aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/icu/i18n/astro.cpp
blob: f91f6fe08978c9c948413ca8516ad180c0c4de77 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/************************************************************************
 * Copyright (C) 1996-2012, International Business Machines Corporation
 * and others. All Rights Reserved.
 ************************************************************************
 *  2003-nov-07   srl       Port from Java
 */

#include "astro.h"

#if !UCONFIG_NO_FORMATTING

#include "unicode/calendar.h"
#include <math.h>
#include <float.h>
#include "unicode/putil.h"
#include "uhash.h"
#include "umutex.h"
#include "ucln_in.h"
#include "putilimp.h"
#include <stdio.h>  // for toString()

#if defined (PI) 
#undef PI
#endif

#ifdef U_DEBUG_ASTRO
# include "uresimp.h" // for debugging

static void debug_astro_loc(const char *f, int32_t l)
{
  fprintf(stderr, "%s:%d: ", f, l);
}

static void debug_astro_msg(const char *pat, ...)
{
  va_list ap;
  va_start(ap, pat);
  vfprintf(stderr, pat, ap);
  fflush(stderr);
}
#include "unicode/datefmt.h"
#include "unicode/ustring.h"
static const char * debug_astro_date(UDate d) {
  static char gStrBuf[1024];
  static DateFormat *df = nullptr;
  if(df == nullptr) {
    df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS());
    df->adoptTimeZone(TimeZone::getGMT()->clone());
  }
  UnicodeString str;
  df->format(d,str);
  u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1);
  return gStrBuf;
}

// must use double parens, i.e.:  U_DEBUG_ASTRO_MSG(("four is: %d",4));
#define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;}
#else
#define U_DEBUG_ASTRO_MSG(x)
#endif

static inline UBool isINVALID(double d) {
  return(uprv_isNaN(d));
}

static icu::UMutex ccLock;

U_CDECL_BEGIN
static UBool calendar_astro_cleanup() {
  return true;
}
U_CDECL_END

U_NAMESPACE_BEGIN

/**
 * The number of standard hours in one sidereal day.
 * Approximately 24.93.
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
#define SIDEREAL_DAY (23.93446960027)

/**
 * The number of sidereal hours in one mean solar day.
 * Approximately 24.07.
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
#define SOLAR_DAY  (24.065709816)

/**
 * The average number of solar days from one new moon to the next.  This is the time
 * it takes for the moon to return the same ecliptic longitude as the sun.
 * It is longer than the sidereal month because the sun's longitude increases
 * during the year due to the revolution of the earth around the sun.
 * Approximately 29.53.
 *
 * @see #SIDEREAL_MONTH
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
const double CalendarAstronomer::SYNODIC_MONTH  = 29.530588853;

/**
 * The average number of days it takes
 * for the moon to return to the same ecliptic longitude relative to the
 * stellar background.  This is referred to as the sidereal month.
 * It is shorter than the synodic month due to
 * the revolution of the earth around the sun.
 * Approximately 27.32.
 *
 * @see #SYNODIC_MONTH
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
#define SIDEREAL_MONTH  27.32166

/**
 * The average number number of days between successive vernal equinoxes.
 * Due to the precession of the earth's
 * axis, this is not precisely the same as the sidereal year.
 * Approximately 365.24
 *
 * @see #SIDEREAL_YEAR
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
#define TROPICAL_YEAR  365.242191

/**
 * The average number of days it takes
 * for the sun to return to the same position against the fixed stellar
 * background.  This is the duration of one orbit of the earth about the sun
 * as it would appear to an outside observer.
 * Due to the precession of the earth's
 * axis, this is not precisely the same as the tropical year.
 * Approximately 365.25.
 *
 * @see #TROPICAL_YEAR
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
#define SIDEREAL_YEAR  365.25636

//-------------------------------------------------------------------------
// Time-related constants
//-------------------------------------------------------------------------

/**
 * The number of milliseconds in one second.
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
#define SECOND_MS  U_MILLIS_PER_SECOND

/**
 * The number of milliseconds in one minute.
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
#define MINUTE_MS  U_MILLIS_PER_MINUTE

/**
 * The number of milliseconds in one hour.
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
#define HOUR_MS   U_MILLIS_PER_HOUR

/**
 * The number of milliseconds in one day.
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
#define DAY_MS U_MILLIS_PER_DAY

/**
 * The start of the julian day numbering scheme used by astronomers, which
 * is 1/1/4713 BC (Julian), 12:00 GMT.  This is given as the number of milliseconds
 * since 1/1/1970 AD (Gregorian), a negative number.
 * Note that julian day numbers and
 * the Julian calendar are <em>not</em> the same thing.  Also note that
 * julian days start at <em>noon</em>, not midnight.
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
#define JULIAN_EPOCH_MS  -210866760000000.0


/**
 * Milliseconds value for 0.0 January 2000 AD.
 */
#define EPOCH_2000_MS  946598400000.0

//-------------------------------------------------------------------------
// Assorted private data used for conversions
//-------------------------------------------------------------------------

// My own copies of these so compilers are more likely to optimize them away
const double CalendarAstronomer::PI = 3.14159265358979323846;

#define CalendarAstronomer_PI2  (CalendarAstronomer::PI*2.0)
#define RAD_HOUR  ( 12 / CalendarAstronomer::PI )     // radians -> hours
#define DEG_RAD ( CalendarAstronomer::PI / 180 )      // degrees -> radians
#define RAD_DEG  ( 180 / CalendarAstronomer::PI )     // radians -> degrees

/***
 * Given 'value', add or subtract 'range' until 0 <= 'value' < range.
 * The modulus operator.
 */
inline static double normalize(double value, double range)  {
    return value - range * ClockMath::floorDivide(value, range);
}

/**
 * Normalize an angle so that it's in the range 0 - 2pi.
 * For positive angles this is just (angle % 2pi), but the Java
 * mod operator doesn't work that way for negative numbers....
 */
inline static double norm2PI(double angle)  {
    return normalize(angle, CalendarAstronomer::PI * 2.0);
}

/**
 * Normalize an angle into the range -PI - PI
 */
inline static  double normPI(double angle)  {
    return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI;
}

//-------------------------------------------------------------------------
// Constructors
//-------------------------------------------------------------------------

/**
 * Construct a new <code>CalendarAstronomer</code> object that is initialized to
 * the current date and time.
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
CalendarAstronomer::CalendarAstronomer():
  fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(false) {
  clearCache();
}

/**
 * Construct a new <code>CalendarAstronomer</code> object that is initialized to
 * the specified date and time.
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), moonPosition(0,0), moonPositionSet(false) {
  clearCache();
}

CalendarAstronomer::~CalendarAstronomer()
{
}

//-------------------------------------------------------------------------
// Time and date getters and setters
//-------------------------------------------------------------------------

/**
 * Set the current date and time of this <code>CalendarAstronomer</code> object.  All
 * astronomical calculations are performed based on this time setting.
 *
 * @param aTime the date and time, expressed as the number of milliseconds since
 *              1/1/1970 0:00 GMT (Gregorian).
 *
 * @see #setDate
 * @see #getTime
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
void CalendarAstronomer::setTime(UDate aTime) {
    fTime = aTime;
    clearCache();
}

/**
 * Get the current time of this <code>CalendarAstronomer</code> object,
 * represented as the number of milliseconds since
 * 1/1/1970 AD 0:00 GMT (Gregorian).
 *
 * @see #setTime
 * @see #getDate
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
UDate CalendarAstronomer::getTime() {
    return fTime;
}

/**
 * Get the current time of this <code>CalendarAstronomer</code> object,
 * expressed as a "julian day number", which is the number of elapsed
 * days since 1/1/4713 BC (Julian), 12:00 GMT.
 *
 * @see #setJulianDay
 * @see #JULIAN_EPOCH_MS
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
double CalendarAstronomer::getJulianDay() {
    if (isINVALID(julianDay)) {
        julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS;
    }
    return julianDay;
}

//-------------------------------------------------------------------------
// Coordinate transformations, all based on the current time of this object
//-------------------------------------------------------------------------

/**
 * Convert from ecliptic to equatorial coordinates.
 *
 * @param eclipLong     The ecliptic longitude
 * @param eclipLat      The ecliptic latitude
 *
 * @return              The corresponding point in equatorial coordinates.
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat)
{
    // See page 42 of "Practical Astronomy with your Calculator",
    // by Peter Duffet-Smith, for details on the algorithm.

    double obliq = eclipticObliquity();
    double sinE = ::sin(obliq);
    double cosE = cos(obliq);

    double sinL = ::sin(eclipLong);
    double cosL = cos(eclipLong);

    double sinB = ::sin(eclipLat);
    double cosB = cos(eclipLat);
    double tanB = tan(eclipLat);

    result.set(atan2(sinL*cosE - tanB*sinE, cosL),
        asin(sinB*cosE + cosB*sinE*sinL) );
    return result;
}

//-------------------------------------------------------------------------
// The Sun
//-------------------------------------------------------------------------

//
// Parameters of the Sun's orbit as of the epoch Jan 0.0 1990
// Angles are in radians (after multiplying by CalendarAstronomer::PI/180)
//
#define JD_EPOCH  2447891.5 // Julian day of epoch

#define SUN_ETA_G    (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch
#define SUN_OMEGA_G  (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee
#define SUN_E         0.016713          // Eccentricity of orbit
//double sunR0        1.495585e8        // Semi-major axis in KM
//double sunTheta0    (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0

// The following three methods, which compute the sun parameters
// given above for an arbitrary epoch (whatever time the object is
// set to), make only a small difference as compared to using the
// above constants.  E.g., Sunset times might differ by ~12
// seconds.  Furthermore, the eta-g computation is befuddled by
// Duffet-Smith's incorrect coefficients (p.86).  I've corrected
// the first-order coefficient but the others may be off too - no
// way of knowing without consulting another source.

//  /**
//   * Return the sun's ecliptic longitude at perigee for the current time.
//   * See Duffett-Smith, p. 86.
//   * @return radians
//   */
//  private double getSunOmegaG() {
//      double T = getJulianCentury();
//      return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD;
//  }

//  /**
//   * Return the sun's ecliptic longitude for the current time.
//   * See Duffett-Smith, p. 86.
//   * @return radians
//   */
//  private double getSunEtaG() {
//      double T = getJulianCentury();
//      //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD;
//      //
//      // The above line is from Duffett-Smith, and yields manifestly wrong
//      // results.  The below constant is derived empirically to match the
//      // constant he gives for the 1990 EPOCH.
//      //
//      return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD;
//  }

//  /**
//   * Return the sun's eccentricity of orbit for the current time.
//   * See Duffett-Smith, p. 86.
//   * @return double
//   */
//  private double getSunE() {
//      double T = getJulianCentury();
//      return 0.01675104 - (0.0000418 + 0.000000126*T)*T;
//  }

/**
 * Find the "true anomaly" (longitude) of an object from
 * its mean anomaly and the eccentricity of its orbit.  This uses
 * an iterative solution to Kepler's equation.
 *
 * @param meanAnomaly   The object's longitude calculated as if it were in
 *                      a regular, circular orbit, measured in radians
 *                      from the point of perigee.
 *
 * @param eccentricity  The eccentricity of the orbit
 *
 * @return The true anomaly (longitude) measured in radians
 */
static double trueAnomaly(double meanAnomaly, double eccentricity)
{
    // First, solve Kepler's equation iteratively
    // Duffett-Smith, p.90
    double delta;
    double E = meanAnomaly;
    do {
        delta = E - eccentricity * ::sin(E) - meanAnomaly;
        E = E - delta / (1 - eccentricity * ::cos(E));
    }
    while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad

    return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity)
                                             /(1-eccentricity) ) );
}

/**
 * The longitude of the sun at the time specified by this object.
 * The longitude is measured in radians along the ecliptic
 * from the "first point of Aries," the point at which the ecliptic
 * crosses the earth's equatorial plane at the vernal equinox.
 * <p>
 * Currently, this method uses an approximation of the two-body Kepler's
 * equation for the earth and the sun.  It does not take into account the
 * perturbations caused by the other planets, the moon, etc.
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
double CalendarAstronomer::getSunLongitude()
{
    // See page 86 of "Practical Astronomy with your Calculator",
    // by Peter Duffet-Smith, for details on the algorithm.

    if (isINVALID(sunLongitude)) {
        getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun);
    }
    return sunLongitude;
}

/**
 * TODO Make this public when the entire class is package-private.
 */
/*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly)
{
    // See page 86 of "Practical Astronomy with your Calculator",
    // by Peter Duffet-Smith, for details on the algorithm.

    double day = jDay - JD_EPOCH;       // Days since epoch

    // Find the angular distance the sun in a fictitious
    // circular orbit has travelled since the epoch.
    double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day);

    // The epoch wasn't at the sun's perigee; find the angular distance
    // since perigee, which is called the "mean anomaly"
    meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G);

    // Now find the "true anomaly", e.g. the real solar longitude
    // by solving Kepler's equation for an elliptical orbit
    // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different
    // equations; omega_g is to be correct.
    longitude =  norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G);
}

/**
 * Constant representing the winter solstice.
 * For use with {@link #getSunTime getSunTime}.
 * Note: In this case, "winter" refers to the northern hemisphere's seasons.
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
double CalendarAstronomer::WINTER_SOLSTICE() {
    return  ((CalendarAstronomer::PI*3)/2);
}

CalendarAstronomer::AngleFunc::~AngleFunc() {}

/**
 * Find the next time at which the sun's ecliptic longitude will have
 * the desired value.
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc {
public:
    virtual ~SunTimeAngleFunc();
    virtual double eval(CalendarAstronomer& a) override { return a.getSunLongitude(); }
};

SunTimeAngleFunc::~SunTimeAngleFunc() {}

UDate CalendarAstronomer::getSunTime(double desired, UBool next)
{
    SunTimeAngleFunc func;
    return timeOfAngle( func,
                        desired,
                        TROPICAL_YEAR,
                        MINUTE_MS,
                        next);
}

//-------------------------------------------------------------------------
// The Moon
//-------------------------------------------------------------------------

#define moonL0  (318.351648 * CalendarAstronomer::PI/180 )   // Mean long. at epoch
#define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 )   // Mean long. of perigee
#define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 )   // Mean long. of node
#define moonI  (   5.145366 * CalendarAstronomer::PI/180 )   // Inclination of orbit
#define moonE  (   0.054900 )            // Eccentricity of orbit

// These aren't used right now
#define moonA  (   3.84401e5 )           // semi-major axis (km)
#define moonT0 (   0.5181 * CalendarAstronomer::PI/180 )     // Angular size at distance A
#define moonPi (   0.9507 * CalendarAstronomer::PI/180 )     // Parallax at distance A

/**
 * The position of the moon at the time set on this
 * object, in equatorial coordinates.
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
{
    //
    // See page 142 of "Practical Astronomy with your Calculator",
    // by Peter Duffet-Smith, for details on the algorithm.
    //
    if (moonPositionSet == false) {
        // Calculate the solar longitude.  Has the side effect of
        // filling in "meanAnomalySun" as well.
        getSunLongitude();

        //
        // Find the # of days since the epoch of our orbital parameters.
        // TODO: Convert the time of day portion into ephemeris time
        //
        double day = getJulianDay() - JD_EPOCH;       // Days since epoch

        // Calculate the mean longitude and anomaly of the moon, based on
        // a circular orbit.  Similar to the corresponding solar calculation.
        double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0);
        double meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);

        //
        // Calculate the following corrections:
        //  Evection:   the sun's gravity affects the moon's eccentricity
        //  Annual Eqn: variation in the effect due to earth-sun distance
        //  A3:         correction factor (for ???)
        //
        double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude)
            - meanAnomalyMoon);
        double annual   = 0.1858*PI/180 * ::sin(meanAnomalySun);
        double a3       = 0.3700*PI/180 * ::sin(meanAnomalySun);

        meanAnomalyMoon += evection - annual - a3;

        //
        // More correction factors:
        //  center  equation of the center correction
        //  a4      yet another error correction (???)
        //
        // TODO: Skip the equation of the center correction and solve Kepler's eqn?
        //
        double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon);
        double a4 =     0.2140*PI/180 * ::sin(2 * meanAnomalyMoon);

        // Now find the moon's corrected longitude
        double moonLongitude = meanLongitude + evection + center - annual + a4;

        //
        // And finally, find the variation, caused by the fact that the sun's
        // gravitational pull on the moon varies depending on which side of
        // the earth the moon is on
        //
        double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude));

        moonLongitude += variation;

        //
        // What we've calculated so far is the moon's longitude in the plane
        // of its own orbit.  Now map to the ecliptic to get the latitude
        // and longitude.  First we need to find the longitude of the ascending
        // node, the position on the ecliptic where it is crossed by the moon's
        // orbit as it crosses from the southern to the northern hemisphere.
        //
        double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day);

        nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun);

        double y = ::sin(moonLongitude - nodeLongitude);
        double x = cos(moonLongitude - nodeLongitude);

        moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude;
        double moonEclipLat = ::asin(y * ::sin(moonI));

        eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat);
        moonPositionSet = true;
    }
    return moonPosition;
}

/**
 * The "age" of the moon at the time specified in this object.
 * This is really the angle between the
 * current ecliptic longitudes of the sun and the moon,
 * measured in radians.
 *
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
double CalendarAstronomer::getMoonAge() {
    // See page 147 of "Practical Astronomy with your Calculator",
    // by Peter Duffet-Smith, for details on the algorithm.
    //
    // Force the moon's position to be calculated.  We're going to use
    // some the intermediate results cached during that calculation.
    //
    getMoonPosition();

    return norm2PI(moonEclipLong - sunLongitude);
}

/**
 * Constant representing a new moon.
 * For use with {@link #getMoonTime getMoonTime}
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() {
    return  CalendarAstronomer::MoonAge(0);
}

/**
 * Constant representing the moon's last quarter.
 * For use with {@link #getMoonTime getMoonTime}
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */

class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc {
public:
    virtual ~MoonTimeAngleFunc();
    virtual double eval(CalendarAstronomer& a) override { return a.getMoonAge(); }
};

MoonTimeAngleFunc::~MoonTimeAngleFunc() {}

/*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() {
  return  CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
}*/

/**
 * Find the next or previous time at which the moon will be in the
 * desired phase.
 * <p>
 * @param desired   The desired phase of the moon.
 * @param next      <tt>true</tt> if the next occurrence of the phase
 *                  is desired, <tt>false</tt> for the previous occurrence.
 * @internal
 * @deprecated ICU 2.4. This class may be removed or modified.
 */
UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) {
    MoonTimeAngleFunc func;
    return timeOfAngle( func,
                        desired.value,
                        SYNODIC_MONTH,
                        MINUTE_MS,
                        next);
}

//-------------------------------------------------------------------------
// Interpolation methods for finding the time at which a given event occurs
//-------------------------------------------------------------------------

UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired,
                                      double periodDays, double epsilon, UBool next)
{
    // Find the value of the function at the current time
    double lastAngle = func.eval(*this);

    // Find out how far we are from the desired angle
    double deltaAngle = norm2PI(desired - lastAngle) ;

    // Using the average period, estimate the next (or previous) time at
    // which the desired angle occurs.
    double deltaT =  (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2;

    double lastDeltaT = deltaT; // Liu
    UDate startTime = fTime; // Liu

    setTime(fTime + uprv_ceil(deltaT));

    // Now iterate until we get the error below epsilon.  Throughout
    // this loop we use normPI to get values in the range -Pi to Pi,
    // since we're using them as correction factors rather than absolute angles.
    do {
        // Evaluate the function at the time we've estimated
        double angle = func.eval(*this);

        // Find the # of milliseconds per radian at this point on the curve
        double factor = uprv_fabs(deltaT / normPI(angle-lastAngle));

        // Correct the time estimate based on how far off the angle is
        deltaT = normPI(desired - angle) * factor;

        // HACK:
        //
        // If abs(deltaT) begins to diverge we need to quit this loop.
        // This only appears to happen when attempting to locate, for
        // example, a new moon on the day of the new moon.  E.g.:
        //
        // This result is correct:
        // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))=
        //   Sun Jul 22 10:57:41 CST 1990
        //
        // But attempting to make the same call a day earlier causes deltaT
        // to diverge:
        // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 ->
        //   1.3649828540224032E9
        // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))=
        //   Sun Jul 08 13:56:15 CST 1990
        //
        // As a temporary solution, we catch this specific condition and
        // adjust our start time by one eighth period days (either forward
        // or backward) and try again.
        // Liu 11/9/00
        if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) {
            double delta = uprv_ceil (periodDays * DAY_MS / 8.0);
            setTime(startTime + (next ? delta : -delta));
            return timeOfAngle(func, desired, periodDays, epsilon, next);
        }

        lastDeltaT = deltaT;
        lastAngle = angle;

        setTime(fTime + uprv_ceil(deltaT));
    }
    while (uprv_fabs(deltaT) > epsilon);

    return fTime;
}

/**
 * Return the obliquity of the ecliptic (the angle between the ecliptic
 * and the earth's equator) at the current time.  This varies due to
 * the precession of the earth's axis.
 *
 * @return  the obliquity of the ecliptic relative to the equator,
 *          measured in radians.
 */
double CalendarAstronomer::eclipticObliquity() {
    const double epoch = 2451545.0;     // 2000 AD, January 1.5

    double T = (getJulianDay() - epoch) / 36525;

    double eclipObliquity = 23.439292
        - 46.815/3600 * T
        - 0.0006/3600 * T*T
        + 0.00181/3600 * T*T*T;

    return eclipObliquity * DEG_RAD;
}


//-------------------------------------------------------------------------
// Private data
//-------------------------------------------------------------------------
void CalendarAstronomer::clearCache() {
    const double INVALID = uprv_getNaN();

    julianDay       = INVALID;
    sunLongitude    = INVALID;
    meanAnomalySun  = INVALID;
    moonEclipLong   = INVALID;

    moonPositionSet = false;
}

// Debugging functions
UnicodeString CalendarAstronomer::Ecliptic::toString() const
{
#ifdef U_DEBUG_ASTRO
    char tmp[800];
    snprintf(tmp, sizeof(tmp), "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG);
    return UnicodeString(tmp, "");
#else
    return {};
#endif
}

UnicodeString CalendarAstronomer::Equatorial::toString() const
{
#ifdef U_DEBUG_ASTRO
    char tmp[400];
    snprintf(tmp, sizeof(tmp), "%f,%f",
        (ascension*RAD_DEG), (declination*RAD_DEG));
    return UnicodeString(tmp, "");
#else
    return {};
#endif
}


// =============== Calendar Cache ================

void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) {
    ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup);
    if(cache == nullptr) {
        status = U_MEMORY_ALLOCATION_ERROR;
    } else {
        *cache = new CalendarCache(32, status);
        if(U_FAILURE(status)) {
            delete *cache;
            *cache = nullptr;
        }
    }
}

int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) {
    int32_t res;

    if(U_FAILURE(status)) {
        return 0;
    }
    umtx_lock(&ccLock);

    if(*cache == nullptr) {
        createCache(cache, status);
        if(U_FAILURE(status)) {
            umtx_unlock(&ccLock);
            return 0;
        }
    }

    res = uhash_igeti((*cache)->fTable, key);
    U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res));

    umtx_unlock(&ccLock);
    return res;
}

void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) {
    if(U_FAILURE(status)) {
        return;
    }
    umtx_lock(&ccLock);

    if(*cache == nullptr) {
        createCache(cache, status);
        if(U_FAILURE(status)) {
            umtx_unlock(&ccLock);
            return;
        }
    }

    uhash_iputi((*cache)->fTable, key, value, &status);
    U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value));

    umtx_unlock(&ccLock);
}

CalendarCache::CalendarCache(int32_t size, UErrorCode &status) {
    fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, nullptr, size, &status);
    U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable));
}

CalendarCache::~CalendarCache() {
    if(fTable != nullptr) {
        U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable));
        uhash_close(fTable);
    }
}

U_NAMESPACE_END

#endif //  !UCONFIG_NO_FORMATTING