aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/icu/common/utext.cpp
blob: 0a4248c4e4595c7aad0e292ca5726cb2a9873e98 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
*
*   Copyright (C) 2005-2016, International Business Machines
*   Corporation and others.  All Rights Reserved.
*
*******************************************************************************
*   file name:  utext.cpp
*   encoding:   UTF-8
*   tab size:   8 (not used)
*   indentation:4
*
*   created on: 2005apr12
*   created by: Markus W. Scherer
*/

#include <cstddef>

#include "unicode/utypes.h"
#include "unicode/ustring.h"
#include "unicode/unistr.h"
#include "unicode/chariter.h"
#include "unicode/utext.h"
#include "unicode/utf.h"
#include "unicode/utf8.h"
#include "unicode/utf16.h"
#include "ustr_imp.h"
#include "cmemory.h"
#include "cstring.h"
#include "uassert.h"
#include "putilimp.h"

U_NAMESPACE_USE

#define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex))


static UBool
utext_access(UText *ut, int64_t index, UBool forward) {
    return ut->pFuncs->access(ut, index, forward);
}



U_CAPI UBool U_EXPORT2
utext_moveIndex32(UText *ut, int32_t delta) {
    UChar32  c;
    if (delta > 0) {
        do {
            if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNativeLimit, true)) {
                return false;
            }
            c = ut->chunkContents[ut->chunkOffset];
            if (U16_IS_SURROGATE(c)) {
                c = utext_next32(ut);
                if (c == U_SENTINEL) {
                    return false;
                }
            } else {
                ut->chunkOffset++;
            }
        } while(--delta>0);

    } else if (delta<0) {
        do {
            if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, false)) {
                return false;
            }
            c = ut->chunkContents[ut->chunkOffset-1];
            if (U16_IS_SURROGATE(c)) {
                c = utext_previous32(ut);
                if (c == U_SENTINEL) {
                    return false;
                }
            } else {
                ut->chunkOffset--;
            }
        } while(++delta<0);
    }

    return true;
}


U_CAPI int64_t U_EXPORT2
utext_nativeLength(UText *ut) {
    return ut->pFuncs->nativeLength(ut);
}


U_CAPI UBool U_EXPORT2
utext_isLengthExpensive(const UText *ut) {
    UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0;
    return r;
}


U_CAPI int64_t U_EXPORT2
utext_getNativeIndex(const UText *ut) {
    if(ut->chunkOffset <= ut->nativeIndexingLimit) {
        return ut->chunkNativeStart+ut->chunkOffset;
    } else {
        return ut->pFuncs->mapOffsetToNative(ut);
    }
}


U_CAPI void U_EXPORT2
utext_setNativeIndex(UText *ut, int64_t index) {
    if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
        // The desired position is outside of the current chunk.
        // Access the new position.  Assume a forward iteration from here,
        // which will also be optimimum for a single random access.
        // Reverse iterations may suffer slightly.
        ut->pFuncs->access(ut, index, true);
    } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit) {
        // utf-16 indexing.
        ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart);
    } else {
         ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
    }
    // The convention is that the index must always be on a code point boundary.
    // Adjust the index position if it is in the middle of a surrogate pair.
    if (ut->chunkOffset<ut->chunkLength) {
        char16_t c= ut->chunkContents[ut->chunkOffset];
        if (U16_IS_TRAIL(c)) {
            if (ut->chunkOffset==0) {
                ut->pFuncs->access(ut, ut->chunkNativeStart, false);
            }
            if (ut->chunkOffset>0) {
                char16_t lead = ut->chunkContents[ut->chunkOffset-1];
                if (U16_IS_LEAD(lead)) {
                    ut->chunkOffset--;
                }
            }
        }
    }
}



U_CAPI int64_t U_EXPORT2
utext_getPreviousNativeIndex(UText *ut) {
    //
    //  Fast-path the common case.
    //     Common means current position is not at the beginning of a chunk
    //     and the preceding character is not supplementary.
    //
    int32_t i = ut->chunkOffset - 1;
    int64_t result;
    if (i >= 0) {
        char16_t c = ut->chunkContents[i];
        if (U16_IS_TRAIL(c) == false) {
            if (i <= ut->nativeIndexingLimit) {
                result = ut->chunkNativeStart + i;
            } else {
                ut->chunkOffset = i;
                result = ut->pFuncs->mapOffsetToNative(ut);
                ut->chunkOffset++;
            }
            return result;
        }
    }

    // If at the start of text, simply return 0.
    if (ut->chunkOffset==0 && ut->chunkNativeStart==0) {
        return 0;
    }

    // Harder, less common cases.  We are at a chunk boundary, or on a surrogate.
    //    Keep it simple, use other functions to handle the edges.
    //
    utext_previous32(ut);
    result = UTEXT_GETNATIVEINDEX(ut);
    utext_next32(ut);
    return result;
}


//
//  utext_current32.  Get the UChar32 at the current position.
//                    UText iteration position is always on a code point boundary,
//                    never on the trail half of a surrogate pair.
//
U_CAPI UChar32 U_EXPORT2
utext_current32(UText *ut) {
    UChar32  c;
    if (ut->chunkOffset==ut->chunkLength) {
        // Current position is just off the end of the chunk.
        if (ut->pFuncs->access(ut, ut->chunkNativeLimit, true) == false) {
            // Off the end of the text.
            return U_SENTINEL;
        }
    }

    c = ut->chunkContents[ut->chunkOffset];
    if (U16_IS_LEAD(c) == false) {
        // Normal, non-supplementary case.
        return c;
    }

    //
    //  Possible supplementary char.
    //
    UChar32   trail = 0;
    UChar32   supplementaryC = c;
    if ((ut->chunkOffset+1) < ut->chunkLength) {
        // The trail surrogate is in the same chunk.
        trail = ut->chunkContents[ut->chunkOffset+1];
    } else {
        //  The trail surrogate is in a different chunk.
        //     Because we must maintain the iteration position, we need to switch forward
        //     into the new chunk, get the trail surrogate, then revert the chunk back to the
        //     original one.
        //     An edge case to be careful of:  the entire text may end with an unpaired
        //        leading surrogate.  The attempt to access the trail will fail, but
        //        the original position before the unpaired lead still needs to be restored.
        int64_t  nativePosition = ut->chunkNativeLimit;
        if (ut->pFuncs->access(ut, nativePosition, true)) {
            trail = ut->chunkContents[ut->chunkOffset];
        }
        UBool r = ut->pFuncs->access(ut, nativePosition, false);  // reverse iteration flag loads preceding chunk
        U_ASSERT(r);
        // Here we need to restore chunkOffset since the access functions were called with
        // chunkNativeLimit but that is not where we were (we were 1 code unit before the
        // limit). Restoring was originally added in ICU-4669 but did not support access
        // functions that changed the chunk size, the following does.
        ut->chunkOffset = ut->chunkLength - 1;
        if(!r) {
            return U_SENTINEL;
        }
    }

    if (U16_IS_TRAIL(trail)) {
        supplementaryC = U16_GET_SUPPLEMENTARY(c, trail);
    }
    return supplementaryC;

}


U_CAPI UChar32 U_EXPORT2
utext_char32At(UText *ut, int64_t nativeIndex) {
    UChar32 c = U_SENTINEL;

    // Fast path the common case.
    if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart + ut->nativeIndexingLimit) {
        ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart);
        c = ut->chunkContents[ut->chunkOffset];
        if (U16_IS_SURROGATE(c) == false) {
            return c;
        }
    }


    utext_setNativeIndex(ut, nativeIndex);
    if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffset<ut->chunkLength) {
        c = ut->chunkContents[ut->chunkOffset];
        if (U16_IS_SURROGATE(c)) {
            // For surrogates, let current32() deal with the complications
            //    of supplementaries that may span chunk boundaries.
            c = utext_current32(ut);
        }
    }
    return c;
}


U_CAPI UChar32 U_EXPORT2
utext_next32(UText *ut) {
    UChar32       c;

    if (ut->chunkOffset >= ut->chunkLength) {
        if (ut->pFuncs->access(ut, ut->chunkNativeLimit, true) == false) {
            return U_SENTINEL;
        }
    }

    c = ut->chunkContents[ut->chunkOffset++];
    if (U16_IS_LEAD(c) == false) {
        // Normal case, not supplementary.
        //   (A trail surrogate seen here is just returned as is, as a surrogate value.
        //    It cannot be part of a pair.)
        return c;
    }

    if (ut->chunkOffset >= ut->chunkLength) {
        if (ut->pFuncs->access(ut, ut->chunkNativeLimit, true) == false) {
            // c is an unpaired lead surrogate at the end of the text.
            // return it as it is.
            return c;
        }
    }
    UChar32 trail = ut->chunkContents[ut->chunkOffset];
    if (U16_IS_TRAIL(trail) == false) {
        // c was an unpaired lead surrogate, not at the end of the text.
        // return it as it is (unpaired).  Iteration position is on the
        // following character, possibly in the next chunk, where the
        //  trail surrogate would have been if it had existed.
        return c;
    }

    UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail);
    ut->chunkOffset++;   // move iteration position over the trail surrogate.
    return supplementary;
    }


U_CAPI UChar32 U_EXPORT2
utext_previous32(UText *ut) {
    UChar32       c;

    if (ut->chunkOffset <= 0) {
        if (ut->pFuncs->access(ut, ut->chunkNativeStart, false) == false) {
            return U_SENTINEL;
        }
    }
    ut->chunkOffset--;
    c = ut->chunkContents[ut->chunkOffset];
    if (U16_IS_TRAIL(c) == false) {
        // Normal case, not supplementary.
        //   (A lead surrogate seen here is just returned as is, as a surrogate value.
        //    It cannot be part of a pair.)
        return c;
    }

    if (ut->chunkOffset <= 0) {
        if (ut->pFuncs->access(ut, ut->chunkNativeStart, false) == false) {
            // c is an unpaired trail surrogate at the start of the text.
            // return it as it is.
            return c;
        }
    }

    UChar32 lead = ut->chunkContents[ut->chunkOffset-1];
    if (U16_IS_LEAD(lead) == false) {
        // c was an unpaired trail surrogate, not at the end of the text.
        // return it as it is (unpaired).  Iteration position is at c
        return c;
    }

    UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c);
    ut->chunkOffset--;   // move iteration position over the lead surrogate.
    return supplementary;
}



U_CAPI UChar32 U_EXPORT2
utext_next32From(UText *ut, int64_t index) {
    UChar32       c      = U_SENTINEL;

    if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
        // Desired position is outside of the current chunk.
        if(!ut->pFuncs->access(ut, index, true)) {
            // no chunk available here
            return U_SENTINEL;
        }
    } else if (index - ut->chunkNativeStart  <= (int64_t)ut->nativeIndexingLimit) {
        // Desired position is in chunk, with direct 1:1 native to UTF16 indexing
        ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
    } else {
        // Desired position is in chunk, with non-UTF16 indexing.
        ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index);
    }

    c = ut->chunkContents[ut->chunkOffset++];
    if (U16_IS_SURROGATE(c)) {
        // Surrogates.  Many edge cases.  Use other functions that already
        //              deal with the problems.
        utext_setNativeIndex(ut, index);
        c = utext_next32(ut);
    }
    return c;
}


U_CAPI UChar32 U_EXPORT2
utext_previous32From(UText *ut, int64_t index) {
    //
    //  Return the character preceding the specified index.
    //  Leave the iteration position at the start of the character that was returned.
    //
    UChar32     cPrev;    // The character preceding cCurr, which is what we will return.

    // Address the chunk containing the position preceding the incoming index
    // A tricky edge case:
    //   We try to test the requested native index against the chunkNativeStart to determine
    //    whether the character preceding the one at the index is in the current chunk.
    //    BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the
    //    requested index is on something other than the first position of the first char.
    //
    if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) {
        // Requested native index is outside of the current chunk.
        if(!ut->pFuncs->access(ut, index, false)) {
            // no chunk available here
            return U_SENTINEL;
        }
    } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) {
        // Direct UTF-16 indexing.
        ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
    } else {
        ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
        if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, false)) {
            // no chunk available here
            return U_SENTINEL;
        }
    }

    //
    // Simple case with no surrogates.
    //
    ut->chunkOffset--;
    cPrev = ut->chunkContents[ut->chunkOffset];

    if (U16_IS_SURROGATE(cPrev)) {
        // Possible supplementary.  Many edge cases.
        // Let other functions do the heavy lifting.
        utext_setNativeIndex(ut, index);
        cPrev = utext_previous32(ut);
    }
    return cPrev;
}


U_CAPI int32_t U_EXPORT2
utext_extract(UText *ut,
             int64_t start, int64_t limit,
             char16_t *dest, int32_t destCapacity,
             UErrorCode *status) {
                 return ut->pFuncs->extract(ut, start, limit, dest, destCapacity, status);
             }



U_CAPI UBool U_EXPORT2
utext_equals(const UText *a, const UText *b) {
    if (a==nullptr || b==nullptr ||
        a->magic != UTEXT_MAGIC ||
        b->magic != UTEXT_MAGIC) {
            // Null or invalid arguments don't compare equal to anything.
            return false;
    }

    if (a->pFuncs != b->pFuncs) {
        // Different types of text providers.
        return false;
    }

    if (a->context != b->context) {
        // Different sources (different strings)
        return false;
    }
    if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) {
        // Different current position in the string.
        return false;
    }

    return true;
}

U_CAPI UBool U_EXPORT2
utext_isWritable(const UText *ut)
{
    UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0;
    return b;
}


U_CAPI void U_EXPORT2
utext_freeze(UText *ut) {
    // Zero out the WRITABLE flag.
    ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE));
}


U_CAPI UBool U_EXPORT2
utext_hasMetaData(const UText *ut)
{
    UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0;
    return b;
}



U_CAPI int32_t U_EXPORT2
utext_replace(UText *ut,
             int64_t nativeStart, int64_t nativeLimit,
             const char16_t *replacementText, int32_t replacementLength,
             UErrorCode *status)
{
    if (U_FAILURE(*status)) {
        return 0;
    }
    if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
        *status = U_NO_WRITE_PERMISSION;
        return 0;
    }
    int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status);
    return i;
}

U_CAPI void U_EXPORT2
utext_copy(UText *ut,
          int64_t nativeStart, int64_t nativeLimit,
          int64_t destIndex,
          UBool move,
          UErrorCode *status)
{
    if (U_FAILURE(*status)) {
        return;
    }
    if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
        *status = U_NO_WRITE_PERMISSION;
        return;
    }
    ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status);
}



U_CAPI UText * U_EXPORT2
utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCode *status) {
    if (U_FAILURE(*status)) {
        return dest;
    }
    UText *result = src->pFuncs->clone(dest, src, deep, status);
    if (U_FAILURE(*status)) {
        return result;
    }
    if (result == nullptr) {
        *status = U_MEMORY_ALLOCATION_ERROR;
        return result;
    }
    if (readOnly) {
        utext_freeze(result);
    }
    return result;
}



//------------------------------------------------------------------------------
//
//   UText common functions implementation
//
//------------------------------------------------------------------------------

//
//  UText.flags bit definitions
//
enum {
    UTEXT_HEAP_ALLOCATED  = 1,      //  1 if ICU has allocated this UText struct on the heap.
                                    //  0 if caller provided storage for the UText.

    UTEXT_EXTRA_HEAP_ALLOCATED = 2, //  1 if ICU has allocated extra storage as a separate
                                    //     heap block.
                                    //  0 if there is no separate allocation.  Either no extra
                                    //     storage was requested, or it is appended to the end
                                    //     of the main UText storage.

    UTEXT_OPEN = 4                  //  1 if this UText is currently open
                                    //  0 if this UText is not open.
};


//
//  Extended form of a UText.  The purpose is to aid in computing the total size required
//    when a provider asks for a UText to be allocated with extra storage.

struct ExtendedUText {
    UText               ut;
    std::max_align_t    extension;
};

static const UText emptyText = UTEXT_INITIALIZER;

U_CAPI UText * U_EXPORT2
utext_setup(UText *ut, int32_t extraSpace, UErrorCode *status) {
    if (U_FAILURE(*status)) {
        return ut;
    }

    if (ut == nullptr) {
        // We need to heap-allocate storage for the new UText
        int32_t spaceRequired = sizeof(UText);
        if (extraSpace > 0) {
            spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(std::max_align_t);
        }
        ut = (UText *)uprv_malloc(spaceRequired);
        if (ut == nullptr) {
            *status = U_MEMORY_ALLOCATION_ERROR;
            return nullptr;
        } else {
            *ut = emptyText;
            ut->flags |= UTEXT_HEAP_ALLOCATED;
            if (spaceRequired>0) {
                ut->extraSize = extraSpace;
                ut->pExtra    = &((ExtendedUText *)ut)->extension;
            }
        }
    } else {
        // We have been supplied with an already existing UText.
        // Verify that it really appears to be a UText.
        if (ut->magic != UTEXT_MAGIC) {
            *status = U_ILLEGAL_ARGUMENT_ERROR;
            return ut;
        }
        // If the ut is already open and there's a provider supplied close
        //   function, call it.
        if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != nullptr)  {
            ut->pFuncs->close(ut);
        }
        ut->flags &= ~UTEXT_OPEN;

        // If extra space was requested by our caller, check whether
        //   sufficient already exists, and allocate new if needed.
        if (extraSpace > ut->extraSize) {
            // Need more space.  If there is existing separately allocated space,
            //   delete it first, then allocate new space.
            if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
                uprv_free(ut->pExtra);
                ut->extraSize = 0;
            }
            ut->pExtra = uprv_malloc(extraSpace);
            if (ut->pExtra == nullptr) {
                *status = U_MEMORY_ALLOCATION_ERROR;
            } else {
                ut->extraSize = extraSpace;
                ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED;
            }
        }
    }
    if (U_SUCCESS(*status)) {
        ut->flags |= UTEXT_OPEN;

        // Initialize all remaining fields of the UText.
        //
        ut->context             = nullptr;
        ut->chunkContents       = nullptr;
        ut->p                   = nullptr;
        ut->q                   = nullptr;
        ut->r                   = nullptr;
        ut->a                   = 0;
        ut->b                   = 0;
        ut->c                   = 0;
        ut->chunkOffset         = 0;
        ut->chunkLength         = 0;
        ut->chunkNativeStart    = 0;
        ut->chunkNativeLimit    = 0;
        ut->nativeIndexingLimit = 0;
        ut->providerProperties  = 0;
        ut->privA               = 0;
        ut->privB               = 0;
        ut->privC               = 0;
        ut->privP               = nullptr;
        if (ut->pExtra!=nullptr && ut->extraSize>0)
            uprv_memset(ut->pExtra, 0, ut->extraSize);

    }
    return ut;
}


U_CAPI UText * U_EXPORT2
utext_close(UText *ut) {
    if (ut==nullptr ||
        ut->magic != UTEXT_MAGIC ||
        (ut->flags & UTEXT_OPEN) == 0)
    {
        // The supplied ut is not an open UText.
        // Do nothing.
        return ut;
    }

    // If the provider gave us a close function, call it now.
    // This will clean up anything allocated specifically by the provider.
    if (ut->pFuncs->close != nullptr) {
        ut->pFuncs->close(ut);
    }
    ut->flags &= ~UTEXT_OPEN;

    // If we (the framework) allocated the UText or subsidiary storage,
    //   delete it.
    if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
        uprv_free(ut->pExtra);
        ut->pExtra = nullptr;
        ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED;
        ut->extraSize = 0;
    }

    // Zero out function table of the closed UText.  This is a defensive move,
    //   intended to cause applications that inadvertently use a closed
    //   utext to crash with null pointer errors.
    ut->pFuncs        = nullptr;

    if (ut->flags & UTEXT_HEAP_ALLOCATED) {
        // This UText was allocated by UText setup.  We need to free it.
        // Clear magic, so we can detect if the user messes up and immediately
        //  tries to reopen another UText using the deleted storage.
        ut->magic = 0;
        uprv_free(ut);
        ut = nullptr;
    }
    return ut;
}




//
// invalidateChunk   Reset a chunk to have no contents, so that the next call
//                   to access will cause new data to load.
//                   This is needed when copy/move/replace operate directly on the
//                   backing text, potentially putting it out of sync with the
//                   contents in the chunk.
//
static void
invalidateChunk(UText *ut) {
    ut->chunkLength = 0;
    ut->chunkNativeLimit = 0;
    ut->chunkNativeStart = 0;
    ut->chunkOffset = 0;
    ut->nativeIndexingLimit = 0;
}

//
// pinIndex        Do range pinning on a native index parameter.
//                 64 bit pinning is done in place.
//                 32 bit truncated result is returned as a convenience for
//                        use in providers that don't need 64 bits.
static int32_t
pinIndex(int64_t &index, int64_t limit) {
    if (index<0) {
        index = 0;
    } else if (index > limit) {
        index = limit;
    }
    return static_cast<int32_t>(index);
}


U_CDECL_BEGIN

//
// Pointer relocation function,
//   a utility used by shallow clone.
//   Adjust a pointer that refers to something within one UText (the source)
//   to refer to the same relative offset within a another UText (the target)
//
static void adjustPointer(UText *dest, const void **destPtr, const UText *src) {
    // convert all pointers to (char *) so that byte address arithmetic will work.
    char  *dptr = (char *)*destPtr;
    char  *dUText = (char *)dest;
    char  *sUText = (char *)src;

    if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSize) {
        // target ptr was to something within the src UText's pExtra storage.
        //   relocate it into the target UText's pExtra region.
        *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra);
    } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) {
        // target ptr was pointing to somewhere within the source UText itself.
        //   Move it to the same offset within the target UText.
        *destPtr = dUText + (dptr-sUText);
    }
}


//
//  Clone.  This is a generic copy-the-utext-by-value clone function that can be
//          used as-is with some utext types, and as a helper by other clones.
//
static UText * U_CALLCONV
shallowTextClone(UText * dest, const UText * src, UErrorCode * status) {
    if (U_FAILURE(*status)) {
        return nullptr;
    }
    int32_t  srcExtraSize = src->extraSize;

    //
    // Use the generic text_setup to allocate storage if required.
    //
    dest = utext_setup(dest, srcExtraSize, status);
    if (U_FAILURE(*status)) {
        return dest;
    }

    //
    //  flags (how the UText was allocated) and the pointer to the
    //   extra storage must retain the values in the cloned utext that
    //   were set up by utext_setup.  Save them separately before
    //   copying the whole struct.
    //
    void *destExtra = dest->pExtra;
    int32_t flags   = dest->flags;


    //
    //  Copy the whole UText struct by value.
    //  Any "Extra" storage is copied also.
    //
    int sizeToCopy = src->sizeOfStruct;
    if (sizeToCopy > dest->sizeOfStruct) {
        sizeToCopy = dest->sizeOfStruct;
    }
    uprv_memcpy(dest, src, sizeToCopy);
    dest->pExtra = destExtra;
    dest->flags  = flags;
    if (srcExtraSize > 0) {
        uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize);
    }

    //
    // Relocate any pointers in the target that refer to the UText itself
    //   to point to the cloned copy rather than the original source.
    //
    adjustPointer(dest, &dest->context, src);
    adjustPointer(dest, &dest->p, src);
    adjustPointer(dest, &dest->q, src);
    adjustPointer(dest, &dest->r, src);
    adjustPointer(dest, (const void **)&dest->chunkContents, src);

    // The newly shallow-cloned UText does _not_ own the underlying storage for the text.
    // (The source for the clone may or may not have owned the text.)

    dest->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);

    return dest;
}


U_CDECL_END



//------------------------------------------------------------------------------
//
//     UText implementation for UTF-8 char * strings (read-only)
//     Limitation:  string length must be <= 0x7fffffff in length.
//                  (length must for in an int32_t variable)
//
//         Use of UText data members:
//              context    pointer to UTF-8 string
//              utext.b    is the input string length (bytes).
//              utext.c    Length scanned so far in string
//                           (for optimizing finding length of zero terminated strings.)
//              utext.p    pointer to the current buffer
//              utext.q    pointer to the other buffer.
//
//------------------------------------------------------------------------------

// Chunk size.
//     Must be less than 85 (256/3), because of byte mapping from char16_t indexes to native indexes.
//     Worst case is three native bytes to one char16_t.  (Supplemenaries are 4 native bytes
//     to two UChars.)
//     The longest illegal byte sequence treated as a single error (and converted to U+FFFD)
//     is a three-byte sequence (truncated four-byte sequence).
//
enum { UTF8_TEXT_CHUNK_SIZE=32 };

//
// UTF8Buf  Two of these structs will be set up in the UText's extra allocated space.
//          Each contains the char16_t chunk buffer, the to and from native maps, and
//          header info.
//
//     because backwards iteration fills the buffers starting at the end and
//     working towards the front, the filled part of the buffers may not begin
//     at the start of the available storage for the buffers.
//
//     Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for
//     the last character added being a supplementary, and thus requiring a surrogate
//     pair.  Doing this is simpler than checking for the edge case.
//

struct UTF8Buf {
    int32_t   bufNativeStart;                        // Native index of first char in char16_t buf
    int32_t   bufNativeLimit;                        // Native index following last char in buf.
    int32_t   bufStartIdx;                           // First filled position in buf.
    int32_t   bufLimitIdx;                           // Limit of filled range in buf.
    int32_t   bufNILimit;                            // Limit of native indexing part of buf
    int32_t   toUCharsMapStart;                      // Native index corresponding to
                                                     //   mapToUChars[0].
                                                     //   Set to bufNativeStart when filling forwards.
                                                     //   Set to computed value when filling backwards.

    char16_t  buf[UTF8_TEXT_CHUNK_SIZE+4];           // The char16_t buffer.  Requires one extra position beyond the
                                                     //   the chunk size, to allow for surrogate at the end.
                                                     //   Length must be identical to mapToNative array, below,
                                                     //   because of the way indexing works when the array is
                                                     //   filled backwards during a reverse iteration.  Thus,
                                                     //   the additional extra size.
    uint8_t   mapToNative[UTF8_TEXT_CHUNK_SIZE+4];   // map char16_t index in buf to
                                                     //  native offset from bufNativeStart.
                                                     //  Requires two extra slots,
                                                     //    one for a supplementary starting in the last normal position,
                                                     //    and one for an entry for the buffer limit position.
    uint8_t   mapToUChars[UTF8_TEXT_CHUNK_SIZE*3+6]; // Map native offset from bufNativeStart to
                                                     //   corresponding offset in filled part of buf.
    int32_t   align;
};

U_CDECL_BEGIN

//
//   utf8TextLength
//
//        Get the length of the string.  If we don't already know it,
//              we'll need to scan for the trailing  nul.
//
static int64_t U_CALLCONV
utf8TextLength(UText *ut) {
    if (ut->b < 0) {
        // Zero terminated string, and we haven't scanned to the end yet.
        // Scan it now.
        const char *r = (const char *)ut->context + ut->c;
        while (*r != 0) {
            r++;
        }
        if ((r - (const char *)ut->context) < 0x7fffffff) {
            ut->b = (int32_t)(r - (const char *)ut->context);
        } else {
            // Actual string was bigger (more than 2 gig) than we
            //   can handle.  Clip it to 2 GB.
            ut->b = 0x7fffffff;
        }
        ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
    }
    return ut->b;
}






static UBool U_CALLCONV
utf8TextAccess(UText *ut, int64_t index, UBool forward) {
    //
    //  Apologies to those who are allergic to goto statements.
    //    Consider each goto to a labelled block to be the equivalent of
    //         call the named block as if it were a function();
    //         return;
    //
    const uint8_t *s8=(const uint8_t *)ut->context;
    UTF8Buf *u8b = nullptr;
    int32_t  length = ut->b;         // Length of original utf-8
    int32_t  ix= (int32_t)index;     // Requested index, trimmed to 32 bits.
    int32_t  mapIndex = 0;
    if (index<0) {
        ix=0;
    } else if (index > 0x7fffffff) {
        // Strings with 64 bit lengths not supported by this UTF-8 provider.
        ix = 0x7fffffff;
    }

    // Pin requested index to the string length.
    if (ix>length) {
        if (length>=0) {
            ix=length;
        } else if (ix>=ut->c) {
            // Zero terminated string, and requested index is beyond
            //   the region that has already been scanned.
            //   Scan up to either the end of the string or to the
            //   requested position, whichever comes first.
            while (ut->c<ix && s8[ut->c]!=0) {
                ut->c++;
            }
            //  TODO:  support for null terminated string length > 32 bits.
            if (s8[ut->c] == 0) {
                // We just found the actual length of the string.
                //  Trim the requested index back to that.
                ix     = ut->c;
                ut->b  = ut->c;
                length = ut->c;
                ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
            }
        }
    }

    //
    // Dispatch to the appropriate action for a forward iteration request.
    //
    if (forward) {
        if (ix==ut->chunkNativeLimit) {
            // Check for normal sequential iteration cases first.
            if (ix==length) {
                // Just reached end of string
                // Don't swap buffers, but do set the
                //   current buffer position.
                ut->chunkOffset = ut->chunkLength;
                return false;
            } else {
                // End of current buffer.
                //   check whether other buffer already has what we need.
                UTF8Buf *altB = (UTF8Buf *)ut->q;
                if (ix>=altB->bufNativeStart && ix<altB->bufNativeLimit) {
                    goto swapBuffers;
                }
            }
        }

        // A random access.  Desired index could be in either or niether buf.
        // For optimizing the order of testing, first check for the index
        //    being in the other buffer.  This will be the case for uses that
        //    move back and forth over a fairly limited range
        {
            u8b = (UTF8Buf *)ut->q;   // the alternate buffer
            if (ix>=u8b->bufNativeStart && ix<u8b->bufNativeLimit) {
                // Requested index is in the other buffer.
                goto swapBuffers;
            }
            if (ix == length) {
                // Requested index is end-of-string.
                //   (this is the case of randomly seeking to the end.
                //    The case of iterating off the end is handled earlier.)
                if (ix == ut->chunkNativeLimit) {
                    // Current buffer extends up to the end of the string.
                    //   Leave it as the current buffer.
                    ut->chunkOffset = ut->chunkLength;
                    return false;
                }
                if (ix == u8b->bufNativeLimit) {
                    // Alternate buffer extends to the end of string.
                    //   Swap it in as the current buffer.
                    goto swapBuffersAndFail;
                }

                // Neither existing buffer extends to the end of the string.
                goto makeStubBuffer;
            }

            if (ix<ut->chunkNativeStart || ix>=ut->chunkNativeLimit) {
                // Requested index is in neither buffer.
                goto fillForward;
            }

            // Requested index is in this buffer.
            u8b = (UTF8Buf *)ut->p;   // the current buffer
            mapIndex = ix - u8b->toUCharsMapStart;
            U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars));
            ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
            return true;

        }
    }


    //
    // Dispatch to the appropriate action for a
    //   Backwards Direction iteration request.
    //
    if (ix==ut->chunkNativeStart) {
        // Check for normal sequential iteration cases first.
        if (ix==0) {
            // Just reached the start of string
            // Don't swap buffers, but do set the
            //   current buffer position.
            ut->chunkOffset = 0;
            return false;
        } else {
            // Start of current buffer.
            //   check whether other buffer already has what we need.
            UTF8Buf *altB = (UTF8Buf *)ut->q;
            if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) {
                goto swapBuffers;
            }
        }
    }

    // A random access.  Desired index could be in either or niether buf.
    // For optimizing the order of testing,
    //    Most likely case:  in the other buffer.
    //    Second most likely: in neither buffer.
    //    Unlikely, but must work:  in the current buffer.
    u8b = (UTF8Buf *)ut->q;   // the alternate buffer
    if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) {
        // Requested index is in the other buffer.
        goto swapBuffers;
    }
    // Requested index is start-of-string.
    //   (this is the case of randomly seeking to the start.
    //    The case of iterating off the start is handled earlier.)
    if (ix==0) {
        if (u8b->bufNativeStart==0) {
            // Alternate buffer contains the data for the start string.
            // Make it be the current buffer.
            goto swapBuffersAndFail;
        } else {
            // Request for data before the start of string,
            //   neither buffer is usable.
            //   set up a zero-length buffer.
            goto makeStubBuffer;
        }
    }

    if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) {
        // Requested index is in neither buffer.
        goto fillReverse;
    }

    // Requested index is in this buffer.
    //   Set the utf16 buffer index.
    u8b = (UTF8Buf *)ut->p;
    mapIndex = ix - u8b->toUCharsMapStart;
    ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
    if (ut->chunkOffset==0) {
        // This occurs when the first character in the text is
        //   a multi-byte UTF-8 char, and the requested index is to
        //   one of the trailing bytes.  Because there is no preceding ,
        //   character, this access fails.  We can't pick up on the
        //   situation sooner because the requested index is not zero.
        return false;
    } else {
        return true;
    }



swapBuffers:
    //  The alternate buffer (ut->q) has the string data that was requested.
    //  Swap the primary and alternate buffers, and set the
    //   chunk index into the new primary buffer.
    {
        u8b   = (UTF8Buf *)ut->q;
        ut->q = ut->p;
        ut->p = u8b;
        ut->chunkContents       = &u8b->buf[u8b->bufStartIdx];
        ut->chunkLength         = u8b->bufLimitIdx - u8b->bufStartIdx;
        ut->chunkNativeStart    = u8b->bufNativeStart;
        ut->chunkNativeLimit    = u8b->bufNativeLimit;
        ut->nativeIndexingLimit = u8b->bufNILimit;

        // Index into the (now current) chunk
        // Use the map to set the chunk index.  It's more trouble than it's worth
        //    to check whether native indexing can be used.
        U_ASSERT(ix>=u8b->bufNativeStart);
        U_ASSERT(ix<=u8b->bufNativeLimit);
        mapIndex = ix - u8b->toUCharsMapStart;
        U_ASSERT(mapIndex>=0);
        U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars));
        ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;

        return true;
    }


 swapBuffersAndFail:
    // We got a request for either the start or end of the string,
    //  with iteration continuing in the out-of-bounds direction.
    // The alternate buffer already contains the data up to the
    //  start/end.
    // Swap the buffers, then return failure, indicating that we couldn't
    //  make things correct for continuing the iteration in the requested
    //  direction.  The position & buffer are correct should the
    //  user decide to iterate in the opposite direction.
    u8b   = (UTF8Buf *)ut->q;
    ut->q = ut->p;
    ut->p = u8b;
    ut->chunkContents       = &u8b->buf[u8b->bufStartIdx];
    ut->chunkLength         = u8b->bufLimitIdx - u8b->bufStartIdx;
    ut->chunkNativeStart    = u8b->bufNativeStart;
    ut->chunkNativeLimit    = u8b->bufNativeLimit;
    ut->nativeIndexingLimit = u8b->bufNILimit;

    // Index into the (now current) chunk
    //  For this function  (swapBuffersAndFail), the requested index
    //    will always be at either the start or end of the chunk.
    if (ix==u8b->bufNativeLimit) {
        ut->chunkOffset = ut->chunkLength;
    } else  {
        ut->chunkOffset = 0;
        U_ASSERT(ix == u8b->bufNativeStart);
    }
    return false;

makeStubBuffer:
    //   The user has done a seek/access past the start or end
    //   of the string.  Rather than loading data that is likely
    //   to never be used, just set up a zero-length buffer at
    //   the position.
    u8b = (UTF8Buf *)ut->q;
    u8b->bufNativeStart   = ix;
    u8b->bufNativeLimit   = ix;
    u8b->bufStartIdx      = 0;
    u8b->bufLimitIdx      = 0;
    u8b->bufNILimit       = 0;
    u8b->toUCharsMapStart = ix;
    u8b->mapToNative[0]   = 0;
    u8b->mapToUChars[0]   = 0;
    goto swapBuffersAndFail;



fillForward:
    {
        // Move the incoming index to a code point boundary.
        U8_SET_CP_START(s8, 0, ix);

        // Swap the UText buffers.
        //  We want to fill what was previously the alternate buffer,
        //  and make what was the current buffer be the new alternate.
        UTF8Buf *u8b_swap = (UTF8Buf *)ut->q;
        ut->q = ut->p;
        ut->p = u8b_swap;

        int32_t strLen = ut->b;
        UBool   nulTerminated = false;
        if (strLen < 0) {
            strLen = 0x7fffffff;
            nulTerminated = true;
        }

        char16_t   *buf = u8b_swap->buf;
        uint8_t *mapToNative  = u8b_swap->mapToNative;
        uint8_t *mapToUChars  = u8b_swap->mapToUChars;
        int32_t  destIx       = 0;
        int32_t  srcIx        = ix;
        UBool    seenNonAscii = false;
        UChar32  c = 0;

        // Fill the chunk buffer and mapping arrays.
        while (destIx<UTF8_TEXT_CHUNK_SIZE) {
            c = s8[srcIx];
            if (c>0 && c<0x80) {
                // Special case ASCII range for speed.
                //   zero is excluded to simplify bounds checking.
                buf[destIx] = (char16_t)c;
                mapToNative[destIx]    = (uint8_t)(srcIx - ix);
                mapToUChars[srcIx-ix]  = (uint8_t)destIx;
                srcIx++;
                destIx++;
            } else {
                // General case, handle everything.
                if (seenNonAscii == false) {
                    seenNonAscii = true;
                    u8b_swap->bufNILimit = destIx;
                }

                int32_t  cIx      = srcIx;
                int32_t  dIx      = destIx;
                int32_t  dIxSaved = destIx;
                U8_NEXT_OR_FFFD(s8, srcIx, strLen, c);
                if (c==0 && nulTerminated) {
                    srcIx--;
                    break;
                }

                U16_APPEND_UNSAFE(buf, destIx, c);
                do {
                    mapToNative[dIx++] = (uint8_t)(cIx - ix);
                } while (dIx < destIx);

                do {
                    mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved;
                } while (cIx < srcIx);
            }
            if (srcIx>=strLen) {
                break;
            }

        }

        //  store Native <--> Chunk Map entries for the end of the buffer.
        //    There is no actual character here, but the index position is valid.
        mapToNative[destIx]     = (uint8_t)(srcIx - ix);
        mapToUChars[srcIx - ix] = (uint8_t)destIx;

        //  fill in Buffer descriptor
        u8b_swap->bufNativeStart     = ix;
        u8b_swap->bufNativeLimit     = srcIx;
        u8b_swap->bufStartIdx        = 0;
        u8b_swap->bufLimitIdx        = destIx;
        if (seenNonAscii == false) {
            u8b_swap->bufNILimit     = destIx;
        }
        u8b_swap->toUCharsMapStart   = u8b_swap->bufNativeStart;

        // Set UText chunk to refer to this buffer.
        ut->chunkContents       = buf;
        ut->chunkOffset         = 0;
        ut->chunkLength         = u8b_swap->bufLimitIdx;
        ut->chunkNativeStart    = u8b_swap->bufNativeStart;
        ut->chunkNativeLimit    = u8b_swap->bufNativeLimit;
        ut->nativeIndexingLimit = u8b_swap->bufNILimit;

        // For zero terminated strings, keep track of the maximum point
        //   scanned so far.
        if (nulTerminated && srcIx>ut->c) {
            ut->c = srcIx;
            if (c==0) {
                // We scanned to the end.
                //   Remember the actual length.
                ut->b = srcIx;
                ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
            }
        }
        return true;
    }


fillReverse:
    {
        // Move the incoming index to a code point boundary.
        // Can only do this if the incoming index is somewhere in the interior of the string.
        //   If index is at the end, there is no character there to look at.
        if (ix != ut->b) {
            // Note: this function will only move the index back if it is on a trail byte
            //       and there is a preceding lead byte and the sequence from the lead 
            //       through this trail could be part of a valid UTF-8 sequence
            //       Otherwise the index remains unchanged.
            U8_SET_CP_START(s8, 0, ix);
        }

        // Swap the UText buffers.
        //  We want to fill what was previously the alternate buffer,
        //  and make what was the current buffer be the new alternate.
        UTF8Buf *u8b_swap = (UTF8Buf *)ut->q;
        ut->q = ut->p;
        ut->p = u8b_swap;

        char16_t   *buf = u8b_swap->buf;
        uint8_t *mapToNative = u8b_swap->mapToNative;
        uint8_t *mapToUChars = u8b_swap->mapToUChars;
        int32_t  toUCharsMapStart = ix - sizeof(UTF8Buf::mapToUChars) + 1;
        // Note that toUCharsMapStart can be negative. Happens when the remaining
        // text from current position to the beginning is less than the buffer size.
        // + 1 because mapToUChars must have a slot at the end for the bufNativeLimit entry.
        int32_t  destIx = UTF8_TEXT_CHUNK_SIZE+2;   // Start in the overflow region
                                                    //   at end of buffer to leave room
                                                    //   for a surrogate pair at the
                                                    //   buffer start.
        int32_t  srcIx  = ix;
        int32_t  bufNILimit = destIx;
        UChar32   c;

        // Map to/from Native Indexes, fill in for the position at the end of
        //   the buffer.
        //
        mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
        mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;

        // Fill the chunk buffer
        // Work backwards, filling from the end of the buffer towards the front.
        //
        while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) {
            srcIx--;
            destIx--;

            // Get last byte of the UTF-8 character
            c = s8[srcIx];
            if (c<0x80) {
                // Special case ASCII range for speed.
                buf[destIx] = (char16_t)c;
                U_ASSERT(toUCharsMapStart <= srcIx);
                mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
                mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
            } else {
                // General case, handle everything non-ASCII.

                int32_t  sIx      = srcIx;  // ix of last byte of multi-byte u8 char

                // Get the full character from the UTF8 string.
                //   use code derived from the macros in utf8.h
                //   Leaves srcIx pointing at the first byte of the UTF-8 char.
                //
                c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -3);
                // leaves srcIx at first byte of the multi-byte char.

                // Store the character in UTF-16 buffer.
                if (c<0x10000) {
                    buf[destIx] = (char16_t)c;
                    mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
                } else {
                    buf[destIx]         = U16_TRAIL(c);
                    mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
                    buf[--destIx]       = U16_LEAD(c);
                    mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
                }

                // Fill in the map from native indexes to UChars buf index.
                do {
                    mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx;
                } while (sIx >= srcIx);
                U_ASSERT(toUCharsMapStart <= (srcIx+1));

                // Set native indexing limit to be the current position.
                //   We are processing a non-ascii, non-native-indexing char now;
                //     the limit will be here if the rest of the chars to be
                //     added to this buffer are ascii.
                bufNILimit = destIx;
            }
        }
        u8b_swap->bufNativeStart     = srcIx;
        u8b_swap->bufNativeLimit     = ix;
        u8b_swap->bufStartIdx        = destIx;
        u8b_swap->bufLimitIdx        = UTF8_TEXT_CHUNK_SIZE+2;
        u8b_swap->bufNILimit         = bufNILimit - u8b_swap->bufStartIdx;
        u8b_swap->toUCharsMapStart   = toUCharsMapStart;

        ut->chunkContents       = &buf[u8b_swap->bufStartIdx];
        ut->chunkLength         = u8b_swap->bufLimitIdx - u8b_swap->bufStartIdx;
        ut->chunkOffset         = ut->chunkLength;
        ut->chunkNativeStart    = u8b_swap->bufNativeStart;
        ut->chunkNativeLimit    = u8b_swap->bufNativeLimit;
        ut->nativeIndexingLimit = u8b_swap->bufNILimit;
        return true;
    }

}



//
//  This is a slightly modified copy of u_strFromUTF8,
//     Inserts a Replacement Char rather than failing on invalid UTF-8
//     Removes unnecessary features.
//
static char16_t*
utext_strFromUTF8(char16_t *dest,
              int32_t destCapacity,
              int32_t *pDestLength,
              const char* src,
              int32_t srcLength,        // required.  NUL terminated not supported.
              UErrorCode *pErrorCode
              )
{

    char16_t *pDest = dest;
    char16_t *pDestLimit = (dest!=nullptr)?(dest+destCapacity):nullptr;
    UChar32 ch=0;
    int32_t index = 0;
    int32_t reqLength = 0;
    uint8_t* pSrc = (uint8_t*) src;


    while((index < srcLength)&&(pDest<pDestLimit)){
        ch = pSrc[index++];
        if(ch <=0x7f){
            *pDest++=(char16_t)ch;
        }else{
            ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
            if(U_IS_BMP(ch)){
                *(pDest++)=(char16_t)ch;
            }else{
                *(pDest++)=U16_LEAD(ch);
                if(pDest<pDestLimit){
                    *(pDest++)=U16_TRAIL(ch);
                }else{
                    reqLength++;
                    break;
                }
            }
        }
    }
    /* donot fill the dest buffer just count the UChars needed */
    while(index < srcLength){
        ch = pSrc[index++];
        if(ch <= 0x7f){
            reqLength++;
        }else{
            ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
            reqLength+=U16_LENGTH(ch);
        }
    }

    reqLength+=(int32_t)(pDest - dest);

    if(pDestLength){
        *pDestLength = reqLength;
    }

    /* Terminate the buffer */
    u_terminateUChars(dest,destCapacity,reqLength,pErrorCode);

    return dest;
}



static int32_t U_CALLCONV
utf8TextExtract(UText *ut,
                int64_t start, int64_t limit,
                char16_t *dest, int32_t destCapacity,
                UErrorCode *pErrorCode) {
    if(U_FAILURE(*pErrorCode)) {
        return 0;
    }
    if(destCapacity<0 || (dest==nullptr && destCapacity>0)) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return 0;
    }
    int32_t  length  = ut->b;
    int32_t  start32 = pinIndex(start, length);
    int32_t  limit32 = pinIndex(limit, length);

    if(start32>limit32) {
        *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
        return 0;
    }


    // adjust the incoming indexes to land on code point boundaries if needed.
    //    adjust by no more than three, because that is the largest number of trail bytes
    //    in a well formed UTF8 character.
    const uint8_t *buf = (const uint8_t *)ut->context;
    int i;
    if (start32 < ut->chunkNativeLimit) {
        for (i=0; i<3; i++) {
            if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start32==0) {
                break;
            }
            start32--;
        }
    }

    if (limit32 < ut->chunkNativeLimit) {
        for (i=0; i<3; i++) {
            if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit32==0) {
                break;
            }
            limit32--;
        }
    }

    // Do the actual extract.
    int32_t destLength=0;
    utext_strFromUTF8(dest, destCapacity, &destLength,
                    (const char *)ut->context+start32, limit32-start32,
                    pErrorCode);
    utf8TextAccess(ut, limit32, true);
    return destLength;
}

//
// utf8TextMapOffsetToNative
//
// Map a chunk (UTF-16) offset to a native index.
static int64_t U_CALLCONV
utf8TextMapOffsetToNative(const UText *ut) {
    //
    UTF8Buf *u8b = (UTF8Buf *)ut->p;
    U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chunkLength);
    int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx] + u8b->toUCharsMapStart;
    U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNativeLimit);
    return nativeOffset;
}

//
// Map a native index to the corresponding chunk offset
//
static int32_t U_CALLCONV
utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) {
    U_ASSERT(index64 <= 0x7fffffff);
    int32_t index = (int32_t)index64;
    UTF8Buf *u8b = (UTF8Buf *)ut->p;
    U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit);
    U_ASSERT(index<=ut->chunkNativeLimit);
    int32_t mapIndex = index - u8b->toUCharsMapStart;
    U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars));
    int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
    U_ASSERT(offset>=0 && offset<=ut->chunkLength);
    return offset;
}

static UText * U_CALLCONV
utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status)
{
    // First do a generic shallow clone.  Does everything needed for the UText struct itself.
    dest = shallowTextClone(dest, src, status);

    // For deep clones, make a copy of the string.
    //  The copied storage is owned by the newly created clone.
    //
    // TODO:  There is an issue with using utext_nativeLength().
    //        That function is non-const in cases where the input was NUL terminated
    //          and the length has not yet been determined.
    //        This function (clone()) is const.
    //        There potentially a thread safety issue lurking here.
    //
    if (deep && U_SUCCESS(*status)) {
        int32_t  len = (int32_t)utext_nativeLength((UText *)src);
        char *copyStr = (char *)uprv_malloc(len+1);
        if (copyStr == nullptr) {
            *status = U_MEMORY_ALLOCATION_ERROR;
        } else {
            uprv_memcpy(copyStr, src->context, len+1);
            dest->context = copyStr;
            dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
        }
    }
    return dest;
}


static void U_CALLCONV
utf8TextClose(UText *ut) {
    // Most of the work of close is done by the generic UText framework close.
    // All that needs to be done here is to delete the UTF8 string if the UText
    //  owns it.  This occurs if the UText was created by cloning.
    if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
        char *s = (char *)ut->context;
        uprv_free(s);
        ut->context = nullptr;
    }
}

U_CDECL_END


static const struct UTextFuncs utf8Funcs =
{
    sizeof(UTextFuncs),
    0, 0, 0,             // Reserved alignment padding
    utf8TextClone,
    utf8TextLength,
    utf8TextAccess,
    utf8TextExtract,
    nullptr,                /* replace*/
    nullptr,                /* copy   */
    utf8TextMapOffsetToNative,
    utf8TextMapIndexToUTF16,
    utf8TextClose,
    nullptr,                // spare 1
    nullptr,                // spare 2
    nullptr                 // spare 3
};


static const char gEmptyString[] = {0};

U_CAPI UText * U_EXPORT2
utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) {
    if(U_FAILURE(*status)) {
        return nullptr;
    }
    if(s==nullptr && length==0) {
        s = gEmptyString;
    }

    if(s==nullptr || length<-1 || length>INT32_MAX) {
        *status=U_ILLEGAL_ARGUMENT_ERROR;
        return nullptr;
    }

    ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status);
    if (U_FAILURE(*status)) {
        return ut;
    }

    ut->pFuncs  = &utf8Funcs;
    ut->context = s;
    ut->b       = (int32_t)length;
    ut->c       = (int32_t)length;
    if (ut->c < 0) {
        ut->c = 0;
        ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
    }
    ut->p = ut->pExtra;
    ut->q = (char *)ut->pExtra + sizeof(UTF8Buf);
    return ut;

}








//------------------------------------------------------------------------------
//
//     UText implementation wrapper for Replaceable (read/write)
//
//         Use of UText data members:
//            context    pointer to Replaceable.
//            p          pointer to Replaceable if it is owned by the UText.
//
//------------------------------------------------------------------------------



// minimum chunk size for this implementation: 3
// to allow for possible trimming for code point boundaries
enum { REP_TEXT_CHUNK_SIZE=10 };

struct ReplExtra {
    /*
     * Chunk UChars.
     * +1 to simplify filling with surrogate pair at the end.
     */
    char16_t s[REP_TEXT_CHUNK_SIZE+1];
};


U_CDECL_BEGIN

static UText * U_CALLCONV
repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
    // First do a generic shallow clone.  Does everything needed for the UText struct itself.
    dest = shallowTextClone(dest, src, status);

    // For deep clones, make a copy of the Replaceable.
    //  The copied Replaceable storage is owned by the newly created UText clone.
    //  A non-nullptr pointer in UText.p is the signal to the close() function to delete
    //    it.
    //
    if (deep && U_SUCCESS(*status)) {
        const Replaceable *replSrc = (const Replaceable *)src->context;
        dest->context = replSrc->clone();
        dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);

        // with deep clone, the copy is writable, even when the source is not.
        dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
    }
    return dest;
}


static void U_CALLCONV
repTextClose(UText *ut) {
    // Most of the work of close is done by the generic UText framework close.
    // All that needs to be done here is delete the Replaceable if the UText
    //  owns it.  This occurs if the UText was created by cloning.
    if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
        Replaceable *rep = (Replaceable *)ut->context;
        delete rep;
        ut->context = nullptr;
    }
}


static int64_t U_CALLCONV
repTextLength(UText *ut) {
    const Replaceable *replSrc = (const Replaceable *)ut->context;
    int32_t  len = replSrc->length();
    return len;
}


static UBool U_CALLCONV
repTextAccess(UText *ut, int64_t index, UBool forward) {
    const Replaceable *rep=(const Replaceable *)ut->context;
    int32_t length=rep->length();   // Full length of the input text (bigger than a chunk)

    // clip the requested index to the limits of the text.
    int32_t index32 = pinIndex(index, length);
    U_ASSERT(index<=INT32_MAX);


    /*
     * Compute start/limit boundaries around index, for a segment of text
     * to be extracted.
     * To allow for the possibility that our user gave an index to the trailing
     * half of a surrogate pair, we must request one extra preceding char16_t when
     * going in the forward direction.  This will ensure that the buffer has the
     * entire code point at the specified index.
     */
    if(forward) {

        if (index32>=ut->chunkNativeStart && index32<ut->chunkNativeLimit) {
            // Buffer already contains the requested position.
            ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
            return true;
        }
        if (index32>=length && ut->chunkNativeLimit==length) {
            // Request for end of string, and buffer already extends up to it.
            // Can't get the data, but don't change the buffer.
            ut->chunkOffset = length - (int32_t)ut->chunkNativeStart;
            return false;
        }

        ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1;
        // Going forward, so we want to have the buffer with stuff at and beyond
        //   the requested index.  The -1 gets us one code point before the
        //   requested index also, to handle the case of the index being on
        //   a trail surrogate of a surrogate pair.
        if(ut->chunkNativeLimit > length) {
            ut->chunkNativeLimit = length;
        }
        // unless buffer ran off end, start is index-1.
        ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE;
        if(ut->chunkNativeStart < 0) {
            ut->chunkNativeStart = 0;
        }
    } else {
        // Reverse iteration.  Fill buffer with data preceding the requested index.
        if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) {
            // Requested position already in buffer.
            ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart;
            return true;
        }
        if (index32==0 && ut->chunkNativeStart==0) {
            // Request for start, buffer already begins at start.
            //  No data, but keep the buffer as is.
            ut->chunkOffset = 0;
            return false;
        }

        // Figure out the bounds of the chunk to extract for reverse iteration.
        // Need to worry about chunk not splitting surrogate pairs, and while still
        // containing the data we need.
        // Fix by requesting a chunk that includes an extra char16_t at the end.
        // If this turns out to be a lead surrogate, we can lop it off and still have
        //   the data we wanted.
        ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE;
        if (ut->chunkNativeStart < 0) {
            ut->chunkNativeStart = 0;
        }

        ut->chunkNativeLimit = index32 + 1;
        if (ut->chunkNativeLimit > length) {
            ut->chunkNativeLimit = length;
        }
    }

    // Extract the new chunk of text from the Replaceable source.
    ReplExtra *ex = (ReplExtra *)ut->pExtra;
    // UnicodeString with its buffer a writable alias to the chunk buffer
    UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/);
    rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeLimit, buffer);

    ut->chunkContents  = ex->s;
    ut->chunkLength    = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart);
    ut->chunkOffset    = (int32_t)(index32 - ut->chunkNativeStart);

    // Surrogate pairs from the input text must not span chunk boundaries.
    // If end of chunk could be the start of a surrogate, trim it off.
    if (ut->chunkNativeLimit < length &&
        U16_IS_LEAD(ex->s[ut->chunkLength-1])) {
            ut->chunkLength--;
            ut->chunkNativeLimit--;
            if (ut->chunkOffset > ut->chunkLength) {
                ut->chunkOffset = ut->chunkLength;
            }
        }

    // if the first char16_t in the chunk could be the trailing half of a surrogate pair,
    // trim it off.
    if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) {
        ++(ut->chunkContents);
        ++(ut->chunkNativeStart);
        --(ut->chunkLength);
        --(ut->chunkOffset);
    }

    // adjust the index/chunkOffset to a code point boundary
    U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset);

    // Use fast indexing for get/setNativeIndex()
    ut->nativeIndexingLimit = ut->chunkLength;

    return true;
}



static int32_t U_CALLCONV
repTextExtract(UText *ut,
               int64_t start, int64_t limit,
               char16_t *dest, int32_t destCapacity,
               UErrorCode *status) {
    const Replaceable *rep=(const Replaceable *)ut->context;
    int32_t  length=rep->length();

    if(U_FAILURE(*status)) {
        return 0;
    }
    if(destCapacity<0 || (dest==nullptr && destCapacity>0)) {
        *status=U_ILLEGAL_ARGUMENT_ERROR;
    }
    if(start>limit) {
        *status=U_INDEX_OUTOFBOUNDS_ERROR;
        return 0;
    }

    int32_t  start32 = pinIndex(start, length);
    int32_t  limit32 = pinIndex(limit, length);

    // adjust start, limit if they point to trail half of surrogates
    if (start32<length && U16_IS_TRAIL(rep->charAt(start32)) &&
        U_IS_SUPPLEMENTARY(rep->char32At(start32))){
            start32--;
    }
    if (limit32<length && U16_IS_TRAIL(rep->charAt(limit32)) &&
        U_IS_SUPPLEMENTARY(rep->char32At(limit32))){
            limit32--;
    }

    length=limit32-start32;
    if(length>destCapacity) {
        limit32 = start32 + destCapacity;
    }
    UnicodeString buffer(dest, 0, destCapacity); // writable alias
    rep->extractBetween(start32, limit32, buffer);
    repTextAccess(ut, limit32, true);

    return u_terminateUChars(dest, destCapacity, length, status);
}

static int32_t U_CALLCONV
repTextReplace(UText *ut,
               int64_t start, int64_t limit,
               const char16_t *src, int32_t length,
               UErrorCode *status) {
    Replaceable *rep=(Replaceable *)ut->context;
    int32_t oldLength;

    if(U_FAILURE(*status)) {
        return 0;
    }
    if(src==nullptr && length!=0) {
        *status=U_ILLEGAL_ARGUMENT_ERROR;
        return 0;
    }
    oldLength=rep->length(); // will subtract from new length
    if(start>limit ) {
        *status=U_INDEX_OUTOFBOUNDS_ERROR;
        return 0;
    }

    int32_t start32 = pinIndex(start, oldLength);
    int32_t limit32 = pinIndex(limit, oldLength);

    // Snap start & limit to code point boundaries.
    if (start32<oldLength && U16_IS_TRAIL(rep->charAt(start32)) &&
        start32>0 && U16_IS_LEAD(rep->charAt(start32-1)))
    {
            start32--;
    }
    if (limit32<oldLength && U16_IS_LEAD(rep->charAt(limit32-1)) &&
        U16_IS_TRAIL(rep->charAt(limit32)))
    {
            limit32++;
    }

    // Do the actual replace operation using methods of the Replaceable class
    UnicodeString replStr(length < 0, src, length); // read-only alias
    rep->handleReplaceBetween(start32, limit32, replStr);
    int32_t newLength = rep->length();
    int32_t lengthDelta = newLength - oldLength;

    // Is the UText chunk buffer OK?
    if (ut->chunkNativeLimit > start32) {
        // this replace operation may have impacted the current chunk.
        // invalidate it, which will force a reload on the next access.
        invalidateChunk(ut);
    }

    // set the iteration position to the end of the newly inserted replacement text.
    int32_t newIndexPos = limit32 + lengthDelta;
    repTextAccess(ut, newIndexPos, true);

    return lengthDelta;
}


static void U_CALLCONV
repTextCopy(UText *ut,
                int64_t start, int64_t limit,
                int64_t destIndex,
                UBool move,
                UErrorCode *status)
{
    Replaceable *rep=(Replaceable *)ut->context;
    int32_t length=rep->length();

    if(U_FAILURE(*status)) {
        return;
    }
    if (start>limit || (start<destIndex && destIndex<limit))
    {
        *status=U_INDEX_OUTOFBOUNDS_ERROR;
        return;
    }

    int32_t start32     = pinIndex(start, length);
    int32_t limit32     = pinIndex(limit, length);
    int32_t destIndex32 = pinIndex(destIndex, length);

    // TODO:  snap input parameters to code point boundaries.

    if(move) {
        // move: copy to destIndex, then replace original with nothing
        int32_t segLength=limit32-start32;
        rep->copy(start32, limit32, destIndex32);
        if(destIndex32<start32) {
            start32+=segLength;
            limit32+=segLength;
        }
        rep->handleReplaceBetween(start32, limit32, UnicodeString());
    } else {
        // copy
        rep->copy(start32, limit32, destIndex32);
    }

    // If the change to the text touched the region in the chunk buffer,
    //  invalidate the buffer.
    int32_t firstAffectedIndex = destIndex32;
    if (move && start32<firstAffectedIndex) {
        firstAffectedIndex = start32;
    }
    if (firstAffectedIndex < ut->chunkNativeLimit) {
        // changes may have affected range covered by the chunk
        invalidateChunk(ut);
    }

    // Put iteration position at the newly inserted (moved) block,
    int32_t  nativeIterIndex = destIndex32 + limit32 - start32;
    if (move && destIndex32>start32) {
        // moved a block of text towards the end of the string.
        nativeIterIndex = destIndex32;
    }

    // Set position, reload chunk if needed.
    repTextAccess(ut, nativeIterIndex, true);
}

static const struct UTextFuncs repFuncs =
{
    sizeof(UTextFuncs),
    0, 0, 0,           // Reserved alignment padding
    repTextClone,
    repTextLength,
    repTextAccess,
    repTextExtract,
    repTextReplace,
    repTextCopy,
    nullptr,              // MapOffsetToNative,
    nullptr,              // MapIndexToUTF16,
    repTextClose,
    nullptr,              // spare 1
    nullptr,              // spare 2
    nullptr               // spare 3
};


U_CAPI UText * U_EXPORT2
utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status)
{
    if(U_FAILURE(*status)) {
        return nullptr;
    }
    if(rep==nullptr) {
        *status=U_ILLEGAL_ARGUMENT_ERROR;
        return nullptr;
    }
    ut = utext_setup(ut, sizeof(ReplExtra), status);
    if(U_FAILURE(*status)) {
        return ut;
    }

    ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE);
    if(rep->hasMetaData()) {
        ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA);
    }

    ut->pFuncs  = &repFuncs;
    ut->context =  rep;
    return ut;
}

U_CDECL_END








//------------------------------------------------------------------------------
//
//     UText implementation for UnicodeString (read/write)  and
//                    for const UnicodeString (read only)
//             (same implementation, only the flags are different)
//
//         Use of UText data members:
//            context    pointer to UnicodeString
//            p          pointer to UnicodeString IF this UText owns the string
//                       and it must be deleted on close().  nullptr otherwise.
//
//------------------------------------------------------------------------------

U_CDECL_BEGIN


static UText * U_CALLCONV
unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
    // First do a generic shallow clone.  Does everything needed for the UText struct itself.
    dest = shallowTextClone(dest, src, status);

    // For deep clones, make a copy of the UnicodeSring.
    //  The copied UnicodeString storage is owned by the newly created UText clone.
    //  A non-nullptr pointer in UText.p is the signal to the close() function to delete
    //    the UText.
    //
    if (deep && U_SUCCESS(*status)) {
        const UnicodeString *srcString = (const UnicodeString *)src->context;
        dest->context = new UnicodeString(*srcString);
        dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);

        // with deep clone, the copy is writable, even when the source is not.
        dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
    }
    return dest;
}

static void U_CALLCONV
unistrTextClose(UText *ut) {
    // Most of the work of close is done by the generic UText framework close.
    // All that needs to be done here is delete the UnicodeString if the UText
    //  owns it.  This occurs if the UText was created by cloning.
    if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
        UnicodeString *str = (UnicodeString *)ut->context;
        delete str;
        ut->context = nullptr;
    }
}


static int64_t U_CALLCONV
unistrTextLength(UText *t) {
    return ((const UnicodeString *)t->context)->length();
}


static UBool U_CALLCONV
unistrTextAccess(UText *ut, int64_t index, UBool  forward) {
    int32_t length  = ut->chunkLength;
    ut->chunkOffset = pinIndex(index, length);

    // Check whether request is at the start or end
    UBool retVal = (forward && index<length) || (!forward && index>0);
    return retVal;
}



static int32_t U_CALLCONV
unistrTextExtract(UText *t,
                  int64_t start, int64_t limit,
                  char16_t *dest, int32_t destCapacity,
                  UErrorCode *pErrorCode) {
    const UnicodeString *us=(const UnicodeString *)t->context;
    int32_t length=us->length();

    if(U_FAILURE(*pErrorCode)) {
        return 0;
    }
    if(destCapacity<0 || (dest==nullptr && destCapacity>0)) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
    }
    if(start<0 || start>limit) {
        *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
        return 0;
    }

    int32_t start32 = start<length ? us->getChar32Start((int32_t)start) : length;
    int32_t limit32 = limit<length ? us->getChar32Start((int32_t)limit) : length;

    length=limit32-start32;
    if (destCapacity>0 && dest!=nullptr) {
        int32_t trimmedLength = length;
        if(trimmedLength>destCapacity) {
            trimmedLength=destCapacity;
        }
        us->extract(start32, trimmedLength, dest);
        t->chunkOffset = start32+trimmedLength;
    } else {
        t->chunkOffset = start32;
    }
    u_terminateUChars(dest, destCapacity, length, pErrorCode);
    return length;
}

static int32_t U_CALLCONV
unistrTextReplace(UText *ut,
                  int64_t start, int64_t limit,
                  const char16_t *src, int32_t length,
                  UErrorCode *pErrorCode) {
    UnicodeString *us=(UnicodeString *)ut->context;
    int32_t oldLength;

    if(U_FAILURE(*pErrorCode)) {
        return 0;
    }
    if(src==nullptr && length!=0) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
    }
    if(start>limit) {
        *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
        return 0;
    }
    oldLength=us->length();
    int32_t start32 = pinIndex(start, oldLength);
    int32_t limit32 = pinIndex(limit, oldLength);
    if (start32 < oldLength) {
        start32 = us->getChar32Start(start32);
    }
    if (limit32 < oldLength) {
        limit32 = us->getChar32Start(limit32);
    }

    // replace
    us->replace(start32, limit32-start32, src, length);
    int32_t newLength = us->length();

    // Update the chunk description.
    ut->chunkContents    = us->getBuffer();
    ut->chunkLength      = newLength;
    ut->chunkNativeLimit = newLength;
    ut->nativeIndexingLimit = newLength;

    // Set iteration position to the point just following the newly inserted text.
    int32_t lengthDelta = newLength - oldLength;
    ut->chunkOffset = limit32 + lengthDelta;

    return lengthDelta;
}

static void U_CALLCONV
unistrTextCopy(UText *ut,
               int64_t start, int64_t limit,
               int64_t destIndex,
               UBool move,
               UErrorCode *pErrorCode) {
    UnicodeString *us=(UnicodeString *)ut->context;
    int32_t length=us->length();

    if(U_FAILURE(*pErrorCode)) {
        return;
    }
    int32_t start32 = pinIndex(start, length);
    int32_t limit32 = pinIndex(limit, length);
    int32_t destIndex32 = pinIndex(destIndex, length);

    if( start32>limit32 || (start32<destIndex32 && destIndex32<limit32)) {
        *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
        return;
    }

    if(move) {
        // move: copy to destIndex, then remove original
        int32_t segLength=limit32-start32;
        us->copy(start32, limit32, destIndex32);
        if(destIndex32<start32) {
            start32+=segLength;
        }
        us->remove(start32, segLength);
    } else {
        // copy
        us->copy(start32, limit32, destIndex32);
    }

    // update chunk description, set iteration position.
    ut->chunkContents = us->getBuffer();
    if (move==false) {
        // copy operation, string length grows
        ut->chunkLength += limit32-start32;
        ut->chunkNativeLimit = ut->chunkLength;
        ut->nativeIndexingLimit = ut->chunkLength;
    }

    // Iteration position to end of the newly inserted text.
    ut->chunkOffset = destIndex32+limit32-start32;
    if (move && destIndex32>start32) {
        ut->chunkOffset = destIndex32;
    }

}

static const struct UTextFuncs unistrFuncs =
{
    sizeof(UTextFuncs),
    0, 0, 0,             // Reserved alignment padding
    unistrTextClone,
    unistrTextLength,
    unistrTextAccess,
    unistrTextExtract,
    unistrTextReplace,
    unistrTextCopy,
    nullptr,                // MapOffsetToNative,
    nullptr,                // MapIndexToUTF16,
    unistrTextClose,
    nullptr,                // spare 1
    nullptr,                // spare 2
    nullptr                 // spare 3
};



U_CDECL_END


U_CAPI UText * U_EXPORT2
utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) {
    ut = utext_openConstUnicodeString(ut, s, status);
    if (U_SUCCESS(*status)) {
        ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
    }
    return ut;
}



U_CAPI UText * U_EXPORT2
utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) {
    if (U_SUCCESS(*status) && s->isBogus()) {
        // The UnicodeString is bogus, but we still need to detach the UText
        //   from whatever it was hooked to before, if anything.
        utext_openUChars(ut, nullptr, 0, status);
        *status = U_ILLEGAL_ARGUMENT_ERROR;
        return ut;
    }
    ut = utext_setup(ut, 0, status);
    //    note:  use the standard (writable) function table for UnicodeString.
    //           The flag settings disable writing, so having the functions in
    //           the table is harmless.
    if (U_SUCCESS(*status)) {
        ut->pFuncs              = &unistrFuncs;
        ut->context             = s;
        ut->providerProperties  = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
        ut->chunkContents       = s->getBuffer();
        ut->chunkLength         = s->length();
        ut->chunkNativeStart    = 0;
        ut->chunkNativeLimit    = ut->chunkLength;
        ut->nativeIndexingLimit = ut->chunkLength;
    }
    return ut;
}

//------------------------------------------------------------------------------
//
//     UText implementation for const char16_t * strings
//
//         Use of UText data members:
//            context    pointer to UnicodeString
//            a          length.  -1 if not yet known.
//
//         TODO:  support 64 bit lengths.
//
//------------------------------------------------------------------------------

U_CDECL_BEGIN


static UText * U_CALLCONV
ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) {
    // First do a generic shallow clone.
    dest = shallowTextClone(dest, src, status);

    // For deep clones, make a copy of the string.
    //  The copied storage is owned by the newly created clone.
    //  A non-nullptr pointer in UText.p is the signal to the close() function to delete
    //    it.
    //
    if (deep && U_SUCCESS(*status)) {
        U_ASSERT(utext_nativeLength(dest) < INT32_MAX);
        int32_t  len = (int32_t)utext_nativeLength(dest);

        // The cloned string IS going to be NUL terminated, whether or not the original was.
        const char16_t *srcStr = (const char16_t *)src->context;
        char16_t *copyStr = (char16_t *)uprv_malloc((len+1) * sizeof(char16_t));
        if (copyStr == nullptr) {
            *status = U_MEMORY_ALLOCATION_ERROR;
        } else {
            int64_t i;
            for (i=0; i<len; i++) {
                copyStr[i] = srcStr[i];
            }
            copyStr[len] = 0;
            dest->context = copyStr;
            dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
        }
    }
    return dest;
}


static void U_CALLCONV
ucstrTextClose(UText *ut) {
    // Most of the work of close is done by the generic UText framework close.
    // All that needs to be done here is delete the string if the UText
    //  owns it.  This occurs if the UText was created by cloning.
    if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
        char16_t *s = (char16_t *)ut->context;
        uprv_free(s);
        ut->context = nullptr;
    }
}



static int64_t U_CALLCONV
ucstrTextLength(UText *ut) {
    if (ut->a < 0) {
        // null terminated, we don't yet know the length. Scan for it.
        //    Access is not convenient for doing this
        //    because the current iteration position can't be changed.
        const char16_t  *str = (const char16_t *)ut->context;
        for (;;) {
            if (str[ut->chunkNativeLimit] == 0) {
                break;
            }
            ut->chunkNativeLimit++;
        }
        ut->a = ut->chunkNativeLimit;
        ut->chunkLength = (int32_t)ut->chunkNativeLimit;
        ut->nativeIndexingLimit = ut->chunkLength;
        ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
    }
    return ut->a;
}


static UBool U_CALLCONV
ucstrTextAccess(UText *ut, int64_t index, UBool  forward) {
    const char16_t *str   = (const char16_t *)ut->context;

    // pin the requested index to the bounds of the string,
    //  and set current iteration position.
    if (index<0) {
        index = 0;
    } else if (index < ut->chunkNativeLimit) {
        // The request data is within the chunk as it is known so far.
        // Put index on a code point boundary.
        U16_SET_CP_START(str, 0, index);
    } else if (ut->a >= 0) {
        // We know the length of this string, and the user is requesting something
        // at or beyond the length.  Pin the requested index to the length.
        index = ut->a;
    } else {
        // Null terminated string, length not yet known, and the requested index
        //  is beyond where we have scanned so far.
        //  Scan to 32 UChars beyond the requested index.  The strategy here is
        //  to avoid fully scanning a long string when the caller only wants to
        //  see a few characters at its beginning.
        int32_t scanLimit = (int32_t)index + 32;
        if ((index + 32)>INT32_MAX || (index + 32)<0 ) {   // note: int64 expression
            scanLimit = INT32_MAX;
        }

        int32_t chunkLimit = (int32_t)ut->chunkNativeLimit;
        for (; chunkLimit<scanLimit; chunkLimit++) {
            if (str[chunkLimit] == 0) {
                // We found the end of the string.  Remember it, pin the requested index to it,
                //  and bail out of here.
                ut->a = chunkLimit;
                ut->chunkLength = chunkLimit;
                ut->nativeIndexingLimit = chunkLimit;
                if (index >= chunkLimit) {
                    index = chunkLimit;
                } else {
                    U16_SET_CP_START(str, 0, index);
                }

                ut->chunkNativeLimit = chunkLimit;
                ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
                goto breakout;
            }
        }
        // We scanned through the next batch of UChars without finding the end.
        U16_SET_CP_START(str, 0, index);
        if (chunkLimit == INT32_MAX) {
            // Scanned to the limit of a 32 bit length.
            // Forceably trim the overlength string back so length fits in int32
            //  TODO:  add support for 64 bit strings.
            ut->a = chunkLimit;
            ut->chunkLength = chunkLimit;
            ut->nativeIndexingLimit = chunkLimit;
            if (index > chunkLimit) {
                index = chunkLimit;
            }
            ut->chunkNativeLimit = chunkLimit;
            ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
        } else {
            // The endpoint of a chunk must not be left in the middle of a surrogate pair.
            // If the current end is on a lead surrogate, back the end up by one.
            // It doesn't matter if the end char happens to be an unpaired surrogate,
            //    and it's simpler not to worry about it.
            if (U16_IS_LEAD(str[chunkLimit-1])) {
                --chunkLimit;
            }
            // Null-terminated chunk with end still unknown.
            // Update the chunk length to reflect what has been scanned thus far.
            // That the full length is still unknown is (still) flagged by
            //    ut->a being < 0.
            ut->chunkNativeLimit = chunkLimit;
            ut->nativeIndexingLimit = chunkLimit;
            ut->chunkLength = chunkLimit;
        }

    }
breakout:
    U_ASSERT(index<=INT32_MAX);
    ut->chunkOffset = (int32_t)index;

    // Check whether request is at the start or end
    UBool retVal = (forward && index<ut->chunkNativeLimit) || (!forward && index>0);
    return retVal;
}



static int32_t U_CALLCONV
ucstrTextExtract(UText *ut,
                  int64_t start, int64_t limit,
                  char16_t *dest, int32_t destCapacity,
                  UErrorCode *pErrorCode)
{
    if(U_FAILURE(*pErrorCode)) {
        return 0;
    }
    if(destCapacity<0 || (dest==nullptr && destCapacity>0) || start>limit) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return 0;
    }

    //const char16_t *s=(const char16_t *)ut->context;
    int32_t si, di;

    int32_t start32;
    int32_t limit32;

    // Access the start.  Does two things we need:
    //   Pins 'start' to the length of the string, if it came in out-of-bounds.
    //   Snaps 'start' to the beginning of a code point.
    ucstrTextAccess(ut, start, true);
    const char16_t *s=ut->chunkContents;
    start32 = ut->chunkOffset;

    int32_t strLength=(int32_t)ut->a;
    if (strLength >= 0) {
        limit32 = pinIndex(limit, strLength);
    } else {
        limit32 = pinIndex(limit, INT32_MAX);
    }
    di = 0;
    for (si=start32; si<limit32; si++) {
        if (strLength<0 && s[si]==0) {
            // Just hit the end of a null-terminated string.
            ut->a = si;               // set string length for this UText
            ut->chunkNativeLimit    = si;
            ut->chunkLength         = si;
            ut->nativeIndexingLimit = si;
            strLength               = si;
            limit32                 = si;
            break;
        }
        U_ASSERT(di>=0); /* to ensure di never exceeds INT32_MAX, which must not happen logically */
        if (di<destCapacity) {
            // only store if there is space.
            dest[di] = s[si];
        } else {
            if (strLength>=0) {
                // We have filled the destination buffer, and the string length is known.
                //  Cut the loop short.  There is no need to scan string termination.
                di = limit32 - start32;
                si = limit32;
                break;
            }
        }
        di++;
    }

    // If the limit index points to a lead surrogate of a pair,
    //   add the corresponding trail surrogate to the destination.
    if (si>0 && U16_IS_LEAD(s[si-1]) &&
            ((si<strLength || strLength<0)  && U16_IS_TRAIL(s[si])))
    {
        if (di<destCapacity) {
            // store only if there is space in the output buffer.
            dest[di++] = s[si];
        }
        si++;
    }

    // Put iteration position at the point just following the extracted text
    if (si <= ut->chunkNativeLimit) {
        ut->chunkOffset = si;
    } else {
        ucstrTextAccess(ut, si, true);
    }

    // Add a terminating NUL if space in the buffer permits,
    // and set the error status as required.
    u_terminateUChars(dest, destCapacity, di, pErrorCode);
    return di;
}

static const struct UTextFuncs ucstrFuncs =
{
    sizeof(UTextFuncs),
    0, 0, 0,           // Reserved alignment padding
    ucstrTextClone,
    ucstrTextLength,
    ucstrTextAccess,
    ucstrTextExtract,
    nullptr,              // Replace
    nullptr,              // Copy
    nullptr,              // MapOffsetToNative,
    nullptr,              // MapIndexToUTF16,
    ucstrTextClose,
    nullptr,              // spare 1
    nullptr,              // spare 2
    nullptr,              // spare 3
};

U_CDECL_END

static const char16_t gEmptyUString[] = {0};

U_CAPI UText * U_EXPORT2
utext_openUChars(UText *ut, const char16_t *s, int64_t length, UErrorCode *status) {
    if (U_FAILURE(*status)) {
        return nullptr;
    }
    if(s==nullptr && length==0) {
        s = gEmptyUString;
    }
    if (s==nullptr || length < -1 || length>INT32_MAX) {
        *status = U_ILLEGAL_ARGUMENT_ERROR;
        return nullptr;
    }
    ut = utext_setup(ut, 0, status);
    if (U_SUCCESS(*status)) {
        ut->pFuncs               = &ucstrFuncs;
        ut->context              = s;
        ut->providerProperties   = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
        if (length==-1) {
            ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
        }
        ut->a                    = length;
        ut->chunkContents        = s;
        ut->chunkNativeStart     = 0;
        ut->chunkNativeLimit     = length>=0? length : 0;
        ut->chunkLength          = (int32_t)ut->chunkNativeLimit;
        ut->chunkOffset          = 0;
        ut->nativeIndexingLimit  = ut->chunkLength;
    }
    return ut;
}


//------------------------------------------------------------------------------
//
//     UText implementation for text from ICU CharacterIterators
//
//         Use of UText data members:
//            context    pointer to the CharacterIterator
//            a          length of the full text.
//            p          pointer to  buffer 1
//            b          start index of local buffer 1 contents
//            q          pointer to buffer 2
//            c          start index of local buffer 2 contents
//            r          pointer to the character iterator if the UText owns it.
//                       Null otherwise.
//
//------------------------------------------------------------------------------
#define CIBufSize 16

U_CDECL_BEGIN
static void U_CALLCONV
charIterTextClose(UText *ut) {
    // Most of the work of close is done by the generic UText framework close.
    // All that needs to be done here is delete the CharacterIterator if the UText
    //  owns it.  This occurs if the UText was created by cloning.
    CharacterIterator *ci = (CharacterIterator *)ut->r;
    delete ci;
    ut->r = nullptr;
}

static int64_t U_CALLCONV
charIterTextLength(UText *ut) {
    return (int32_t)ut->a;
}

static UBool U_CALLCONV
charIterTextAccess(UText *ut, int64_t index, UBool  forward) {
    CharacterIterator *ci   = (CharacterIterator *)ut->context;

    int32_t clippedIndex = (int32_t)index;
    if (clippedIndex<0) {
        clippedIndex=0;
    } else if (clippedIndex>=ut->a) {
        clippedIndex=(int32_t)ut->a;
    }
    int32_t neededIndex = clippedIndex;
    if (!forward && neededIndex>0) {
        // reverse iteration, want the position just before what was asked for.
        neededIndex--;
    } else if (forward && neededIndex==ut->a && neededIndex>0) {
        // Forward iteration, don't ask for something past the end of the text.
        neededIndex--;
    }

    // Find the native index of the start of the buffer containing what we want.
    neededIndex -= neededIndex % CIBufSize;

    char16_t *buf = nullptr;
    UBool  needChunkSetup = true;
    int    i;
    if (ut->chunkNativeStart == neededIndex) {
        // The buffer we want is already the current chunk.
        needChunkSetup = false;
    } else if (ut->b == neededIndex) {
        // The first buffer (buffer p) has what we need.
        buf = (char16_t *)ut->p;
    } else if (ut->c == neededIndex) {
        // The second buffer (buffer q) has what we need.
        buf = (char16_t *)ut->q;
    } else {
        // Neither buffer already has what we need.
        // Load new data from the character iterator.
        // Use the buf that is not the current buffer.
        buf = (char16_t *)ut->p;
        if (ut->p == ut->chunkContents) {
            buf = (char16_t *)ut->q;
        }
        ci->setIndex(neededIndex);
        for (i=0; i<CIBufSize; i++) {
            buf[i] = ci->nextPostInc();
            if (i+neededIndex > ut->a) {
                break;
            }
        }
    }

    // We have a buffer with the data we need.
    // Set it up as the current chunk, if it wasn't already.
    if (needChunkSetup) {
        ut->chunkContents = buf;
        ut->chunkLength   = CIBufSize;
        ut->chunkNativeStart = neededIndex;
        ut->chunkNativeLimit = neededIndex + CIBufSize;
        if (ut->chunkNativeLimit > ut->a) {
            ut->chunkNativeLimit = ut->a;
            ut->chunkLength  = (int32_t)(ut->chunkNativeLimit)-(int32_t)(ut->chunkNativeStart);
        }
        ut->nativeIndexingLimit = ut->chunkLength;
        U_ASSERT(ut->chunkOffset>=0 && ut->chunkOffset<=CIBufSize);
    }
    ut->chunkOffset = clippedIndex - (int32_t)ut->chunkNativeStart;
    UBool success = (forward? ut->chunkOffset<ut->chunkLength : ut->chunkOffset>0);
    return success;
}

static UText * U_CALLCONV
charIterTextClone(UText *dest, const UText *src, UBool deep, UErrorCode * status) {
    if (U_FAILURE(*status)) {
        return nullptr;
    }

    if (deep) {
        // There is no CharacterIterator API for cloning the underlying text storage.
        *status = U_UNSUPPORTED_ERROR;
        return nullptr;
    } else {
        CharacterIterator *srcCI =(CharacterIterator *)src->context;
        srcCI = srcCI->clone();
        dest = utext_openCharacterIterator(dest, srcCI, status);
        if (U_FAILURE(*status)) {
            return dest;
        }
        // cast off const on getNativeIndex.
        //   For CharacterIterator based UTexts, this is safe, the operation is const.
        int64_t  ix = utext_getNativeIndex((UText *)src);
        utext_setNativeIndex(dest, ix);
        dest->r = srcCI;    // flags that this UText owns the CharacterIterator
    }
    return dest;
}

static int32_t U_CALLCONV
charIterTextExtract(UText *ut,
                  int64_t start, int64_t limit,
                  char16_t *dest, int32_t destCapacity,
                  UErrorCode *status)
{
    if(U_FAILURE(*status)) {
        return 0;
    }
    if(destCapacity<0 || (dest==nullptr && destCapacity>0) || start>limit) {
        *status=U_ILLEGAL_ARGUMENT_ERROR;
        return 0;
    }
    int32_t  length  = (int32_t)ut->a;
    int32_t  start32 = pinIndex(start, length);
    int32_t  limit32 = pinIndex(limit, length);
    int32_t  desti   = 0;
    int32_t  srci;
    int32_t  copyLimit;

    CharacterIterator *ci = (CharacterIterator *)ut->context;
    ci->setIndex32(start32);   // Moves ix to lead of surrogate pair, if needed.
    srci = ci->getIndex();
    copyLimit = srci;
    while (srci<limit32) {
        UChar32 c = ci->next32PostInc();
        int32_t  len = U16_LENGTH(c);
        U_ASSERT(desti+len>0); /* to ensure desti+len never exceeds MAX_INT32, which must not happen logically */
        if (desti+len <= destCapacity) {
            U16_APPEND_UNSAFE(dest, desti, c);
            copyLimit = srci+len;
        } else {
            desti += len;
            *status = U_BUFFER_OVERFLOW_ERROR;
        }
        srci += len;
    }

    charIterTextAccess(ut, copyLimit, true);

    u_terminateUChars(dest, destCapacity, desti, status);
    return desti;
}

static const struct UTextFuncs charIterFuncs =
{
    sizeof(UTextFuncs),
    0, 0, 0,             // Reserved alignment padding
    charIterTextClone,
    charIterTextLength,
    charIterTextAccess,
    charIterTextExtract,
    nullptr,                // Replace
    nullptr,                // Copy
    nullptr,                // MapOffsetToNative,
    nullptr,                // MapIndexToUTF16,
    charIterTextClose,
    nullptr,                // spare 1
    nullptr,                // spare 2
    nullptr                 // spare 3
};
U_CDECL_END


U_CAPI UText * U_EXPORT2
utext_openCharacterIterator(UText *ut, CharacterIterator *ci, UErrorCode *status) {
    if (U_FAILURE(*status)) {
        return nullptr;
    }

    if (ci->startIndex() > 0) {
        // No support for CharacterIterators that do not start indexing from zero.
        *status = U_UNSUPPORTED_ERROR;
        return nullptr;
    }

    // Extra space in UText for 2 buffers of CIBufSize UChars each.
    int32_t  extraSpace = 2 * CIBufSize * sizeof(char16_t);
    ut = utext_setup(ut, extraSpace, status);
    if (U_SUCCESS(*status)) {
        ut->pFuncs                = &charIterFuncs;
        ut->context              = ci;
        ut->providerProperties   = 0;
        ut->a                    = ci->endIndex();        // Length of text
        ut->p                    = ut->pExtra;            // First buffer
        ut->b                    = -1;                    // Native index of first buffer contents
        ut->q                    = (char16_t*)ut->pExtra+CIBufSize;  // Second buffer
        ut->c                    = -1;                    // Native index of second buffer contents

        // Initialize current chunk contents to be empty.
        //   First access will fault something in.
        //   Note:  The initial nativeStart and chunkOffset must sum to zero
        //          so that getNativeIndex() will correctly compute to zero
        //          if no call to Access() has ever been made.  They can't be both
        //          zero without Access() thinking that the chunk is valid.
        ut->chunkContents        = (char16_t *)ut->p;
        ut->chunkNativeStart     = -1;
        ut->chunkOffset          = 1;
        ut->chunkNativeLimit     = 0;
        ut->chunkLength          = 0;
        ut->nativeIndexingLimit  = ut->chunkOffset;  // enables native indexing
    }
    return ut;
}