aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/icu/common/unormcmp.cpp
blob: e11e716c8db6dde6126875a8bbc54b3872f88777 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
*******************************************************************************
*
*   Copyright (C) 2001-2014, International Business Machines
*   Corporation and others.  All Rights Reserved.
*
*******************************************************************************
*   file name:  unormcmp.cpp
*   encoding:   UTF-8
*   tab size:   8 (not used)
*   indentation:4
*
*   created on: 2004sep13
*   created by: Markus W. Scherer
*
*   unorm_compare() function moved here from unorm.cpp for better modularization.
*   Depends on both normalization and case folding.
*   Allows unorm.cpp to not depend on any character properties code.
*/

#include "unicode/utypes.h"

#if !UCONFIG_NO_NORMALIZATION

#include "unicode/unorm.h"
#include "unicode/ustring.h"
#include "cmemory.h"
#include "normalizer2impl.h"
#include "ucase.h"
#include "uprops.h"
#include "ustr_imp.h"

U_NAMESPACE_USE

/* compare canonically equivalent ------------------------------------------- */

/*
 * Compare two strings for canonical equivalence.
 * Further options include case-insensitive comparison and
 * code point order (as opposed to code unit order).
 *
 * In this function, canonical equivalence is optional as well.
 * If canonical equivalence is tested, then both strings must fulfill
 * the FCD check.
 *
 * Semantically, this is equivalent to
 *   strcmp[CodePointOrder](NFD(foldCase(s1)), NFD(foldCase(s2)))
 * where code point order, NFD and foldCase are all optional.
 *
 * String comparisons almost always yield results before processing both strings
 * completely.
 * They are generally more efficient working incrementally instead of
 * performing the sub-processing (strlen, normalization, case-folding)
 * on the entire strings first.
 *
 * It is also unnecessary to not normalize identical characters.
 *
 * This function works in principle as follows:
 *
 * loop {
 *   get one code unit c1 from s1 (-1 if end of source)
 *   get one code unit c2 from s2 (-1 if end of source)
 *
 *   if(either string finished) {
 *     return result;
 *   }
 *   if(c1==c2) {
 *     continue;
 *   }
 *
 *   // c1!=c2
 *   try to decompose/case-fold c1/c2, and continue if one does;
 *
 *   // still c1!=c2 and neither decomposes/case-folds, return result
 *   return c1-c2;
 * }
 *
 * When a character decomposes, then the pointer for that source changes to
 * the decomposition, pushing the previous pointer onto a stack.
 * When the end of the decomposition is reached, then the code unit reader
 * pops the previous source from the stack.
 * (Same for case-folding.)
 *
 * This is complicated further by operating on variable-width UTF-16.
 * The top part of the loop works on code units, while lookups for decomposition
 * and case-folding need code points.
 * Code points are assembled after the equality/end-of-source part.
 * The source pointer is only advanced beyond all code units when the code point
 * actually decomposes/case-folds.
 *
 * If we were on a trail surrogate unit when assembling a code point,
 * and the code point decomposes/case-folds, then the decomposition/folding
 * result must be compared with the part of the other string that corresponds to
 * this string's lead surrogate.
 * Since we only assemble a code point when hitting a trail unit when the
 * preceding lead units were identical, we back up the other string by one unit
 * in such a case.
 *
 * The optional code point order comparison at the end works with
 * the same fix-up as the other code point order comparison functions.
 * See ustring.c and the comment near the end of this function.
 *
 * Assumption: A decomposition or case-folding result string never contains
 * a single surrogate. This is a safe assumption in the Unicode Standard.
 * Therefore, we do not need to check for surrogate pairs across
 * decomposition/case-folding boundaries.
 *
 * Further assumptions (see verifications tstnorm.cpp):
 * The API function checks for FCD first, while the core function
 * first case-folds and then decomposes. This requires that case-folding does not
 * un-FCD any strings.
 *
 * The API function may also NFD the input and turn off decomposition.
 * This requires that case-folding does not un-NFD strings either.
 *
 * TODO If any of the above two assumptions is violated,
 * then this entire code must be re-thought.
 * If this happens, then a simple solution is to case-fold both strings up front
 * and to turn off UNORM_INPUT_IS_FCD.
 * We already do this when not both strings are in FCD because makeFCD
 * would be a partial NFD before the case folding, which does not work.
 * Note that all of this is only a problem when case-folding _and_
 * canonical equivalence come together.
 * (Comments in unorm_compare() are more up to date than this TODO.)
 */

/* stack element for previous-level source/decomposition pointers */
struct CmpEquivLevel {
    const char16_t *start, *s, *limit;
};
typedef struct CmpEquivLevel CmpEquivLevel;

/**
 * Internal option for unorm_cmpEquivFold() for decomposing.
 * If not set, just do strcasecmp().
 */
#define _COMPARE_EQUIV 0x80000

/* internal function */
static int32_t
unorm_cmpEquivFold(const char16_t *s1, int32_t length1,
                   const char16_t *s2, int32_t length2,
                   uint32_t options,
                   UErrorCode *pErrorCode) {
    const Normalizer2Impl *nfcImpl;

    /* current-level start/limit - s1/s2 as current */
    const char16_t *start1, *start2, *limit1, *limit2;

    /* decomposition and case folding variables */
    const char16_t *p;
    int32_t length;

    /* stacks of previous-level start/current/limit */
    CmpEquivLevel stack1[2], stack2[2];

    /* buffers for algorithmic decompositions */
    char16_t decomp1[4], decomp2[4];

    /* case folding buffers, only use current-level start/limit */
    char16_t fold1[UCASE_MAX_STRING_LENGTH+1], fold2[UCASE_MAX_STRING_LENGTH+1];

    /* track which is the current level per string */
    int32_t level1, level2;

    /* current code units, and code points for lookups */
    UChar32 c1, c2, cp1, cp2;

    /* no argument error checking because this itself is not an API */

    /*
     * assume that at least one of the options _COMPARE_EQUIV and U_COMPARE_IGNORE_CASE is set
     * otherwise this function must behave exactly as uprv_strCompare()
     * not checking for that here makes testing this function easier
     */

    /* normalization/properties data loaded? */
    if((options&_COMPARE_EQUIV)!=0) {
        nfcImpl=Normalizer2Factory::getNFCImpl(*pErrorCode);
    } else {
        nfcImpl=nullptr;
    }
    if(U_FAILURE(*pErrorCode)) {
        return 0;
    }

    /* initialize */
    start1=s1;
    if(length1==-1) {
        limit1=nullptr;
    } else {
        limit1=s1+length1;
    }

    start2=s2;
    if(length2==-1) {
        limit2=nullptr;
    } else {
        limit2=s2+length2;
    }

    level1=level2=0;
    c1=c2=-1;

    /* comparison loop */
    for(;;) {
        /*
         * here a code unit value of -1 means "get another code unit"
         * below it will mean "this source is finished"
         */

        if(c1<0) {
            /* get next code unit from string 1, post-increment */
            for(;;) {
                if(s1==limit1 || ((c1=*s1)==0 && (limit1==nullptr || (options&_STRNCMP_STYLE)))) {
                    if(level1==0) {
                        c1=-1;
                        break;
                    }
                } else {
                    ++s1;
                    break;
                }

                /* reached end of level buffer, pop one level */
                do {
                    --level1;
                    start1=stack1[level1].start;    /*Not uninitialized*/
                } while(start1==nullptr);
                s1=stack1[level1].s;                /*Not uninitialized*/
                limit1=stack1[level1].limit;        /*Not uninitialized*/
            }
        }

        if(c2<0) {
            /* get next code unit from string 2, post-increment */
            for(;;) {
                if(s2==limit2 || ((c2=*s2)==0 && (limit2==nullptr || (options&_STRNCMP_STYLE)))) {
                    if(level2==0) {
                        c2=-1;
                        break;
                    }
                } else {
                    ++s2;
                    break;
                }

                /* reached end of level buffer, pop one level */
                do {
                    --level2;
                    start2=stack2[level2].start;    /*Not uninitialized*/
                } while(start2==nullptr);
                s2=stack2[level2].s;                /*Not uninitialized*/
                limit2=stack2[level2].limit;        /*Not uninitialized*/
            }
        }

        /*
         * compare c1 and c2
         * either variable c1, c2 is -1 only if the corresponding string is finished
         */
        if(c1==c2) {
            if(c1<0) {
                return 0;   /* c1==c2==-1 indicating end of strings */
            }
            c1=c2=-1;       /* make us fetch new code units */
            continue;
        } else if(c1<0) {
            return -1;      /* string 1 ends before string 2 */
        } else if(c2<0) {
            return 1;       /* string 2 ends before string 1 */
        }
        /* c1!=c2 && c1>=0 && c2>=0 */

        /* get complete code points for c1, c2 for lookups if either is a surrogate */
        cp1=c1;
        if(U_IS_SURROGATE(c1)) {
            char16_t c;

            if(U_IS_SURROGATE_LEAD(c1)) {
                if(s1!=limit1 && U16_IS_TRAIL(c=*s1)) {
                    /* advance ++s1; only below if cp1 decomposes/case-folds */
                    cp1=U16_GET_SUPPLEMENTARY(c1, c);
                }
            } else /* isTrail(c1) */ {
                if(start1<=(s1-2) && U16_IS_LEAD(c=*(s1-2))) {
                    cp1=U16_GET_SUPPLEMENTARY(c, c1);
                }
            }
        }

        cp2=c2;
        if(U_IS_SURROGATE(c2)) {
            char16_t c;

            if(U_IS_SURROGATE_LEAD(c2)) {
                if(s2!=limit2 && U16_IS_TRAIL(c=*s2)) {
                    /* advance ++s2; only below if cp2 decomposes/case-folds */
                    cp2=U16_GET_SUPPLEMENTARY(c2, c);
                }
            } else /* isTrail(c2) */ {
                if(start2<=(s2-2) && U16_IS_LEAD(c=*(s2-2))) {
                    cp2=U16_GET_SUPPLEMENTARY(c, c2);
                }
            }
        }

        /*
         * go down one level for each string
         * continue with the main loop as soon as there is a real change
         */

        if( level1==0 && (options&U_COMPARE_IGNORE_CASE) &&
            (length=ucase_toFullFolding((UChar32)cp1, &p, options))>=0
        ) {
            /* cp1 case-folds to the code point "length" or to p[length] */
            if(U_IS_SURROGATE(c1)) {
                if(U_IS_SURROGATE_LEAD(c1)) {
                    /* advance beyond source surrogate pair if it case-folds */
                    ++s1;
                } else /* isTrail(c1) */ {
                    /*
                     * we got a supplementary code point when hitting its trail surrogate,
                     * therefore the lead surrogate must have been the same as in the other string;
                     * compare this decomposition with the lead surrogate in the other string
                     * remember that this simulates bulk text replacement:
                     * the decomposition would replace the entire code point
                     */
                    --s2;
                    c2=*(s2-1);
                }
            }

            /* push current level pointers */
            stack1[0].start=start1;
            stack1[0].s=s1;
            stack1[0].limit=limit1;
            ++level1;

            /* copy the folding result to fold1[] */
            if(length<=UCASE_MAX_STRING_LENGTH) {
                u_memcpy(fold1, p, length);
            } else {
                int32_t i=0;
                U16_APPEND_UNSAFE(fold1, i, length);
                length=i;
            }

            /* set next level pointers to case folding */
            start1=s1=fold1;
            limit1=fold1+length;

            /* get ready to read from decomposition, continue with loop */
            c1=-1;
            continue;
        }

        if( level2==0 && (options&U_COMPARE_IGNORE_CASE) &&
            (length=ucase_toFullFolding((UChar32)cp2, &p, options))>=0
        ) {
            /* cp2 case-folds to the code point "length" or to p[length] */
            if(U_IS_SURROGATE(c2)) {
                if(U_IS_SURROGATE_LEAD(c2)) {
                    /* advance beyond source surrogate pair if it case-folds */
                    ++s2;
                } else /* isTrail(c2) */ {
                    /*
                     * we got a supplementary code point when hitting its trail surrogate,
                     * therefore the lead surrogate must have been the same as in the other string;
                     * compare this decomposition with the lead surrogate in the other string
                     * remember that this simulates bulk text replacement:
                     * the decomposition would replace the entire code point
                     */
                    --s1;
                    c1=*(s1-1);
                }
            }

            /* push current level pointers */
            stack2[0].start=start2;
            stack2[0].s=s2;
            stack2[0].limit=limit2;
            ++level2;

            /* copy the folding result to fold2[] */
            if(length<=UCASE_MAX_STRING_LENGTH) {
                u_memcpy(fold2, p, length);
            } else {
                int32_t i=0;
                U16_APPEND_UNSAFE(fold2, i, length);
                length=i;
            }

            /* set next level pointers to case folding */
            start2=s2=fold2;
            limit2=fold2+length;

            /* get ready to read from decomposition, continue with loop */
            c2=-1;
            continue;
        }

        if( level1<2 && (options&_COMPARE_EQUIV) &&
            0!=(p=nfcImpl->getDecomposition((UChar32)cp1, decomp1, length))
        ) {
            /* cp1 decomposes into p[length] */
            if(U_IS_SURROGATE(c1)) {
                if(U_IS_SURROGATE_LEAD(c1)) {
                    /* advance beyond source surrogate pair if it decomposes */
                    ++s1;
                } else /* isTrail(c1) */ {
                    /*
                     * we got a supplementary code point when hitting its trail surrogate,
                     * therefore the lead surrogate must have been the same as in the other string;
                     * compare this decomposition with the lead surrogate in the other string
                     * remember that this simulates bulk text replacement:
                     * the decomposition would replace the entire code point
                     */
                    --s2;
                    c2=*(s2-1);
                }
            }

            /* push current level pointers */
            stack1[level1].start=start1;
            stack1[level1].s=s1;
            stack1[level1].limit=limit1;
            ++level1;

            /* set empty intermediate level if skipped */
            if(level1<2) {
                stack1[level1++].start=nullptr;
            }

            /* set next level pointers to decomposition */
            start1=s1=p;
            limit1=p+length;

            /* get ready to read from decomposition, continue with loop */
            c1=-1;
            continue;
        }

        if( level2<2 && (options&_COMPARE_EQUIV) &&
            0!=(p=nfcImpl->getDecomposition((UChar32)cp2, decomp2, length))
        ) {
            /* cp2 decomposes into p[length] */
            if(U_IS_SURROGATE(c2)) {
                if(U_IS_SURROGATE_LEAD(c2)) {
                    /* advance beyond source surrogate pair if it decomposes */
                    ++s2;
                } else /* isTrail(c2) */ {
                    /*
                     * we got a supplementary code point when hitting its trail surrogate,
                     * therefore the lead surrogate must have been the same as in the other string;
                     * compare this decomposition with the lead surrogate in the other string
                     * remember that this simulates bulk text replacement:
                     * the decomposition would replace the entire code point
                     */
                    --s1;
                    c1=*(s1-1);
                }
            }

            /* push current level pointers */
            stack2[level2].start=start2;
            stack2[level2].s=s2;
            stack2[level2].limit=limit2;
            ++level2;

            /* set empty intermediate level if skipped */
            if(level2<2) {
                stack2[level2++].start=nullptr;
            }

            /* set next level pointers to decomposition */
            start2=s2=p;
            limit2=p+length;

            /* get ready to read from decomposition, continue with loop */
            c2=-1;
            continue;
        }

        /*
         * no decomposition/case folding, max level for both sides:
         * return difference result
         *
         * code point order comparison must not just return cp1-cp2
         * because when single surrogates are present then the surrogate pairs
         * that formed cp1 and cp2 may be from different string indexes
         *
         * example: { d800 d800 dc01 } vs. { d800 dc00 }, compare at second code units
         * c1=d800 cp1=10001 c2=dc00 cp2=10000
         * cp1-cp2>0 but c1-c2<0 and in fact in UTF-32 it is { d800 10001 } < { 10000 }
         *
         * therefore, use same fix-up as in ustring.c/uprv_strCompare()
         * except: uprv_strCompare() fetches c=*s while this functions fetches c=*s++
         * so we have slightly different pointer/start/limit comparisons here
         */

        if(c1>=0xd800 && c2>=0xd800 && (options&U_COMPARE_CODE_POINT_ORDER)) {
            /* subtract 0x2800 from BMP code points to make them smaller than supplementary ones */
            if(
                (c1<=0xdbff && s1!=limit1 && U16_IS_TRAIL(*s1)) ||
                (U16_IS_TRAIL(c1) && start1!=(s1-1) && U16_IS_LEAD(*(s1-2)))
            ) {
                /* part of a surrogate pair, leave >=d800 */
            } else {
                /* BMP code point - may be surrogate code point - make <d800 */
                c1-=0x2800;
            }

            if(
                (c2<=0xdbff && s2!=limit2 && U16_IS_TRAIL(*s2)) ||
                (U16_IS_TRAIL(c2) && start2!=(s2-1) && U16_IS_LEAD(*(s2-2)))
            ) {
                /* part of a surrogate pair, leave >=d800 */
            } else {
                /* BMP code point - may be surrogate code point - make <d800 */
                c2-=0x2800;
            }
        }

        return c1-c2;
    }
}

static
UBool _normalize(const Normalizer2 *n2, const char16_t *s, int32_t length,
                UnicodeString &normalized, UErrorCode *pErrorCode) {
    UnicodeString str(length<0, s, length);

    // check if s fulfill the conditions
    int32_t spanQCYes=n2->spanQuickCheckYes(str, *pErrorCode);
    if (U_FAILURE(*pErrorCode)) {
        return false;
    }
    /*
     * ICU 2.4 had a further optimization:
     * If both strings were not in FCD, then they were both NFD'ed,
     * and the _COMPARE_EQUIV option was turned off.
     * It is not entirely clear that this is valid with the current
     * definition of the canonical caseless match.
     * Therefore, ICU 2.6 removes that optimization.
     */
    if(spanQCYes<str.length()) {
        UnicodeString unnormalized=str.tempSubString(spanQCYes);
        normalized.setTo(false, str.getBuffer(), spanQCYes);
        n2->normalizeSecondAndAppend(normalized, unnormalized, *pErrorCode);
        if (U_SUCCESS(*pErrorCode)) {
            return true;
        }
    }
    return false;
}

U_CAPI int32_t U_EXPORT2
unorm_compare(const char16_t *s1, int32_t length1,
              const char16_t *s2, int32_t length2,
              uint32_t options,
              UErrorCode *pErrorCode) {
    /* argument checking */
    if(U_FAILURE(*pErrorCode)) {
        return 0;
    }
    if(s1==0 || length1<-1 || s2==0 || length2<-1) {
        *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
        return 0;
    }

    UnicodeString fcd1, fcd2;
    int32_t normOptions=(int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT);
    options|=_COMPARE_EQUIV;

    /*
     * UAX #21 Case Mappings, as fixed for Unicode version 4
     * (see Jitterbug 2021), defines a canonical caseless match as
     *
     * A string X is a canonical caseless match
     * for a string Y if and only if
     * NFD(toCasefold(NFD(X))) = NFD(toCasefold(NFD(Y)))
     *
     * For better performance, we check for FCD (or let the caller tell us that
     * both strings are in FCD) for the inner normalization.
     * BasicNormalizerTest::FindFoldFCDExceptions() makes sure that
     * case-folding preserves the FCD-ness of a string.
     * The outer normalization is then only performed by unorm_cmpEquivFold()
     * when there is a difference.
     *
     * Exception: When using the Turkic case-folding option, we do perform
     * full NFD first. This is because in the Turkic case precomposed characters
     * with 0049 capital I or 0069 small i fold differently whether they
     * are first decomposed or not, so an FCD check - a check only for
     * canonical order - is not sufficient.
     */
    if(!(options&UNORM_INPUT_IS_FCD) || (options&U_FOLD_CASE_EXCLUDE_SPECIAL_I)) {
        const Normalizer2 *n2;
        if(options&U_FOLD_CASE_EXCLUDE_SPECIAL_I) {
            n2=Normalizer2::getNFDInstance(*pErrorCode);
        } else {
            n2=Normalizer2Factory::getFCDInstance(*pErrorCode);
        }
        if (U_FAILURE(*pErrorCode)) {
            return 0;
        }

        if(normOptions&UNORM_UNICODE_3_2) {
            const UnicodeSet *uni32=uniset_getUnicode32Instance(*pErrorCode);
            FilteredNormalizer2 fn2(*n2, *uni32);
            if(_normalize(&fn2, s1, length1, fcd1, pErrorCode)) {
                s1=fcd1.getBuffer();
                length1=fcd1.length();
            }
            if(_normalize(&fn2, s2, length2, fcd2, pErrorCode)) {
                s2=fcd2.getBuffer();
                length2=fcd2.length();
            }
        } else {
            if(_normalize(n2, s1, length1, fcd1, pErrorCode)) {
                s1=fcd1.getBuffer();
                length1=fcd1.length();
            }
            if(_normalize(n2, s2, length2, fcd2, pErrorCode)) {
                s2=fcd2.getBuffer();
                length2=fcd2.length();
            }
        }
    }

    if(U_SUCCESS(*pErrorCode)) {
        return unorm_cmpEquivFold(s1, length1, s2, length2, options, pErrorCode);
    } else {
        return 0;
    }
}

#endif /* #if !UCONFIG_NO_NORMALIZATION */