aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/icu/i18n/collationweights.cpp
blob: 2351484590c9fa8e0892c7e2948c602fa017ee1b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*  
*******************************************************************************
*
*   Copyright (C) 1999-2015, International Business Machines
*   Corporation and others.  All Rights Reserved.
*
*******************************************************************************
*   file name:  collationweights.cpp
*   encoding:   UTF-8
*   tab size:   8 (not used)
*   indentation:4
*
*   created on: 2001mar08 as ucol_wgt.cpp
*   created by: Markus W. Scherer
*
*   This file contains code for allocating n collation element weights
*   between two exclusive limits.
*   It is used only internally by the collation tailoring builder.
*/

#include "unicode/utypes.h"

#if !UCONFIG_NO_COLLATION

#include "cmemory.h"
#include "collation.h"
#include "collationweights.h"
#include "uarrsort.h"
#include "uassert.h"

#ifdef UCOL_DEBUG
#   include <stdio.h>
#endif

U_NAMESPACE_BEGIN

/* collation element weight allocation -------------------------------------- */

/* helper functions for CE weights */

static inline uint32_t
getWeightTrail(uint32_t weight, int32_t length) {
    return (uint32_t)(weight>>(8*(4-length)))&0xff;
}

static inline uint32_t
setWeightTrail(uint32_t weight, int32_t length, uint32_t trail) {
    length=8*(4-length);
    return (uint32_t)((weight&(0xffffff00<<length))|(trail<<length));
}

static inline uint32_t
getWeightByte(uint32_t weight, int32_t idx) {
    return getWeightTrail(weight, idx); /* same calculation */
}

static inline uint32_t
setWeightByte(uint32_t weight, int32_t idx, uint32_t byte) {
    uint32_t mask; /* 0xffffffff except a 00 "hole" for the index-th byte */

    idx*=8;
    if(idx<32) {
        mask=((uint32_t)0xffffffff)>>idx;
    } else {
        // Do not use uint32_t>>32 because on some platforms that does not shift at all
        // while we need it to become 0.
        // PowerPC: 0xffffffff>>32 = 0           (wanted)
        // x86:     0xffffffff>>32 = 0xffffffff  (not wanted)
        //
        // ANSI C99 6.5.7 Bitwise shift operators:
        // "If the value of the right operand is negative
        // or is greater than or equal to the width of the promoted left operand,
        // the behavior is undefined."
        mask=0;
    }
    idx=32-idx;
    mask|=0xffffff00<<idx;
    return (uint32_t)((weight&mask)|(byte<<idx));
}

static inline uint32_t
truncateWeight(uint32_t weight, int32_t length) {
    return (uint32_t)(weight&(0xffffffff<<(8*(4-length))));
}

static inline uint32_t
incWeightTrail(uint32_t weight, int32_t length) {
    return (uint32_t)(weight+(1UL<<(8*(4-length))));
}

static inline uint32_t
decWeightTrail(uint32_t weight, int32_t length) {
    return (uint32_t)(weight-(1UL<<(8*(4-length))));
}

CollationWeights::CollationWeights()
        : middleLength(0), rangeIndex(0), rangeCount(0) {
    for(int32_t i = 0; i < 5; ++i) {
        minBytes[i] = maxBytes[i] = 0;
    }
}

void
CollationWeights::initForPrimary(UBool compressible) {
    middleLength=1;
    minBytes[1] = Collation::MERGE_SEPARATOR_BYTE + 1;
    maxBytes[1] = Collation::TRAIL_WEIGHT_BYTE;
    if(compressible) {
        minBytes[2] = Collation::PRIMARY_COMPRESSION_LOW_BYTE + 1;
        maxBytes[2] = Collation::PRIMARY_COMPRESSION_HIGH_BYTE - 1;
    } else {
        minBytes[2] = 2;
        maxBytes[2] = 0xff;
    }
    minBytes[3] = 2;
    maxBytes[3] = 0xff;
    minBytes[4] = 2;
    maxBytes[4] = 0xff;
}

void
CollationWeights::initForSecondary() {
    // We use only the lower 16 bits for secondary weights.
    middleLength=3;
    minBytes[1] = 0;
    maxBytes[1] = 0;
    minBytes[2] = 0;
    maxBytes[2] = 0;
    minBytes[3] = Collation::LEVEL_SEPARATOR_BYTE + 1;
    maxBytes[3] = 0xff;
    minBytes[4] = 2;
    maxBytes[4] = 0xff;
}

void
CollationWeights::initForTertiary() {
    // We use only the lower 16 bits for tertiary weights.
    middleLength=3;
    minBytes[1] = 0;
    maxBytes[1] = 0;
    minBytes[2] = 0;
    maxBytes[2] = 0;
    // We use only 6 bits per byte.
    // The other bits are used for case & quaternary weights.
    minBytes[3] = Collation::LEVEL_SEPARATOR_BYTE + 1;
    maxBytes[3] = 0x3f;
    minBytes[4] = 2;
    maxBytes[4] = 0x3f;
}

uint32_t
CollationWeights::incWeight(uint32_t weight, int32_t length) const {
    for(;;) {
        uint32_t byte=getWeightByte(weight, length);
        if(byte<maxBytes[length]) {
            return setWeightByte(weight, length, byte+1);
        } else {
            // Roll over, set this byte to the minimum and increment the previous one.
            weight=setWeightByte(weight, length, minBytes[length]);
            --length;
            U_ASSERT(length > 0);
        }
    }
}

uint32_t
CollationWeights::incWeightByOffset(uint32_t weight, int32_t length, int32_t offset) const {
    for(;;) {
        offset += getWeightByte(weight, length);
        if((uint32_t)offset <= maxBytes[length]) {
            return setWeightByte(weight, length, offset);
        } else {
            // Split the offset between this byte and the previous one.
            offset -= minBytes[length];
            weight = setWeightByte(weight, length, minBytes[length] + offset % countBytes(length));
            offset /= countBytes(length);
            --length;
            U_ASSERT(length > 0);
        }
    }
}

void
CollationWeights::lengthenRange(WeightRange &range) const {
    int32_t length=range.length+1;
    range.start=setWeightTrail(range.start, length, minBytes[length]);
    range.end=setWeightTrail(range.end, length, maxBytes[length]);
    range.count*=countBytes(length);
    range.length=length;
}

/* for uprv_sortArray: sort ranges in weight order */
static int32_t U_CALLCONV
compareRanges(const void * /*context*/, const void *left, const void *right) {
    uint32_t l, r;

    l=((const CollationWeights::WeightRange *)left)->start;
    r=((const CollationWeights::WeightRange *)right)->start;
    if(l<r) {
        return -1;
    } else if(l>r) {
        return 1;
    } else {
        return 0;
    }
}

UBool
CollationWeights::getWeightRanges(uint32_t lowerLimit, uint32_t upperLimit) {
    U_ASSERT(lowerLimit != 0);
    U_ASSERT(upperLimit != 0);

    /* get the lengths of the limits */
    int32_t lowerLength=lengthOfWeight(lowerLimit);
    int32_t upperLength=lengthOfWeight(upperLimit);

#ifdef UCOL_DEBUG
    printf("length of lower limit 0x%08lx is %ld\n", lowerLimit, lowerLength);
    printf("length of upper limit 0x%08lx is %ld\n", upperLimit, upperLength);
#endif
    U_ASSERT(lowerLength>=middleLength);
    // Permit upperLength<middleLength: The upper limit for secondaries is 0x10000.

    if(lowerLimit>=upperLimit) {
#ifdef UCOL_DEBUG
        printf("error: no space between lower & upper limits\n");
#endif
        return false;
    }

    /* check that neither is a prefix of the other */
    if(lowerLength<upperLength) {
        if(lowerLimit==truncateWeight(upperLimit, lowerLength)) {
#ifdef UCOL_DEBUG
            printf("error: lower limit 0x%08lx is a prefix of upper limit 0x%08lx\n", lowerLimit, upperLimit);
#endif
            return false;
        }
    }
    /* if the upper limit is a prefix of the lower limit then the earlier test lowerLimit>=upperLimit has caught it */

    WeightRange lower[5], middle, upper[5]; /* [0] and [1] are not used - this simplifies indexing */
    uprv_memset(lower, 0, sizeof(lower));
    uprv_memset(&middle, 0, sizeof(middle));
    uprv_memset(upper, 0, sizeof(upper));

    /*
     * With the limit lengths of 1..4, there are up to 7 ranges for allocation:
     * range     minimum length
     * lower[4]  4
     * lower[3]  3
     * lower[2]  2
     * middle    1
     * upper[2]  2
     * upper[3]  3
     * upper[4]  4
     *
     * We are now going to calculate up to 7 ranges.
     * Some of them will typically overlap, so we will then have to merge and eliminate ranges.
     */
    uint32_t weight=lowerLimit;
    for(int32_t length=lowerLength; length>middleLength; --length) {
        uint32_t trail=getWeightTrail(weight, length);
        if(trail<maxBytes[length]) {
            lower[length].start=incWeightTrail(weight, length);
            lower[length].end=setWeightTrail(weight, length, maxBytes[length]);
            lower[length].length=length;
            lower[length].count=maxBytes[length]-trail;
        }
        weight=truncateWeight(weight, length-1);
    }
    if(weight<0xff000000) {
        middle.start=incWeightTrail(weight, middleLength);
    } else {
        // Prevent overflow for primary lead byte FF
        // which would yield a middle range starting at 0.
        middle.start=0xffffffff;  // no middle range
    }

    weight=upperLimit;
    for(int32_t length=upperLength; length>middleLength; --length) {
        uint32_t trail=getWeightTrail(weight, length);
        if(trail>minBytes[length]) {
            upper[length].start=setWeightTrail(weight, length, minBytes[length]);
            upper[length].end=decWeightTrail(weight, length);
            upper[length].length=length;
            upper[length].count=trail-minBytes[length];
        }
        weight=truncateWeight(weight, length-1);
    }
    middle.end=decWeightTrail(weight, middleLength);

    /* set the middle range */
    middle.length=middleLength;
    if(middle.end>=middle.start) {
        middle.count=(int32_t)((middle.end-middle.start)>>(8*(4-middleLength)))+1;
    } else {
        /* no middle range, eliminate overlaps */
        for(int32_t length=4; length>middleLength; --length) {
            if(lower[length].count>0 && upper[length].count>0) {
                // Note: The lowerEnd and upperStart weights are versions of
                // lowerLimit and upperLimit (which are lowerLimit<upperLimit),
                // truncated (still less-or-equal)
                // and then with their last bytes changed to the
                // maxByte (for lowerEnd) or minByte (for upperStart).
                const uint32_t lowerEnd=lower[length].end;
                const uint32_t upperStart=upper[length].start;
                UBool merged=false;

                if(lowerEnd>upperStart) {
                    // These two lower and upper ranges collide.
                    // Since lowerLimit<upperLimit and lowerEnd and upperStart
                    // are versions with only their last bytes modified
                    // (and following ones removed/reset to 0),
                    // lowerEnd>upperStart is only possible
                    // if the leading bytes are equal
                    // and lastByte(lowerEnd)>lastByte(upperStart).
                    U_ASSERT(truncateWeight(lowerEnd, length-1)==
                            truncateWeight(upperStart, length-1));
                    // Intersect these two ranges.
                    lower[length].end=upper[length].end;
                    lower[length].count=
                            (int32_t)getWeightTrail(lower[length].end, length)-
                            (int32_t)getWeightTrail(lower[length].start, length)+1;
                    // count might be <=0 in which case there is no room,
                    // and the range-collecting code below will ignore this range.
                    merged=true;
                } else if(lowerEnd==upperStart) {
                    // Not possible, unless minByte==maxByte which is not allowed.
                    U_ASSERT(minBytes[length]<maxBytes[length]);
                } else /* lowerEnd<upperStart */ {
                    if(incWeight(lowerEnd, length)==upperStart) {
                        // Merge adjacent ranges.
                        lower[length].end=upper[length].end;
                        lower[length].count+=upper[length].count;  // might be >countBytes
                        merged=true;
                    }
                }
                if(merged) {
                    // Remove all shorter ranges.
                    // There was no room available for them between the ranges we just merged.
                    upper[length].count=0;
                    while(--length>middleLength) {
                        lower[length].count=upper[length].count=0;
                    }
                    break;
                }
            }
        }
    }

#ifdef UCOL_DEBUG
    /* print ranges */
    for(int32_t length=4; length>=2; --length) {
        if(lower[length].count>0) {
            printf("lower[%ld] .start=0x%08lx .end=0x%08lx .count=%ld\n", length, lower[length].start, lower[length].end, lower[length].count);
        }
    }
    if(middle.count>0) {
        printf("middle   .start=0x%08lx .end=0x%08lx .count=%ld\n", middle.start, middle.end, middle.count);
    }
    for(int32_t length=2; length<=4; ++length) {
        if(upper[length].count>0) {
            printf("upper[%ld] .start=0x%08lx .end=0x%08lx .count=%ld\n", length, upper[length].start, upper[length].end, upper[length].count);
        }
    }
#endif

    /* copy the ranges, shortest first, into the result array */
    rangeCount=0;
    if(middle.count>0) {
        uprv_memcpy(ranges, &middle, sizeof(WeightRange));
        rangeCount=1;
    }
    for(int32_t length=middleLength+1; length<=4; ++length) {
        /* copy upper first so that later the middle range is more likely the first one to use */
        if(upper[length].count>0) {
            uprv_memcpy(ranges+rangeCount, upper+length, sizeof(WeightRange));
            ++rangeCount;
        }
        if(lower[length].count>0) {
            uprv_memcpy(ranges+rangeCount, lower+length, sizeof(WeightRange));
            ++rangeCount;
        }
    }
    return rangeCount>0;
}

UBool
CollationWeights::allocWeightsInShortRanges(int32_t n, int32_t minLength) {
    // See if the first few minLength and minLength+1 ranges have enough weights.
    for(int32_t i = 0; i < rangeCount && ranges[i].length <= (minLength + 1); ++i) {
        if(n <= ranges[i].count) {
            // Use the first few minLength and minLength+1 ranges.
            if(ranges[i].length > minLength) {
                // Reduce the number of weights from the last minLength+1 range
                // which might sort before some minLength ranges,
                // so that we use all weights in the minLength ranges.
                ranges[i].count = n;
            }
            rangeCount = i + 1;
#ifdef UCOL_DEBUG
            printf("take first %ld ranges\n", rangeCount);
#endif

            if(rangeCount>1) {
                /* sort the ranges by weight values */
                UErrorCode errorCode=U_ZERO_ERROR;
                uprv_sortArray(ranges, rangeCount, sizeof(WeightRange),
                               compareRanges, nullptr, false, &errorCode);
                /* ignore error code: we know that the internal sort function will not fail here */
            }
            return true;
        }
        n -= ranges[i].count;  // still >0
    }
    return false;
}

UBool
CollationWeights::allocWeightsInMinLengthRanges(int32_t n, int32_t minLength) {
    // See if the minLength ranges have enough weights
    // when we split one and lengthen the following ones.
    int32_t count = 0;
    int32_t minLengthRangeCount;
    for(minLengthRangeCount = 0;
            minLengthRangeCount < rangeCount &&
                ranges[minLengthRangeCount].length == minLength;
            ++minLengthRangeCount) {
        count += ranges[minLengthRangeCount].count;
    }

    int32_t nextCountBytes = countBytes(minLength + 1);
    if(n > count * nextCountBytes) { return false; }

    // Use the minLength ranges. Merge them, and then split again as necessary.
    uint32_t start = ranges[0].start;
    uint32_t end = ranges[0].end;
    for(int32_t i = 1; i < minLengthRangeCount; ++i) {
        if(ranges[i].start < start) { start = ranges[i].start; }
        if(ranges[i].end > end) { end = ranges[i].end; }
    }

    // Calculate how to split the range between minLength (count1) and minLength+1 (count2).
    // Goal:
    //   count1 + count2 * nextCountBytes = n
    //   count1 + count2 = count
    // These turn into
    //   (count - count2) + count2 * nextCountBytes = n
    // and then into the following count1 & count2 computations.
    int32_t count2 = (n - count) / (nextCountBytes - 1);  // number of weights to be lengthened
    int32_t count1 = count - count2;  // number of minLength weights
    if(count2 == 0 || (count1 + count2 * nextCountBytes) < n) {
        // round up
        ++count2;
        --count1;
        U_ASSERT((count1 + count2 * nextCountBytes) >= n);
    }

    ranges[0].start = start;

    if(count1 == 0) {
        // Make one long range.
        ranges[0].end = end;
        ranges[0].count = count;
        lengthenRange(ranges[0]);
        rangeCount = 1;
    } else {
        // Split the range, lengthen the second part.
#ifdef UCOL_DEBUG
        printf("split the range number %ld (out of %ld minLength ranges) by %ld:%ld\n",
               splitRange, rangeCount, count1, count2);
#endif

        // Next start = start + count1. First end = 1 before that.
        ranges[0].end = incWeightByOffset(start, minLength, count1 - 1);
        ranges[0].count = count1;

        ranges[1].start = incWeight(ranges[0].end, minLength);
        ranges[1].end = end;
        ranges[1].length = minLength;  // +1 when lengthened
        ranges[1].count = count2;  // *countBytes when lengthened
        lengthenRange(ranges[1]);
        rangeCount = 2;
    }
    return true;
}

/*
 * call getWeightRanges and then determine heuristically
 * which ranges to use for a given number of weights between (excluding)
 * two limits
 */
UBool
CollationWeights::allocWeights(uint32_t lowerLimit, uint32_t upperLimit, int32_t n) {
#ifdef UCOL_DEBUG
    puts("");
#endif

    if(!getWeightRanges(lowerLimit, upperLimit)) {
#ifdef UCOL_DEBUG
        printf("error: unable to get Weight ranges\n");
#endif
        return false;
    }

    /* try until we find suitably large ranges */
    for(;;) {
        /* get the smallest number of bytes in a range */
        int32_t minLength=ranges[0].length;

        if(allocWeightsInShortRanges(n, minLength)) { break; }

        if(minLength == 4) {
#ifdef UCOL_DEBUG
            printf("error: the maximum number of %ld weights is insufficient for n=%ld\n",
                   minLengthCount, n);
#endif
            return false;
        }

        if(allocWeightsInMinLengthRanges(n, minLength)) { break; }

        /* no good match, lengthen all minLength ranges and iterate */
#ifdef UCOL_DEBUG
        printf("lengthen the short ranges from %ld bytes to %ld and iterate\n", minLength, minLength+1);
#endif
        for(int32_t i=0; i<rangeCount && ranges[i].length==minLength; ++i) {
            lengthenRange(ranges[i]);
        }
    }

#ifdef UCOL_DEBUG
    puts("final ranges:");
    for(int32_t i=0; i<rangeCount; ++i) {
        printf("ranges[%ld] .start=0x%08lx .end=0x%08lx .length=%ld .count=%ld\n",
               i, ranges[i].start, ranges[i].end, ranges[i].length, ranges[i].count);
    }
#endif

    rangeIndex = 0;
    return true;
}

uint32_t
CollationWeights::nextWeight() {
    if(rangeIndex >= rangeCount) {
        return 0xffffffff;
    } else {
        /* get the next weight */
        WeightRange &range = ranges[rangeIndex];
        uint32_t weight = range.start;
        if(--range.count == 0) {
            /* this range is finished */
            ++rangeIndex;
        } else {
            /* increment the weight for the next value */
            range.start = incWeight(weight, range.length);
            U_ASSERT(range.start <= range.end);
        }

        return weight;
    }
}

U_NAMESPACE_END

#endif /* #if !UCONFIG_NO_COLLATION */