUnitImplWithIndex>
MeasureUnitImpl::extractIndividualUnitsWithIndices(UErrorCode &status) const {
MaybeStackVector<MeasureUnitImplWithIndex> result;
if (this->complexity != UMeasureUnitComplexity::UMEASURE_UNIT_MIXED) {
result.emplaceBackAndCheckErrorCode(status, 0, *this, status);
return result;
}
for (int32_t i = 0; i < singleUnits.length(); ++i) {
result.emplaceBackAndCheckErrorCode(status, i, *singleUnits[i], status);
if (U_FAILURE(status)) {
return result;
}
}
return result;
}
/**
* Normalize a MeasureUnitImpl and generate the identifier string in place.
*/
void MeasureUnitImpl::serialize(UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
if (this->singleUnits.length() == 0) {
// Dimensionless, constructed by the default constructor.
return;
}
if (this->complexity == UMEASURE_UNIT_COMPOUND) {
// Note: don't sort a MIXED unit
uprv_sortArray(this->singleUnits.getAlias(), this->singleUnits.length(),
sizeof(this->singleUnits[0]), compareSingleUnits, nullptr, false, &status);
if (U_FAILURE(status)) {
return;
}
}
CharString result;
bool beforePer = true;
bool firstTimeNegativeDimension = false;
for (int32_t i = 0; i < this->singleUnits.length(); i++) {
if (beforePer && (*this->singleUnits[i]).dimensionality < 0) {
beforePer = false;
firstTimeNegativeDimension = true;
} else if ((*this->singleUnits[i]).dimensionality < 0) {
firstTimeNegativeDimension = false;
}
if (U_FAILURE(status)) {
return;
}
if (this->complexity == UMeasureUnitComplexity::UMEASURE_UNIT_MIXED) {
if (result.length() != 0) {
result.append(StringPiece("-and-"), status);
}
} else {
if (firstTimeNegativeDimension) {
if (result.length() == 0) {
result.append(StringPiece("per-"), status);
} else {
result.append(StringPiece("-per-"), status);
}
} else {
if (result.length() != 0) {
result.append(StringPiece("-"), status);
}
}
}
this->singleUnits[i]->appendNeutralIdentifier(result, status);
}
this->identifier = CharString(result, status);
}
MeasureUnit MeasureUnitImpl::build(UErrorCode& status) && {
this->serialize(status);
return MeasureUnit(std::move(*this));
}
MeasureUnit MeasureUnit::forIdentifier(StringPiece identifier, UErrorCode& status) {
return Parser::from(identifier, status).parse(status).build(status);
}
UMeasureUnitComplexity MeasureUnit::getComplexity(UErrorCode& status) const {
MeasureUnitImpl temp;
return MeasureUnitImpl::forMeasureUnit(*this, temp, status).complexity;
}
UMeasurePrefix MeasureUnit::getPrefix(UErrorCode& status) const {
return SingleUnitImpl::forMeasureUnit(*this, status).unitPrefix;
}
MeasureUnit MeasureUnit::withPrefix(UMeasurePrefix prefix, UErrorCode& status) const {
SingleUnitImpl singleUnit = SingleUnitImpl::forMeasureUnit(*this, status);
singleUnit.unitPrefix = prefix;
return singleUnit.build(status);
}
int32_t MeasureUnit::getDimensionality(UErrorCode& status) const {
SingleUnitImpl singleUnit = SingleUnitImpl::forMeasureUnit(*this, status);
if (U_FAILURE(status)) { return 0; }
if (singleUnit.isDimensionless()) {
return 0;
}
return singleUnit.dimensionality;
}
MeasureUnit MeasureUnit::withDimensionality(int32_t dimensionality, UErrorCode& status) const {
SingleUnitImpl singleUnit = SingleUnitImpl::forMeasureUnit(*this, status);
singleUnit.dimensionality = dimensionality;
return singleUnit.build(status);
}
MeasureUnit MeasureUnit::reciprocal(UErrorCode& status) const {
MeasureUnitImpl impl = MeasureUnitImpl::forMeasureUnitMaybeCopy(*this, status);
impl.takeReciprocal(status);
return std::move(impl).build(status);
}
MeasureUnit MeasureUnit::product(const MeasureUnit& other, UErrorCode& status) const {
MeasureUnitImpl impl = MeasureUnitImpl::forMeasureUnitMaybeCopy(*this, status);
MeasureUnitImpl temp;
const MeasureUnitImpl& otherImpl = MeasureUnitImpl::forMeasureUnit(other, temp, status);
if (impl.complexity == UMEASURE_UNIT_MIXED || otherImpl.complexity == UMEASURE_UNIT_MIXED) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return {};
}
for (int32_t i = 0; i < otherImpl.singleUnits.length(); i++) {
impl.appendSingleUnit(*otherImpl.singleUnits[i], status);
}
if (impl.singleUnits.length() > 1) {
impl.complexity = UMEASURE_UNIT_COMPOUND;
}
return std::move(impl).build(status);
}
LocalArray<MeasureUnit> MeasureUnit::splitToSingleUnitsImpl(int32_t& outCount, UErrorCode& status) const {
MeasureUnitImpl temp;
const MeasureUnitImpl& impl = MeasureUnitImpl::forMeasureUnit(*this, temp, status);
outCount = impl.singleUnits.length();
MeasureUnit* arr = new MeasureUnit[outCount];
if (arr == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return LocalArray<MeasureUnit>();
}
for (int32_t i = 0; i < outCount; i++) {
arr[i] = impl.singleUnits[i]->build(status);
}
return LocalArray<MeasureUnit>(arr, status);
}
U_NAMESPACE_END
#endif /* !UNCONFIG_NO_FORMATTING */
|