1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
// © 2018 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
#include "unicode/utypes.h"
#if !UCONFIG_NO_FORMATTING
// This file contains one implementation of FormattedValue.
// Other independent implementations should go into their own cpp file for
// better dependency modularization.
#include "formattedval_impl.h"
#include "putilimp.h"
U_NAMESPACE_BEGIN
FormattedValueFieldPositionIteratorImpl::FormattedValueFieldPositionIteratorImpl(
int32_t initialFieldCapacity,
UErrorCode& status)
: fFields(initialFieldCapacity * 4, status) {
}
FormattedValueFieldPositionIteratorImpl::~FormattedValueFieldPositionIteratorImpl() = default;
UnicodeString FormattedValueFieldPositionIteratorImpl::toString(
UErrorCode&) const {
return fString;
}
UnicodeString FormattedValueFieldPositionIteratorImpl::toTempString(
UErrorCode&) const {
// The alias must point to memory owned by this object;
// fastCopyFrom doesn't do this when using a stack buffer.
return UnicodeString(true, fString.getBuffer(), fString.length());
}
Appendable& FormattedValueFieldPositionIteratorImpl::appendTo(
Appendable& appendable,
UErrorCode&) const {
appendable.appendString(fString.getBuffer(), fString.length());
return appendable;
}
UBool FormattedValueFieldPositionIteratorImpl::nextPosition(
ConstrainedFieldPosition& cfpos,
UErrorCode&) const {
U_ASSERT(fFields.size() % 4 == 0);
int32_t numFields = fFields.size() / 4;
int32_t i = static_cast<int32_t>(cfpos.getInt64IterationContext());
for (; i < numFields; i++) {
UFieldCategory category = static_cast<UFieldCategory>(fFields.elementAti(i * 4));
int32_t field = fFields.elementAti(i * 4 + 1);
if (cfpos.matchesField(category, field)) {
int32_t start = fFields.elementAti(i * 4 + 2);
int32_t limit = fFields.elementAti(i * 4 + 3);
cfpos.setState(category, field, start, limit);
break;
}
}
cfpos.setInt64IterationContext(i == numFields ? i : i + 1);
return i < numFields;
}
FieldPositionIteratorHandler FormattedValueFieldPositionIteratorImpl::getHandler(
UErrorCode& status) {
return FieldPositionIteratorHandler(&fFields, status);
}
void FormattedValueFieldPositionIteratorImpl::appendString(
UnicodeString string,
UErrorCode& status) {
if (U_FAILURE(status)) {
return;
}
fString.append(string);
// Make the string NUL-terminated
if (fString.getTerminatedBuffer() == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
}
void FormattedValueFieldPositionIteratorImpl::addOverlapSpans(
UFieldCategory spanCategory,
int8_t firstIndex,
UErrorCode& status) {
// In order to avoid fancy data structures, this is an O(N^2) algorithm,
// which should be fine for all real-life applications of this function.
int32_t s1a = INT32_MAX;
int32_t s1b = 0;
int32_t s2a = INT32_MAX;
int32_t s2b = 0;
int32_t numFields = fFields.size() / 4;
for (int32_t i = 0; i<numFields; i++) {
int32_t field1 = fFields.elementAti(i * 4 + 1);
for (int32_t j = i + 1; j<numFields; j++) {
int32_t field2 = fFields.elementAti(j * 4 + 1);
if (field1 != field2) {
continue;
}
// Found a duplicate
s1a = uprv_min(s1a, fFields.elementAti(i * 4 + 2));
s1b = uprv_max(s1b, fFields.elementAti(i * 4 + 3));
s2a = uprv_min(s2a, fFields.elementAti(j * 4 + 2));
s2b = uprv_max(s2b, fFields.elementAti(j * 4 + 3));
break;
}
}
if (s1a != INT32_MAX) {
// Success: add the two span fields
fFields.addElement(spanCategory, status);
fFields.addElement(firstIndex, status);
fFields.addElement(s1a, status);
fFields.addElement(s1b, status);
fFields.addElement(spanCategory, status);
fFields.addElement(1 - firstIndex, status);
fFields.addElement(s2a, status);
fFields.addElement(s2b, status);
}
}
void FormattedValueFieldPositionIteratorImpl::sort() {
// Use bubble sort, O(N^2) but easy and no fancy data structures.
int32_t numFields = fFields.size() / 4;
while (true) {
bool isSorted = true;
for (int32_t i=0; i<numFields-1; i++) {
int32_t categ1 = fFields.elementAti(i*4 + 0);
int32_t field1 = fFields.elementAti(i*4 + 1);
int32_t start1 = fFields.elementAti(i*4 + 2);
int32_t limit1 = fFields.elementAti(i*4 + 3);
int32_t categ2 = fFields.elementAti(i*4 + 4);
int32_t field2 = fFields.elementAti(i*4 + 5);
int32_t start2 = fFields.elementAti(i*4 + 6);
int32_t limit2 = fFields.elementAti(i*4 + 7);
int64_t comparison = 0;
if (start1 != start2) {
// Higher start index -> higher rank
comparison = start2 - start1;
} else if (limit1 != limit2) {
// Higher length (end index) -> lower rank
comparison = limit1 - limit2;
} else if (categ1 != categ2) {
// Higher field category -> lower rank
comparison = categ1 - categ2;
} else if (field1 != field2) {
// Higher field -> higher rank
comparison = field2 - field1;
}
if (comparison < 0) {
// Perform a swap
isSorted = false;
fFields.setElementAt(categ2, i*4 + 0);
fFields.setElementAt(field2, i*4 + 1);
fFields.setElementAt(start2, i*4 + 2);
fFields.setElementAt(limit2, i*4 + 3);
fFields.setElementAt(categ1, i*4 + 4);
fFields.setElementAt(field1, i*4 + 5);
fFields.setElementAt(start1, i*4 + 6);
fFields.setElementAt(limit1, i*4 + 7);
}
}
if (isSorted) {
break;
}
}
}
U_NAMESPACE_END
#endif /* #if !UCONFIG_NO_FORMATTING */
|