1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
* Copyright (C) 1999-2015, International Business Machines Corporation and
* others. All Rights Reserved.
******************************************************************************
*/
#include "uvectr64.h"
#include "cmemory.h"
#include "putilimp.h"
U_NAMESPACE_BEGIN
#define DEFAULT_CAPACITY 8
/*
* Constants for hinting whether a key is an integer
* or a pointer. If a hint bit is zero, then the associated
* token is assumed to be an integer. This is needed for iSeries
*/
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(UVector64)
UVector64::UVector64(UErrorCode &status) :
count(0),
capacity(0),
maxCapacity(0),
elements(NULL)
{
_init(DEFAULT_CAPACITY, status);
}
UVector64::UVector64(int32_t initialCapacity, UErrorCode &status) :
count(0),
capacity(0),
maxCapacity(0),
elements(0)
{
_init(initialCapacity, status);
}
void UVector64::_init(int32_t initialCapacity, UErrorCode &status) {
// Fix bogus initialCapacity values; avoid malloc(0)
if (initialCapacity < 1) {
initialCapacity = DEFAULT_CAPACITY;
}
if (maxCapacity>0 && maxCapacity<initialCapacity) {
initialCapacity = maxCapacity;
}
if (initialCapacity > (int32_t)(INT32_MAX / sizeof(int64_t))) {
initialCapacity = uprv_min(DEFAULT_CAPACITY, maxCapacity);
}
elements = (int64_t *)uprv_malloc(sizeof(int64_t)*initialCapacity);
if (elements == 0) {
status = U_MEMORY_ALLOCATION_ERROR;
} else {
capacity = initialCapacity;
}
}
UVector64::~UVector64() {
uprv_free(elements);
elements = 0;
}
/**
* Assign this object to another (make this a copy of 'other').
*/
void UVector64::assign(const UVector64& other, UErrorCode &ec) {
if (ensureCapacity(other.count, ec)) {
setSize(other.count);
for (int32_t i=0; i<other.count; ++i) {
elements[i] = other.elements[i];
}
}
}
UBool UVector64::operator==(const UVector64& other) {
int32_t i;
if (count != other.count) return FALSE;
for (i=0; i<count; ++i) {
if (elements[i] != other.elements[i]) {
return FALSE;
}
}
return TRUE;
}
void UVector64::setElementAt(int64_t elem, int32_t index) {
if (0 <= index && index < count) {
elements[index] = elem;
}
/* else index out of range */
}
void UVector64::insertElementAt(int64_t elem, int32_t index, UErrorCode &status) {
// must have 0 <= index <= count
if (0 <= index && index <= count && ensureCapacity(count + 1, status)) {
for (int32_t i=count; i>index; --i) {
elements[i] = elements[i-1];
}
elements[index] = elem;
++count;
}
/* else index out of range */
}
void UVector64::removeAllElements(void) {
count = 0;
}
UBool UVector64::expandCapacity(int32_t minimumCapacity, UErrorCode &status) {
if (U_FAILURE(status)) {
return FALSE;
}
if (minimumCapacity < 0) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return FALSE;
}
if (capacity >= minimumCapacity) {
return TRUE;
}
if (maxCapacity>0 && minimumCapacity>maxCapacity) {
status = U_BUFFER_OVERFLOW_ERROR;
return FALSE;
}
if (capacity > (INT32_MAX - 1) / 2) { // integer overflow check
status = U_ILLEGAL_ARGUMENT_ERROR;
return FALSE;
}
int32_t newCap = capacity * 2;
if (newCap < minimumCapacity) {
newCap = minimumCapacity;
}
if (maxCapacity > 0 && newCap > maxCapacity) {
newCap = maxCapacity;
}
if (newCap > (int32_t)(INT32_MAX / sizeof(int64_t))) { // integer overflow check
// We keep the original memory contents on bad minimumCapacity/maxCapacity.
status = U_ILLEGAL_ARGUMENT_ERROR;
return FALSE;
}
int64_t* newElems = (int64_t *)uprv_realloc(elements, sizeof(int64_t)*newCap);
if (newElems == NULL) {
// We keep the original contents on the memory failure on realloc.
status = U_MEMORY_ALLOCATION_ERROR;
return FALSE;
}
elements = newElems;
capacity = newCap;
return TRUE;
}
void UVector64::setMaxCapacity(int32_t limit) {
U_ASSERT(limit >= 0);
if (limit < 0) {
limit = 0;
}
if (limit > (int32_t)(INT32_MAX / sizeof(int64_t))) { // integer overflow check for realloc
// Something is very wrong, don't realloc, leave capacity and maxCapacity unchanged
return;
}
maxCapacity = limit;
if (capacity <= maxCapacity || maxCapacity == 0) {
// Current capacity is within the new limit.
return;
}
// New maximum capacity is smaller than the current size.
// Realloc the storage to the new, smaller size.
int64_t* newElems = (int64_t *)uprv_realloc(elements, sizeof(int64_t)*maxCapacity);
if (newElems == NULL) {
// Realloc to smaller failed.
// Just keep what we had. No need to call it a failure.
return;
}
elements = newElems;
capacity = maxCapacity;
if (count > capacity) {
count = capacity;
}
}
/**
* Change the size of this vector as follows: If newSize is smaller,
* then truncate the array, possibly deleting held elements for i >=
* newSize. If newSize is larger, grow the array, filling in new
* slots with NULL.
*/
void UVector64::setSize(int32_t newSize) {
int32_t i;
if (newSize < 0) {
return;
}
if (newSize > count) {
UErrorCode ec = U_ZERO_ERROR;
if (!ensureCapacity(newSize, ec)) {
return;
}
for (i=count; i<newSize; ++i) {
elements[i] = 0;
}
}
count = newSize;
}
U_NAMESPACE_END
|