1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
/*
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Multibit: build code (for sparse iterators)
*/
#include "multibit.h"
#include "multibit_build.h"
#include "scatter.h"
#include "ue2common.h"
#include "rose/rose_build_scatter.h"
#include "util/compile_error.h"
#include <cassert>
#include <cstring> // for memset
#include <map>
#include <queue>
#include <vector>
using namespace std;
namespace ue2 {
u32 mmbit_size(u32 total_bits) {
if (total_bits > MMB_MAX_BITS) {
throw ResourceLimitError();
}
// Flat model multibit structures are just stored as a bit vector.
if (total_bits <= MMB_FLAT_MAX_BITS) {
return ROUNDUP_N(total_bits, 8) / 8;
}
u64a current_level = 1; // Number of blocks on current level.
u64a total = 0; // Total number of blocks.
while (current_level * MMB_KEY_BITS < total_bits) {
total += current_level;
current_level <<= MMB_KEY_SHIFT;
}
// Last level is a one-for-one bit vector. It needs room for total_bits
// elements, rounded up to the nearest block.
u64a last_level = ((u64a)total_bits + MMB_KEY_BITS - 1) / MMB_KEY_BITS;
total += last_level;
assert(total * sizeof(MMB_TYPE) <= UINT32_MAX);
return (u32)(total * sizeof(MMB_TYPE));
}
namespace {
struct TreeNode {
MMB_TYPE mask = 0;
u32 depth = 0;
map<u32, TreeNode> children; // keyed by rkey
};
} // namespace
static
void addNode(TreeNode &tree, u32 depth, u32 key, s32 ks, u32 rkey) {
u32 bit = (key >> ks) & MMB_KEY_MASK;
DEBUG_PRINTF("depth=%u, key=%u, ks=%d, rkey=%u, bit=%u\n", depth, key, ks,
rkey, bit);
mmb_set(&tree.mask, bit); // add bit to this level
tree.depth = depth; // record depth
// next level
rkey = (rkey << MMB_KEY_SHIFT) + bit;
ks -= MMB_KEY_SHIFT;
depth++;
if (ks >= 0) {
addNode(tree.children[rkey], depth, key, ks, rkey);
}
}
static
void bfs(vector<mmbit_sparse_iter> &out, const TreeNode &tree) {
queue<const TreeNode *> q;
q.push(&tree);
vector<u32> levels;
u32 depth = 0;
DEBUG_PRINTF("walking q\n");
while (!q.empty()) {
const TreeNode *t = q.front();
q.pop();
if (depth != t->depth) {
depth = t->depth;
levels.push_back(out.size());
}
DEBUG_PRINTF("pop: mask=0x%08llx, depth=%u, children.size()=%zu\n",
t->mask, t->depth, t->children.size());
out.push_back(mmbit_sparse_iter());
memset(&out.back(), 0, sizeof(mmbit_sparse_iter));
mmbit_sparse_iter &record = out.back();
record.mask = t->mask;
record.val = 0;
for (auto &e : t->children) {
q.push(&e.second);
}
}
// val for records in non-last levels is the iterator array start offset
// for that iterator record's children
u32 start = 0;
for (size_t i = 0; i < levels.size(); i++) {
u32 start_next = levels[i];
u32 population = 0;
DEBUG_PRINTF("next level starts at %u\n", start_next);
for (u32 j = start; j < start_next; j++) {
out[j].val = start_next + population;
DEBUG_PRINTF(" children of %u start at %u\n", j, out[j].val);
population += mmb_popcount(out[j].mask);
}
start = start_next;
}
// val for records in the last level is the cumulative popcount
u32 population = 0;
for (size_t i = start; i < out.size(); i++) {
DEBUG_PRINTF("last level: i=%zu, population=%u\n", i, population);
out[i].val = population;
population += mmb_popcount(out[i].mask);
}
}
/** \brief Construct a sparse iterator over the values in \a bits for a
* multibit of size \a total_bits. */
vector<mmbit_sparse_iter> mmbBuildSparseIterator(const vector<u32> &bits,
u32 total_bits) {
vector<mmbit_sparse_iter> out;
assert(!bits.empty());
assert(total_bits > 0);
assert(total_bits <= MMB_MAX_BITS);
DEBUG_PRINTF("building sparse iter for %zu of %u bits\n",
bits.size(), total_bits);
s32 ks = (total_bits > 1 ? mmbit_keyshift(total_bits) : 0);
// Construct an intermediate tree
TreeNode tree;
for (const auto &bit : bits) {
assert(bit < total_bits);
addNode(tree, 0, bit, ks, 0);
}
// From our intermediate tree, lay the data out with a breadth-first walk
bfs(out, tree);
assert(!out.empty());
#ifdef DEBUG
DEBUG_PRINTF("dump of iterator tree:\n");
for (size_t i = 0; i < out.size(); ++i) {
printf(" %zu:\tmask=0x%08llx, val=%u\n", i, out[i].mask, out[i].val);
}
#endif
DEBUG_PRINTF("iter has %zu records\n", out.size());
return out;
}
template<typename T>
static
void add_scatter(vector<T> *out, u32 offset, u64a mask) {
out->emplace_back();
T &su = out->back();
memset(&su, 0, sizeof(su));
su.offset = offset;
su.val = mask;
DEBUG_PRINTF("add %llu at offset %u\n", mask, offset);
}
static
u32 mmbit_get_level_root_offset(u32 level) {
return mmbit_root_offset_from_level[level] * sizeof(MMB_TYPE);
}
void mmbBuildInitRangePlan(u32 total_bits, u32 begin, u32 end,
scatter_plan_raw *out) {
DEBUG_PRINTF("building scatter plan for [%u, %u]/%u\n", begin, end,
total_bits);
if (!total_bits) {
return;
}
if (total_bits <= MMB_FLAT_MAX_BITS) {
// Handle flat model cases: first a bunch of 64-bit full-sized blocks,
// then a single runt block at the end.
u32 dest = 0; // dest offset
u32 bits = total_bits;
u32 base = 0;
for (; bits > 64; bits -= 64, base += 64, dest += 8) {
MMB_TYPE mask = get_flat_masks(base, begin, end);
add_scatter(&out->p_u64a, dest, mask);
}
// Last chunk.
assert(bits > 0 && bits <= 64);
MMB_TYPE mask = get_flat_masks(base, begin, end);
if (bits <= 8) {
add_scatter(&out->p_u8, dest + 0, mask);
} else if (bits <= 16) {
add_scatter(&out->p_u16, dest + 0, mask);
} else if (bits <= 24) {
add_scatter(&out->p_u16, dest + 0, mask);
add_scatter(&out->p_u8, dest + 2, mask >> 16);
} else if (bits <= 32) {
add_scatter(&out->p_u32, dest + 0, mask);
} else if (bits <= 40) {
add_scatter(&out->p_u32, dest + 0, mask);
add_scatter(&out->p_u8, dest + 4, mask >> 32);
} else if (bits <= 48) {
add_scatter(&out->p_u32, dest + 0, mask);
add_scatter(&out->p_u16, dest + 4, mask >> 32);
} else if (bits <= 56) {
add_scatter(&out->p_u32, dest + 0, mask);
add_scatter(&out->p_u16, dest + 4, mask >> 32);
add_scatter(&out->p_u8, dest + 6, mask >> 48);
} else {
add_scatter(&out->p_u64a, dest + 0, mask);
}
return;
}
/* handle the multilevel case */
s32 ks = mmbit_keyshift(total_bits);
u32 level = 0;
assert(sizeof(MMB_TYPE) == sizeof(u64a));
if (begin == end) {
add_scatter(&out->p_u64a, 0, 0);
return;
}
for (;;) {
u32 block_offset = mmbit_get_level_root_offset(level);
u32 k1 = begin >> ks, k2 = end >> ks;
// Summary blocks need to account for the runt block on the end.
if ((k2 << ks) != end) {
k2++;
}
// Partial block to deal with beginning.
block_offset += (k1 / MMB_KEY_BITS) * sizeof(MMB_TYPE);
if (k1 % MMB_KEY_BITS) {
u32 idx = k1 / MMB_KEY_BITS;
u32 block_end = (idx + 1) * MMB_KEY_BITS;
// Because k1 % MMB_KEY_BITS != 0, we can avoid checking edge cases
// here (see the branch in mmb_mask_zero_to).
MMB_TYPE mask = (-MMB_ONE) << (k1 % MMB_KEY_BITS);
if (k2 < block_end) {
assert(k2 % MMB_KEY_BITS);
mask &= mmb_mask_zero_to_nocheck(k2 % MMB_KEY_BITS);
add_scatter(&out->p_u64a, block_offset, mask);
goto next_level;
} else {
add_scatter(&out->p_u64a, block_offset, mask);
k1 = block_end;
block_offset += sizeof(MMB_TYPE);
}
}
// Write blocks filled with ones until we get to the last block.
for (; k1 < (k2 & ~MMB_KEY_MASK); k1 += MMB_KEY_BITS) {
add_scatter(&out->p_u64a, block_offset, -MMB_ONE);
block_offset += sizeof(MMB_TYPE);
}
// Final block.
if (likely(k1 < k2)) {
// Again, if k2 was at a block boundary, it would have been handled
// by the previous loop, so we know k2 % MMB_KEY_BITS != 0 and can
// avoid the branch in mmb_mask_zero_to here.
assert(k2 % MMB_KEY_BITS);
MMB_TYPE mask = mmb_mask_zero_to_nocheck(k2 % MMB_KEY_BITS);
add_scatter(&out->p_u64a, block_offset, mask);
}
next_level:
if (ks == 0) {
break; // Last level is done, finished.
}
ks -= MMB_KEY_SHIFT;
level++;
}
}
void mmbBuildClearPlan(u32 total_bits, scatter_plan_raw *out) {
return mmbBuildInitRangePlan(total_bits, 0, 0, out);
}
} // namespace ue2
|