aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/icu/common/uvector.cpp
blob: 4da8b864e1be340a165528920f1700a8867009e7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
* Copyright (C) 1999-2013, International Business Machines Corporation and
* others. All Rights Reserved.
******************************************************************************
*   Date        Name        Description
*   10/22/99    alan        Creation.
**********************************************************************
*/

#include "uvector.h"
#include "cmemory.h"
#include "uarrsort.h"
#include "uelement.h"

U_NAMESPACE_BEGIN

constexpr int32_t DEFAULT_CAPACITY = 8;

/*
 * Constants for hinting whether a key is an integer
 * or a pointer.  If a hint bit is zero, then the associated
 * token is assumed to be an integer. This is needed for iSeries
 */
constexpr int8_t HINT_KEY_POINTER = 1;
constexpr int8_t HINT_KEY_INTEGER = 0;
 
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(UVector)

UVector::UVector(UErrorCode &status) :
        UVector(nullptr, nullptr, DEFAULT_CAPACITY, status) {
}

UVector::UVector(int32_t initialCapacity, UErrorCode &status) :
        UVector(nullptr, nullptr, initialCapacity, status) {
}

UVector::UVector(UObjectDeleter *d, UElementsAreEqual *c, UErrorCode &status) :
        UVector(d, c, DEFAULT_CAPACITY, status) {
}

UVector::UVector(UObjectDeleter *d, UElementsAreEqual *c, int32_t initialCapacity, UErrorCode &status) :
    deleter(d),
    comparer(c)
{
    if (U_FAILURE(status)) {
        return;
    }
    // Fix bogus initialCapacity values; avoid malloc(0) and integer overflow
    if ((initialCapacity < 1) || (initialCapacity > (int32_t)(INT32_MAX / sizeof(UElement)))) {
        initialCapacity = DEFAULT_CAPACITY;
    }
    elements = (UElement *)uprv_malloc(sizeof(UElement)*initialCapacity);
    if (elements == nullptr) {
        status = U_MEMORY_ALLOCATION_ERROR;
    } else {
        capacity = initialCapacity;
    }
}

UVector::~UVector() {
    removeAllElements();
    uprv_free(elements);
    elements = nullptr;
}

/**
 * Assign this object to another (make this a copy of 'other').
 * Use the 'assign' function to assign each element.
 */
void UVector::assign(const UVector& other, UElementAssigner *assign, UErrorCode &ec) {
    if (ensureCapacity(other.count, ec)) {
        setSize(other.count, ec);
        if (U_SUCCESS(ec)) {
            for (int32_t i=0; i<other.count; ++i) {
                if (elements[i].pointer != nullptr && deleter != nullptr) {
                    (*deleter)(elements[i].pointer);
                }
                (*assign)(&elements[i], &other.elements[i]);
            }
        }
    }
}

// This only does something sensible if this object has a non-null comparer
bool UVector::operator==(const UVector& other) const {
    U_ASSERT(comparer != nullptr);
    if (count != other.count) return false;
    if (comparer != nullptr) {
        // Compare using this object's comparer
        for (int32_t i=0; i<count; ++i) {
            if (!(*comparer)(elements[i], other.elements[i])) {
                return false;
            }
        }
    }
    return true;
}

// TODO: delete this function once all call sites have been migrated to the
//       new addElement().
void UVector::addElementX(void* obj, UErrorCode &status) {
    if (ensureCapacityX(count + 1, status)) {
        elements[count++].pointer = obj;
    }
}

void UVector::addElement(void* obj, UErrorCode &status) {
    U_ASSERT(deleter == nullptr);
    if (ensureCapacity(count + 1, status)) {
        elements[count++].pointer = obj;
    }
}

void UVector::adoptElement(void* obj, UErrorCode &status) {
    U_ASSERT(deleter != nullptr);
    if (ensureCapacity(count + 1, status)) {
        elements[count++].pointer = obj;
    } else {
        (*deleter)(obj);
    }
}
void UVector::addElement(int32_t elem, UErrorCode &status) {
    U_ASSERT(deleter == nullptr);  // Usage error. Mixing up ints and pointers.
    if (ensureCapacity(count + 1, status)) {
        elements[count].pointer = nullptr;     // Pointers may be bigger than ints.
        elements[count].integer = elem;
        count++;
    }
}

void UVector::setElementAt(void* obj, int32_t index) {
    if (0 <= index && index < count) {
        if (elements[index].pointer != nullptr && deleter != nullptr) {
            (*deleter)(elements[index].pointer);
        }
        elements[index].pointer = obj;
    } else {
        /* index out of range */
        if (deleter != nullptr) {
            (*deleter)(obj);
        }
    }
}

void UVector::setElementAt(int32_t elem, int32_t index) {
    U_ASSERT(deleter == nullptr);  // Usage error. Mixing up ints and pointers.
    if (0 <= index && index < count) {
        elements[index].pointer = nullptr;
        elements[index].integer = elem;
    }
    /* else index out of range */
}

void UVector::insertElementAt(void* obj, int32_t index, UErrorCode &status) {
    if (ensureCapacity(count + 1, status)) {
        if (0 <= index && index <= count) {
            for (int32_t i=count; i>index; --i) {
                elements[i] = elements[i-1];
            }
            elements[index].pointer = obj;
            ++count;
        } else {
            /* index out of range */
            status = U_ILLEGAL_ARGUMENT_ERROR;
        }
    }
    if (U_FAILURE(status) && deleter != nullptr) {
        (*deleter)(obj);
    }
}

void UVector::insertElementAt(int32_t elem, int32_t index, UErrorCode &status) {
    U_ASSERT(deleter == nullptr);  // Usage error. Mixing up ints and pointers.
    // must have 0 <= index <= count
    if (ensureCapacity(count + 1, status)) {
        if (0 <= index && index <= count) {
            for (int32_t i=count; i>index; --i) {
                elements[i] = elements[i-1];
            }
            elements[index].pointer = nullptr;
            elements[index].integer = elem;
            ++count;
        } else {
            /* index out of range */
            status = U_ILLEGAL_ARGUMENT_ERROR;
        }
    }
}

void* UVector::elementAt(int32_t index) const {
    return (0 <= index && index < count) ? elements[index].pointer : 0;
}

int32_t UVector::elementAti(int32_t index) const {
    return (0 <= index && index < count) ? elements[index].integer : 0;
}

UBool UVector::containsAll(const UVector& other) const {
    for (int32_t i=0; i<other.size(); ++i) {
        if (indexOf(other.elements[i]) < 0) {
            return FALSE;
        }
    }
    return TRUE;
}

UBool UVector::containsNone(const UVector& other) const {
    for (int32_t i=0; i<other.size(); ++i) {
        if (indexOf(other.elements[i]) >= 0) {
            return FALSE;
        }
    }
    return TRUE;
}

UBool UVector::removeAll(const UVector& other) {
    UBool changed = FALSE;
    for (int32_t i=0; i<other.size(); ++i) {
        int32_t j = indexOf(other.elements[i]);
        if (j >= 0) {
            removeElementAt(j);
            changed = TRUE;
        }
    }
    return changed;
}

UBool UVector::retainAll(const UVector& other) {
    UBool changed = FALSE;
    for (int32_t j=size()-1; j>=0; --j) {
        int32_t i = other.indexOf(elements[j]);
        if (i < 0) {
            removeElementAt(j);
            changed = TRUE;
        }
    }
    return changed;
}

void UVector::removeElementAt(int32_t index) {
    void* e = orphanElementAt(index);
    if (e != nullptr && deleter != nullptr) {
        (*deleter)(e);
    }
}

UBool UVector::removeElement(void* obj) {
    int32_t i = indexOf(obj);
    if (i >= 0) {
        removeElementAt(i);
        return TRUE;
    }
    return FALSE;
}

void UVector::removeAllElements(void) {
    if (deleter != nullptr) {
        for (int32_t i=0; i<count; ++i) {
            if (elements[i].pointer != nullptr) {
                (*deleter)(elements[i].pointer);
            }
        }
    }
    count = 0;
}

UBool   UVector::equals(const UVector &other) const {
    int      i;

    if (this->count != other.count) {
        return FALSE;
    }
    if (comparer == nullptr) {
        for (i=0; i<count; i++) {
            if (elements[i].pointer != other.elements[i].pointer) {
                return FALSE;
            }
        }
    } else {
        UElement key;
        for (i=0; i<count; i++) {
            key.pointer = &other.elements[i];
            if (!(*comparer)(key, elements[i])) {
                return FALSE;
            }
        }
    }
    return TRUE;
}



int32_t UVector::indexOf(void* obj, int32_t startIndex) const {
    UElement key;
    key.pointer = obj;
    return indexOf(key, startIndex, HINT_KEY_POINTER);
}

int32_t UVector::indexOf(int32_t obj, int32_t startIndex) const {
    UElement key;
    key.integer = obj;
    return indexOf(key, startIndex, HINT_KEY_INTEGER);
}

int32_t UVector::indexOf(UElement key, int32_t startIndex, int8_t hint) const {
    if (comparer != nullptr) {
        for (int32_t i=startIndex; i<count; ++i) {
            if ((*comparer)(key, elements[i])) {
                return i;
            }
        }
    } else {
        for (int32_t i=startIndex; i<count; ++i) {
            /* Pointers are not always the same size as ints so to perform
             * a valid comparison we need to know whether we are being
             * provided an int or a pointer. */
            if (hint & HINT_KEY_POINTER) {
                if (key.pointer == elements[i].pointer) {
                    return i;
                }
            } else {
                if (key.integer == elements[i].integer) {
                    return i;
                }
            }
        }
    }
    return -1;
}

UBool UVector::ensureCapacityX(int32_t minimumCapacity, UErrorCode &status) {
    if (minimumCapacity < 0) {
        status = U_ILLEGAL_ARGUMENT_ERROR;
        return FALSE;
	}
    if (capacity < minimumCapacity) {
        if (capacity > (INT32_MAX - 1) / 2) {        	// integer overflow check
        	status = U_ILLEGAL_ARGUMENT_ERROR;
        	return FALSE;
        }
        int32_t newCap = capacity * 2;
        if (newCap < minimumCapacity) {
            newCap = minimumCapacity;
        }
        if (newCap > (int32_t)(INT32_MAX / sizeof(UElement))) {	// integer overflow check
        	// We keep the original memory contents on bad minimumCapacity.
        	status = U_ILLEGAL_ARGUMENT_ERROR;
        	return FALSE;
        }
        UElement* newElems = (UElement *)uprv_realloc(elements, sizeof(UElement)*newCap);
        if (newElems == nullptr) {
            // We keep the original contents on the memory failure on realloc or bad minimumCapacity.
            status = U_MEMORY_ALLOCATION_ERROR;
            return FALSE;
        }
        elements = newElems;
        capacity = newCap;
    }
    return TRUE;
}


UBool UVector::ensureCapacity(int32_t minimumCapacity, UErrorCode &status) {
    if (U_FAILURE(status)) {
        return false;
    }
    if (minimumCapacity < 0) {
        status = U_ILLEGAL_ARGUMENT_ERROR;
        return false;
	}
    if (capacity < minimumCapacity) {
        if (capacity > (INT32_MAX - 1) / 2) {        	// integer overflow check
            status = U_ILLEGAL_ARGUMENT_ERROR;
            return false;
        }
        int32_t newCap = capacity * 2;
        if (newCap < minimumCapacity) {
            newCap = minimumCapacity;
        }
        if (newCap > (int32_t)(INT32_MAX / sizeof(UElement))) {	// integer overflow check
            // We keep the original memory contents on bad minimumCapacity.
            status = U_ILLEGAL_ARGUMENT_ERROR;
            return false;
        }
        UElement* newElems = (UElement *)uprv_realloc(elements, sizeof(UElement)*newCap);
        if (newElems == nullptr) {
            // We keep the original contents on the memory failure on realloc or bad minimumCapacity.
            status = U_MEMORY_ALLOCATION_ERROR;
            return false;
        }
        elements = newElems;
        capacity = newCap;
    }
    return true;
}
/**
 * Change the size of this vector as follows: If newSize is smaller,
 * then truncate the array, possibly deleting held elements for i >=
 * newSize.  If newSize is larger, grow the array, filling in new
 * slots with nullptr.
 */
void UVector::setSize(int32_t newSize, UErrorCode &status) {
    if (!ensureCapacity(newSize, status)) {
        return;
    }
    if (newSize > count) {
        UElement empty;
        empty.pointer = nullptr;
        empty.integer = 0;
        for (int32_t i=count; i<newSize; ++i) {
            elements[i] = empty;
        }
    } else {
        /* Most efficient to count down */
        for (int32_t i=count-1; i>=newSize; --i) {
            removeElementAt(i);
        }
    }
    count = newSize;
}

/**
 * Fill in the given array with all elements of this vector.
 */
void** UVector::toArray(void** result) const {
    void** a = result;
    for (int i=0; i<count; ++i) {
        *a++ = elements[i].pointer;
    }
    return result;
}

UObjectDeleter *UVector::setDeleter(UObjectDeleter *d) {
    UObjectDeleter *old = deleter;
    deleter = d;
    return old;
}

UElementsAreEqual *UVector::setComparer(UElementsAreEqual *d) {
    UElementsAreEqual *old = comparer;
    comparer = d;
    return old;
}

/**
 * Removes the element at the given index from this vector and
 * transfer ownership of it to the caller.  After this call, the
 * caller owns the result and must delete it and the vector entry
 * at 'index' is removed, shifting all subsequent entries back by
 * one index and shortening the size of the vector by one.  If the
 * index is out of range or if there is no item at the given index
 * then 0 is returned and the vector is unchanged.
 */
void* UVector::orphanElementAt(int32_t index) {
    void* e = nullptr;
    if (0 <= index && index < count) {
        e = elements[index].pointer;
        for (int32_t i=index; i<count-1; ++i) {
            elements[i] = elements[i+1];
        }
        --count;
    }
    /* else index out of range */
    return e;
}

/**
 * Insert the given object into this vector at its sorted position
 * as defined by 'compare'.  The current elements are assumed to
 * be sorted already.
 */
void UVector::sortedInsert(void* obj, UElementComparator *compare, UErrorCode& ec) {
    UElement e;
    e.pointer = obj;
    sortedInsert(e, compare, ec);
}

/**
 * Insert the given integer into this vector at its sorted position
 * as defined by 'compare'.  The current elements are assumed to
 * be sorted already.
 */
void UVector::sortedInsert(int32_t obj, UElementComparator *compare, UErrorCode& ec) {
    U_ASSERT(deleter == nullptr);
    UElement e {};
    e.integer = obj;
    sortedInsert(e, compare, ec);
}

// ASSUME elements[] IS CURRENTLY SORTED
void UVector::sortedInsert(UElement e, UElementComparator *compare, UErrorCode& ec) {
    // Perform a binary search for the location to insert tok at.  Tok
    // will be inserted between two elements a and b such that a <=
    // tok && tok < b, where there is a 'virtual' elements[-1] always
    // less than tok and a 'virtual' elements[count] always greater
    // than tok.
    if (!ensureCapacity(count + 1, ec)) {
        if (deleter != nullptr) {
            (*deleter)(e.pointer);
        }
        return;
    }
    int32_t min = 0, max = count;
    while (min != max) {
        int32_t probe = (min + max) / 2;
        int32_t c = (*compare)(elements[probe], e);
        if (c > 0) {
            max = probe;
        } else {
            // assert(c <= 0);
            min = probe + 1;
        }
    }
    for (int32_t i=count; i>min; --i) {
        elements[i] = elements[i-1];
    }
    elements[min] = e;
    ++count;
}

/**
  *  Array sort comparator function.
  *  Used from UVector::sort()
  *  Conforms to function signature required for uprv_sortArray().
  *  This function is essentially just a wrapper, to make a
  *  UVector style comparator function usable with uprv_sortArray().
  *
  *  The context pointer to this function is a pointer back
  *  (with some extra indirection) to the user supplied comparator.
  *  
  */
static int32_t U_CALLCONV
sortComparator(const void *context, const void *left, const void *right) {
    UElementComparator *compare = *static_cast<UElementComparator * const *>(context);
    UElement e1 = *static_cast<const UElement *>(left);
    UElement e2 = *static_cast<const UElement *>(right);
    int32_t result = (*compare)(e1, e2);
    return result;
}


/**
  *  Array sort comparison function for use from UVector::sorti()
  *  Compares int32_t vector elements.
  */
static int32_t U_CALLCONV
sortiComparator(const void * /*context */, const void *left, const void *right) {
    const UElement *e1 = static_cast<const UElement *>(left);
    const UElement *e2 = static_cast<const UElement *>(right);
    int32_t result = e1->integer < e2->integer? -1 :
                     e1->integer == e2->integer? 0 : 1;
    return result;
}

/**
  * Sort the vector, assuming it contains ints.
  *     (A more general sort would take a comparison function, but it's
  *     not clear whether UVector's UElementComparator or
  *     UComparator from uprv_sortAray would be more appropriate.)
  */
void UVector::sorti(UErrorCode &ec) {
    if (U_SUCCESS(ec)) {
        uprv_sortArray(elements, count, sizeof(UElement),
                       sortiComparator, nullptr,  FALSE, &ec);
    }
}


/**
 *  Sort with a user supplied comparator.
 *
 *    The comparator function handling is confusing because the function type
 *    for UVector  (as defined for sortedInsert()) is different from the signature
 *    required by uprv_sortArray().  This is handled by passing the
 *    the UVector sort function pointer via the context pointer to a
 *    sortArray() comparator function, which can then call back to
 *    the original user function.
 *
 *    An additional twist is that it's not safe to pass a pointer-to-function
 *    as  a (void *) data pointer, so instead we pass a (data) pointer to a
 *    pointer-to-function variable.
 */
void UVector::sort(UElementComparator *compare, UErrorCode &ec) {
    if (U_SUCCESS(ec)) {
        uprv_sortArray(elements, count, sizeof(UElement),
                       sortComparator, &compare, FALSE, &ec);
    }
}


/**
 *  Stable sort with a user supplied comparator of type UComparator.
 */
void UVector::sortWithUComparator(UComparator *compare, const void *context, UErrorCode &ec) {
    if (U_SUCCESS(ec)) {
        uprv_sortArray(elements, count, sizeof(UElement),
                       compare, context, TRUE, &ec);
    }
}

U_NAMESPACE_END