1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
|
// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
* Copyright (C) 2015, International Business Machines Corporation and
* others. All Rights Reserved.
******************************************************************************
*
* File unifiedcache.cpp
******************************************************************************
*/
#include "unifiedcache.h"
#include <algorithm> // For std::max()
#include <mutex>
#include "uassert.h"
#include "uhash.h"
#include "ucln_cmn.h"
static icu::UnifiedCache *gCache = NULL;
static std::mutex *gCacheMutex = nullptr;
static std::condition_variable *gInProgressValueAddedCond;
static icu::UInitOnce gCacheInitOnce = U_INITONCE_INITIALIZER;
static const int32_t MAX_EVICT_ITERATIONS = 10;
static const int32_t DEFAULT_MAX_UNUSED = 1000;
static const int32_t DEFAULT_PERCENTAGE_OF_IN_USE = 100;
U_CDECL_BEGIN
static UBool U_CALLCONV unifiedcache_cleanup() {
gCacheInitOnce.reset();
delete gCache;
gCache = nullptr;
gCacheMutex->~mutex();
gCacheMutex = nullptr;
gInProgressValueAddedCond->~condition_variable();
gInProgressValueAddedCond = nullptr;
return TRUE;
}
U_CDECL_END
U_NAMESPACE_BEGIN
U_CAPI int32_t U_EXPORT2
ucache_hashKeys(const UHashTok key) {
const CacheKeyBase *ckey = (const CacheKeyBase *) key.pointer;
return ckey->hashCode();
}
U_CAPI UBool U_EXPORT2
ucache_compareKeys(const UHashTok key1, const UHashTok key2) {
const CacheKeyBase *p1 = (const CacheKeyBase *) key1.pointer;
const CacheKeyBase *p2 = (const CacheKeyBase *) key2.pointer;
return *p1 == *p2;
}
U_CAPI void U_EXPORT2
ucache_deleteKey(void *obj) {
CacheKeyBase *p = (CacheKeyBase *) obj;
delete p;
}
CacheKeyBase::~CacheKeyBase() {
}
static void U_CALLCONV cacheInit(UErrorCode &status) {
U_ASSERT(gCache == NULL);
ucln_common_registerCleanup(
UCLN_COMMON_UNIFIED_CACHE, unifiedcache_cleanup);
gCacheMutex = STATIC_NEW(std::mutex);
gInProgressValueAddedCond = STATIC_NEW(std::condition_variable);
gCache = new UnifiedCache(status);
if (gCache == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
}
if (U_FAILURE(status)) {
delete gCache;
gCache = NULL;
return;
}
}
UnifiedCache *UnifiedCache::getInstance(UErrorCode &status) {
umtx_initOnce(gCacheInitOnce, &cacheInit, status);
if (U_FAILURE(status)) {
return NULL;
}
U_ASSERT(gCache != NULL);
return gCache;
}
UnifiedCache::UnifiedCache(UErrorCode &status) :
fHashtable(NULL),
fEvictPos(UHASH_FIRST),
fNumValuesTotal(0),
fNumValuesInUse(0),
fMaxUnused(DEFAULT_MAX_UNUSED),
fMaxPercentageOfInUse(DEFAULT_PERCENTAGE_OF_IN_USE),
fAutoEvictedCount(0),
fNoValue(nullptr) {
if (U_FAILURE(status)) {
return;
}
fNoValue = new SharedObject();
if (fNoValue == nullptr) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
fNoValue->softRefCount = 1; // Add fake references to prevent fNoValue from being deleted
fNoValue->hardRefCount = 1; // when other references to it are removed.
fNoValue->cachePtr = this;
fHashtable = uhash_open(
&ucache_hashKeys,
&ucache_compareKeys,
NULL,
&status);
if (U_FAILURE(status)) {
return;
}
uhash_setKeyDeleter(fHashtable, &ucache_deleteKey);
}
void UnifiedCache::setEvictionPolicy(
int32_t count, int32_t percentageOfInUseItems, UErrorCode &status) {
if (U_FAILURE(status)) {
return;
}
if (count < 0 || percentageOfInUseItems < 0) {
status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
std::lock_guard<std::mutex> lock(*gCacheMutex);
fMaxUnused = count;
fMaxPercentageOfInUse = percentageOfInUseItems;
}
int32_t UnifiedCache::unusedCount() const {
std::lock_guard<std::mutex> lock(*gCacheMutex);
return uhash_count(fHashtable) - fNumValuesInUse;
}
int64_t UnifiedCache::autoEvictedCount() const {
std::lock_guard<std::mutex> lock(*gCacheMutex);
return fAutoEvictedCount;
}
int32_t UnifiedCache::keyCount() const {
std::lock_guard<std::mutex> lock(*gCacheMutex);
return uhash_count(fHashtable);
}
void UnifiedCache::flush() const {
std::lock_guard<std::mutex> lock(*gCacheMutex);
// Use a loop in case cache items that are flushed held hard references to
// other cache items making those additional cache items eligible for
// flushing.
while (_flush(FALSE));
}
void UnifiedCache::handleUnreferencedObject() const {
std::lock_guard<std::mutex> lock(*gCacheMutex);
--fNumValuesInUse;
_runEvictionSlice();
}
#ifdef UNIFIED_CACHE_DEBUG
#include <stdio.h>
void UnifiedCache::dump() {
UErrorCode status = U_ZERO_ERROR;
const UnifiedCache *cache = getInstance(status);
if (U_FAILURE(status)) {
fprintf(stderr, "Unified Cache: Error fetching cache.\n");
return;
}
cache->dumpContents();
}
void UnifiedCache::dumpContents() const {
std::lock_guard<std::mutex> lock(*gCacheMutex);
_dumpContents();
}
// Dumps content of cache.
// On entry, gCacheMutex must be held.
// On exit, cache contents dumped to stderr.
void UnifiedCache::_dumpContents() const {
int32_t pos = UHASH_FIRST;
const UHashElement *element = uhash_nextElement(fHashtable, &pos);
char buffer[256];
int32_t cnt = 0;
for (; element != NULL; element = uhash_nextElement(fHashtable, &pos)) {
const SharedObject *sharedObject =
(const SharedObject *) element->value.pointer;
const CacheKeyBase *key =
(const CacheKeyBase *) element->key.pointer;
if (sharedObject->hasHardReferences()) {
++cnt;
fprintf(
stderr,
"Unified Cache: Key '%s', error %d, value %p, total refcount %d, soft refcount %d\n",
key->writeDescription(buffer, 256),
key->creationStatus,
sharedObject == fNoValue ? NULL :sharedObject,
sharedObject->getRefCount(),
sharedObject->getSoftRefCount());
}
}
fprintf(stderr, "Unified Cache: %d out of a total of %d still have hard references\n", cnt, uhash_count(fHashtable));
}
#endif
UnifiedCache::~UnifiedCache() {
// Try our best to clean up first.
flush();
{
// Now all that should be left in the cache are entries that refer to
// each other and entries with hard references from outside the cache.
// Nothing we can do about these so proceed to wipe out the cache.
std::lock_guard<std::mutex> lock(*gCacheMutex);
_flush(TRUE);
}
uhash_close(fHashtable);
fHashtable = nullptr;
delete fNoValue;
fNoValue = nullptr;
}
const UHashElement *
UnifiedCache::_nextElement() const {
const UHashElement *element = uhash_nextElement(fHashtable, &fEvictPos);
if (element == NULL) {
fEvictPos = UHASH_FIRST;
return uhash_nextElement(fHashtable, &fEvictPos);
}
return element;
}
UBool UnifiedCache::_flush(UBool all) const {
UBool result = FALSE;
int32_t origSize = uhash_count(fHashtable);
for (int32_t i = 0; i < origSize; ++i) {
const UHashElement *element = _nextElement();
if (element == nullptr) {
break;
}
if (all || _isEvictable(element)) {
const SharedObject *sharedObject =
(const SharedObject *) element->value.pointer;
U_ASSERT(sharedObject->cachePtr == this);
uhash_removeElement(fHashtable, element);
removeSoftRef(sharedObject); // Deletes the sharedObject when softRefCount goes to zero.
result = TRUE;
}
}
return result;
}
int32_t UnifiedCache::_computeCountOfItemsToEvict() const {
int32_t totalItems = uhash_count(fHashtable);
int32_t evictableItems = totalItems - fNumValuesInUse;
int32_t unusedLimitByPercentage = fNumValuesInUse * fMaxPercentageOfInUse / 100;
int32_t unusedLimit = std::max(unusedLimitByPercentage, fMaxUnused);
int32_t countOfItemsToEvict = std::max(0, evictableItems - unusedLimit);
return countOfItemsToEvict;
}
void UnifiedCache::_runEvictionSlice() const {
int32_t maxItemsToEvict = _computeCountOfItemsToEvict();
if (maxItemsToEvict <= 0) {
return;
}
for (int32_t i = 0; i < MAX_EVICT_ITERATIONS; ++i) {
const UHashElement *element = _nextElement();
if (element == nullptr) {
break;
}
if (_isEvictable(element)) {
const SharedObject *sharedObject =
(const SharedObject *) element->value.pointer;
uhash_removeElement(fHashtable, element);
removeSoftRef(sharedObject); // Deletes sharedObject when SoftRefCount goes to zero.
++fAutoEvictedCount;
if (--maxItemsToEvict == 0) {
break;
}
}
}
}
void UnifiedCache::_putNew(
const CacheKeyBase &key,
const SharedObject *value,
const UErrorCode creationStatus,
UErrorCode &status) const {
if (U_FAILURE(status)) {
return;
}
CacheKeyBase *keyToAdopt = key.clone();
if (keyToAdopt == NULL) {
status = U_MEMORY_ALLOCATION_ERROR;
return;
}
keyToAdopt->fCreationStatus = creationStatus;
if (value->softRefCount == 0) {
_registerMaster(keyToAdopt, value);
}
void *oldValue = uhash_put(fHashtable, keyToAdopt, (void *) value, &status);
U_ASSERT(oldValue == nullptr);
(void)oldValue;
if (U_SUCCESS(status)) {
value->softRefCount++;
}
}
void UnifiedCache::_putIfAbsentAndGet(
const CacheKeyBase &key,
const SharedObject *&value,
UErrorCode &status) const {
std::lock_guard<std::mutex> lock(*gCacheMutex);
const UHashElement *element = uhash_find(fHashtable, &key);
if (element != NULL && !_inProgress(element)) {
_fetch(element, value, status);
return;
}
if (element == NULL) {
UErrorCode putError = U_ZERO_ERROR;
// best-effort basis only.
_putNew(key, value, status, putError);
} else {
_put(element, value, status);
}
// Run an eviction slice. This will run even if we added a master entry
// which doesn't increase the unused count, but that is still o.k
_runEvictionSlice();
}
UBool UnifiedCache::_poll(
const CacheKeyBase &key,
const SharedObject *&value,
UErrorCode &status) const {
U_ASSERT(value == NULL);
U_ASSERT(status == U_ZERO_ERROR);
std::unique_lock<std::mutex> lock(*gCacheMutex);
const UHashElement *element = uhash_find(fHashtable, &key);
// If the hash table contains an inProgress placeholder entry for this key,
// this means that another thread is currently constructing the value object.
// Loop, waiting for that construction to complete.
while (element != NULL && _inProgress(element)) {
gInProgressValueAddedCond->wait(lock);
element = uhash_find(fHashtable, &key);
}
// If the hash table contains an entry for the key,
// fetch out the contents and return them.
if (element != NULL) {
_fetch(element, value, status);
return TRUE;
}
// The hash table contained nothing for this key.
// Insert an inProgress place holder value.
// Our caller will create the final value and update the hash table.
_putNew(key, fNoValue, U_ZERO_ERROR, status);
return FALSE;
}
void UnifiedCache::_get(
const CacheKeyBase &key,
const SharedObject *&value,
const void *creationContext,
UErrorCode &status) const {
U_ASSERT(value == NULL);
U_ASSERT(status == U_ZERO_ERROR);
if (_poll(key, value, status)) {
if (value == fNoValue) {
SharedObject::clearPtr(value);
}
return;
}
if (U_FAILURE(status)) {
return;
}
value = key.createObject(creationContext, status);
U_ASSERT(value == NULL || value->hasHardReferences());
U_ASSERT(value != NULL || status != U_ZERO_ERROR);
if (value == NULL) {
SharedObject::copyPtr(fNoValue, value);
}
_putIfAbsentAndGet(key, value, status);
if (value == fNoValue) {
SharedObject::clearPtr(value);
}
}
void UnifiedCache::_registerMaster(
const CacheKeyBase *theKey, const SharedObject *value) const {
theKey->fIsMaster = true;
value->cachePtr = this;
++fNumValuesTotal;
++fNumValuesInUse;
}
void UnifiedCache::_put(
const UHashElement *element,
const SharedObject *value,
const UErrorCode status) const {
U_ASSERT(_inProgress(element));
const CacheKeyBase *theKey = (const CacheKeyBase *) element->key.pointer;
const SharedObject *oldValue = (const SharedObject *) element->value.pointer;
theKey->fCreationStatus = status;
if (value->softRefCount == 0) {
_registerMaster(theKey, value);
}
value->softRefCount++;
UHashElement *ptr = const_cast<UHashElement *>(element);
ptr->value.pointer = (void *) value;
U_ASSERT(oldValue == fNoValue);
removeSoftRef(oldValue);
// Tell waiting threads that we replace in-progress status with
// an error.
gInProgressValueAddedCond->notify_all();
}
void UnifiedCache::_fetch(
const UHashElement *element,
const SharedObject *&value,
UErrorCode &status) const {
const CacheKeyBase *theKey = (const CacheKeyBase *) element->key.pointer;
status = theKey->fCreationStatus;
// Since we have the cache lock, calling regular SharedObject add/removeRef
// could cause us to deadlock on ourselves since they may need to lock
// the cache mutex.
removeHardRef(value);
value = static_cast<const SharedObject *>(element->value.pointer);
addHardRef(value);
}
UBool UnifiedCache::_inProgress(const UHashElement* element) const {
UErrorCode status = U_ZERO_ERROR;
const SharedObject * value = NULL;
_fetch(element, value, status);
UBool result = _inProgress(value, status);
removeHardRef(value);
return result;
}
UBool UnifiedCache::_inProgress(
const SharedObject* theValue, UErrorCode creationStatus) const {
return (theValue == fNoValue && creationStatus == U_ZERO_ERROR);
}
UBool UnifiedCache::_isEvictable(const UHashElement *element) const
{
const CacheKeyBase *theKey = (const CacheKeyBase *) element->key.pointer;
const SharedObject *theValue =
(const SharedObject *) element->value.pointer;
// Entries that are under construction are never evictable
if (_inProgress(theValue, theKey->fCreationStatus)) {
return FALSE;
}
// We can evict entries that are either not a master or have just
// one reference (The one reference being from the cache itself).
return (!theKey->fIsMaster || (theValue->softRefCount == 1 && theValue->noHardReferences()));
}
void UnifiedCache::removeSoftRef(const SharedObject *value) const {
U_ASSERT(value->cachePtr == this);
U_ASSERT(value->softRefCount > 0);
if (--value->softRefCount == 0) {
--fNumValuesTotal;
if (value->noHardReferences()) {
delete value;
} else {
// This path only happens from flush(all). Which only happens from the
// UnifiedCache destructor. Nulling out value.cacheptr changes the behavior
// of value.removeRef(), causing the deletion to be done there.
value->cachePtr = nullptr;
}
}
}
int32_t UnifiedCache::removeHardRef(const SharedObject *value) const {
int refCount = 0;
if (value) {
refCount = umtx_atomic_dec(&value->hardRefCount);
U_ASSERT(refCount >= 0);
if (refCount == 0) {
--fNumValuesInUse;
}
}
return refCount;
}
int32_t UnifiedCache::addHardRef(const SharedObject *value) const {
int refCount = 0;
if (value) {
refCount = umtx_atomic_inc(&value->hardRefCount);
U_ASSERT(refCount >= 1);
if (refCount == 1) {
fNumValuesInUse++;
}
}
return refCount;
}
U_NAMESPACE_END
|