aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/hyperscan/src/smallwrite/smallwrite_build.cpp
blob: 7dc4d6e88327327b87aad5871fe22a2696015ca8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
/*
 * Copyright (c) 2015-2020, Intel Corporation
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of Intel Corporation nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/** 
 * \file 
 * \brief Small-write engine build code. 
 */ 
 
#include "smallwrite/smallwrite_build.h"

#include "grey.h"
#include "ue2common.h"
#include "compiler/compiler.h" 
#include "nfa/dfa_min.h" 
#include "nfa/mcclellancompile.h"
#include "nfa/mcclellancompile_util.h"
#include "nfa/nfa_internal.h"
#include "nfa/rdfa_merge.h"
#include "nfa/shengcompile.h" 
#include "nfagraph/ng.h"
#include "nfagraph/ng_depth.h" 
#include "nfagraph/ng_holder.h"
#include "nfagraph/ng_mcclellan.h"
#include "nfagraph/ng_reports.h" 
#include "nfagraph/ng_prune.h" 
#include "nfagraph/ng_util.h"
#include "smallwrite/smallwrite_internal.h"
#include "util/alloc.h"
#include "util/bytecode_ptr.h" 
#include "util/charreach.h"
#include "util/compare.h" 
#include "util/compile_context.h"
#include "util/container.h"
#include "util/make_unique.h"
#include "util/ue2_graph.h" 
#include "util/ue2string.h"
#include "util/verify_types.h"

#include <map>
#include <set>
#include <vector>
#include <utility>

#include <boost/graph/breadth_first_search.hpp> 
 
using namespace std;

namespace ue2 {

#define DFA_MERGE_MAX_STATES 8000
#define MAX_TRIE_VERTICES 8000 

struct LitTrieVertexProps { 
    LitTrieVertexProps() = default; 
    explicit LitTrieVertexProps(u8 c_in) : c(c_in) {} 
    size_t index; // managed by ue2_graph 
    u8 c = 0; //!< character reached on this vertex 
    flat_set<ReportID> reports; //!< managed reports fired on this vertex 
}; 
 
struct LitTrieEdgeProps { 
    size_t index; // managed by ue2_graph 
}; 
 
/** 
 * \brief BGL graph used to store a trie of literals (for later AC construction 
 * into a DFA). 
 */ 
struct LitTrie 
    : public ue2_graph<LitTrie, LitTrieVertexProps, LitTrieEdgeProps> { 
 
    LitTrie() : root(add_vertex(*this)) {} 
 
    const vertex_descriptor root; //!< Root vertex for the trie. 
}; 
 
static 
bool is_empty(const LitTrie &trie) { 
    return num_vertices(trie) <= 1; 
} 
 
static 
std::set<ReportID> all_reports(const LitTrie &trie) { 
    std::set<ReportID> reports; 
    for (auto v : vertices_range(trie)) { 
        insert(&reports, trie[v].reports); 
    } 
    return reports; 
} 
 
using LitTrieVertex = LitTrie::vertex_descriptor; 
using LitTrieEdge = LitTrie::edge_descriptor; 
 
namespace { // unnamed

// Concrete impl class
class SmallWriteBuildImpl : public SmallWriteBuild {
public:
    SmallWriteBuildImpl(size_t num_patterns, const ReportManager &rm, 
                        const CompileContext &cc); 

    // Construct a runtime implementation.
    bytecode_ptr<SmallWriteEngine> build(u32 roseQuality) override; 

    void add(const NGHolder &g, const ExpressionInfo &expr) override; 
    void add(const ue2_literal &literal, ReportID r) override;

    set<ReportID> all_reports() const override; 

    const ReportManager &rm;
    const CompileContext &cc;

    vector<unique_ptr<raw_dfa>> dfas; 
    LitTrie lit_trie; 
    LitTrie lit_trie_nocase; 
    size_t num_literals = 0; 
    bool poisoned;
};

} // namespace

SmallWriteBuild::~SmallWriteBuild() = default; 

SmallWriteBuildImpl::SmallWriteBuildImpl(size_t num_patterns, 
                                         const ReportManager &rm_in, 
                                         const CompileContext &cc_in)
    : rm(rm_in), cc(cc_in),
      /* small write is block mode only */
      poisoned(!cc.grey.allowSmallWrite 
               || cc.streaming 
               || num_patterns > cc.grey.smallWriteMaxPatterns) { 
}

/** 
 * \brief Remove any reports from the given vertex that cannot match within 
 * max_depth due to their constraints. 
 */ 
static 
bool pruneOverlongReports(NFAVertex v, NGHolder &g, const depth &max_depth, 
                          const ReportManager &rm) { 
    assert(!g[v].reports.empty()); 
 
    vector<ReportID> bad_reports; 
 
    for (ReportID id : g[v].reports) { 
        const auto &report = rm.getReport(id); 
        if (report.minOffset > max_depth) { 
            bad_reports.push_back(id); 
        } 
    } 
 
    for (ReportID id : bad_reports) { 
        g[v].reports.erase(id); 
    } 
 
    if (g[v].reports.empty()) { 
        DEBUG_PRINTF("none of vertex %zu's reports can match, cut accepts\n", 
                     g[v].index); 
        remove_edge(v, g.accept, g); 
        remove_edge(v, g.acceptEod, g); 
    } 
 
    return !bad_reports.empty(); 
} 
 
/** 
 * \brief Prune vertices and reports from the graph that cannot match within 
 * max_depth. 
 */ 
static 
bool pruneOverlong(NGHolder &g, const depth &max_depth, 
                   const ReportManager &rm) { 
    bool modified = false; 
    auto depths = calcBidiDepths(g); 
 
    for (auto v : vertices_range(g)) { 
        if (is_special(v, g)) { 
            continue; 
        } 
        const auto &d = depths.at(g[v].index); 
        depth min_match_offset = min(d.fromStart.min, d.fromStartDotStar.min) 
                               + min(d.toAccept.min, d.toAcceptEod.min); 
        if (min_match_offset > max_depth) { 
            clear_vertex(v, g); 
            modified = true; 
            continue; 
        } 
 
        if (is_match_vertex(v, g)) { 
            modified |= pruneOverlongReports(v, g, max_depth, rm); 
        } 
    } 
 
    if (modified) { 
        pruneUseless(g); 
        DEBUG_PRINTF("pruned graph down to %zu vertices\n", num_vertices(g)); 
    } 
 
    return modified; 
} 
 
/** 
 * \brief Attempt to merge the set of DFAs given down into a single raw_dfa. 
 * Returns false on failure. 
 */ 
static 
bool mergeDfas(vector<unique_ptr<raw_dfa>> &dfas, const ReportManager &rm, 
               const CompileContext &cc) { 
    assert(!dfas.empty()); 
 
    if (dfas.size() == 1) { 
        return true; 
    } 
 
    DEBUG_PRINTF("attempting to merge %zu DFAs\n", dfas.size()); 
 
    vector<const raw_dfa *> dfa_ptrs; 
    dfa_ptrs.reserve(dfas.size()); 
    for (auto &d : dfas) { 
        dfa_ptrs.push_back(d.get()); 
    } 
 
    auto merged = mergeAllDfas(dfa_ptrs, DFA_MERGE_MAX_STATES, &rm, cc.grey); 
    if (!merged) { 
        DEBUG_PRINTF("merge failed\n"); 
        return false; 
    } 
 
    DEBUG_PRINTF("merge succeeded, result has %zu states\n", 
                  merged->states.size()); 
    dfas.clear(); 
    dfas.push_back(std::move(merged)); 
    return true; 
} 
 
void SmallWriteBuildImpl::add(const NGHolder &g, const ExpressionInfo &expr) { 
    // If the graph is poisoned (i.e. we can't build a SmallWrite version),
    // we don't even try.
    if (poisoned) {
        return;
    }

    if (expr.som) { 
        DEBUG_PRINTF("no SOM support in small-write engine\n"); 
        poisoned = true;
        return;
    }

    if (isVacuous(g)) { 
        DEBUG_PRINTF("no vacuous graph support in small-write engine\n"); 
        poisoned = true; 
        return; 
    } 

    if (any_of_in(::ue2::all_reports(g), [&](ReportID id) { 
            return rm.getReport(id).minLength > 0; 
        })) { 
        DEBUG_PRINTF("no min_length extparam support in small-write engine\n"); 
        poisoned = true; 
        return; 
    } 
 
    DEBUG_PRINTF("g=%p\n", &g); 
 
    // make a copy of the graph so that we can modify it for our purposes
    unique_ptr<NGHolder> h = cloneHolder(g); 

    pruneOverlong(*h, depth(cc.grey.smallWriteLargestBuffer), rm); 

    reduceGraph(*h, SOM_NONE, expr.utf8, cc); 
 
    if (can_never_match(*h)) { 
        DEBUG_PRINTF("graph can never match in small block\n"); 
        return;
    }

    // Now we can actually build the McClellan DFA
    assert(h->kind == NFA_OUTFIX);
    auto r = buildMcClellan(*h, &rm, cc.grey);

    // If we couldn't build a McClellan DFA for this portion, we won't be able
    // build a smwr which represents the pattern set
    if (!r) {
        DEBUG_PRINTF("failed to determinise\n");
        poisoned = true;
        return;
    }

    if (clear_deeper_reports(*r, cc.grey.smallWriteLargestBuffer)) { 
        minimize_hopcroft(*r, cc.grey); 
    } 

    dfas.push_back(std::move(r)); 
 
    if (dfas.size() >= cc.grey.smallWriteMergeBatchSize) { 
        if (!mergeDfas(dfas, rm, cc)) { 
            dfas.clear(); 
            poisoned = true;
            return;
        }
    }
}

static 
bool add_to_trie(const ue2_literal &literal, ReportID report, LitTrie &trie) { 
    auto u = trie.root; 
    for (const auto &c : literal) { 
        auto next = LitTrie::null_vertex(); 
        for (auto v : adjacent_vertices_range(u, trie)) { 
            if (trie[v].c == (u8)c.c) { 
                next = v; 
                break; 
            } 
        } 
        if (!next) { 
            next = add_vertex(LitTrieVertexProps((u8)c.c), trie); 
            add_edge(u, next, trie); 
        } 
        u = next; 
    } 
 
    trie[u].reports.insert(report); 
 
    DEBUG_PRINTF("added '%s' (report %u) to trie, now %zu vertices\n", 
                  escapeString(literal).c_str(), report, num_vertices(trie)); 
    return num_vertices(trie) <= MAX_TRIE_VERTICES; 
} 
 
void SmallWriteBuildImpl::add(const ue2_literal &literal, ReportID r) {
    // If the graph is poisoned (i.e. we can't build a SmallWrite version),
    // we don't even try.
    if (poisoned) {
        DEBUG_PRINTF("poisoned\n"); 
        return;
    }

    if (literal.length() > cc.grey.smallWriteLargestBuffer) {
        DEBUG_PRINTF("exceeded length limit\n"); 
        return; /* too long */
    }

    if (++num_literals > cc.grey.smallWriteMaxLiterals) { 
        DEBUG_PRINTF("exceeded literal limit\n"); 
        poisoned = true; 
        return; 
    } 
 
    auto &trie = literal.any_nocase() ? lit_trie_nocase : lit_trie; 
    if (!add_to_trie(literal, r, trie)) { 
        DEBUG_PRINTF("trie add failed\n"); 
        poisoned = true; 
    } 
}

namespace { 
 
/** 
 * \brief BFS visitor for Aho-Corasick automaton construction. 
 * 
 * This is doing two things: 
 * 
 *   - Computing the failure edges (also called fall or supply edges) for each 
 *     vertex, giving the longest suffix of the path to that point that is also 
 *     a prefix in the trie reached on the same character. The BFS traversal 
 *     makes it possible to build these from earlier failure paths. 
 * 
 *   - Computing the output function for each vertex, which is done by 
 *     propagating the reports from failure paths as well. This ensures that 
 *     substrings of the current path also report correctly. 
 */ 
struct ACVisitor : public boost::default_bfs_visitor { 
    ACVisitor(LitTrie &trie_in, 
              unordered_map<LitTrieVertex, LitTrieVertex> &failure_map_in, 
              vector<LitTrieVertex> &ordering_in) 
        : mutable_trie(trie_in), failure_map(failure_map_in), 
          ordering(ordering_in) {} 
 
    LitTrieVertex find_failure_target(LitTrieVertex u, LitTrieVertex v, 
                                      const LitTrie &trie) { 
        assert(u == trie.root || contains(failure_map, u)); 
        assert(!contains(failure_map, v)); 
 
        const auto &c = trie[v].c; 
 
        while (u != trie.root) { 
            auto f = failure_map.at(u); 
            for (auto w : adjacent_vertices_range(f, trie)) { 
                if (trie[w].c == c) { 
                    return w; 
                } 
            } 
            u = f; 
        } 
 
        DEBUG_PRINTF("no failure edge\n"); 
        return LitTrie::null_vertex(); 
    }
 
    void tree_edge(LitTrieEdge e, const LitTrie &trie) { 
        auto u = source(e, trie); 
        auto v = target(e, trie); 
        DEBUG_PRINTF("bfs (%zu, %zu) on '%c'\n", trie[u].index, trie[v].index, 
                     trie[v].c); 
        ordering.push_back(v); 
 
        auto f = find_failure_target(u, v, trie); 
 
        if (f) { 
            DEBUG_PRINTF("final failure vertex %zu\n", trie[f].index); 
            failure_map.emplace(v, f); 
 
            // Propagate reports from failure path to ensure we correctly 
            // report substrings. 
            insert(&mutable_trie[v].reports, mutable_trie[f].reports); 
        } else { 
            DEBUG_PRINTF("final failure vertex root\n"); 
            failure_map.emplace(v, trie.root); 
        } 
    } 
 
private: 
    LitTrie &mutable_trie; //!< For setting reports property. 
    unordered_map<LitTrieVertex, LitTrieVertex> &failure_map; 
    vector<LitTrieVertex> &ordering; //!< BFS ordering for vertices. 
}; 
}

static UNUSED 
bool isSaneTrie(const LitTrie &trie) { 
    CharReach seen; 
    for (auto u : vertices_range(trie)) { 
        seen.clear(); 
        for (auto v : adjacent_vertices_range(u, trie)) { 
            if (seen.test(trie[v].c)) { 
                return false; 
            } 
            seen.set(trie[v].c); 
        } 
    } 
    return true; 
} 

/** 
 * \brief Turn the given literal trie into an AC automaton by adding additional 
 * edges and reports. 
 */ 
static 
void buildAutomaton(LitTrie &trie, 
                    unordered_map<LitTrieVertex, LitTrieVertex> &failure_map, 
                    vector<LitTrieVertex> &ordering) { 
    assert(isSaneTrie(trie)); 
 
    // Find our failure transitions and reports. 
    failure_map.reserve(num_vertices(trie)); 
    ordering.reserve(num_vertices(trie)); 
    ACVisitor ac_vis(trie, failure_map, ordering); 
    boost::breadth_first_search(trie, trie.root, visitor(ac_vis)); 
 
    // Compute missing edges from failure map. 
    for (auto v : ordering) { 
        DEBUG_PRINTF("vertex %zu\n", trie[v].index); 
        CharReach seen; 
        for (auto w : adjacent_vertices_range(v, trie)) { 
            DEBUG_PRINTF("edge to %zu with reach 0x%02x\n", trie[w].index, 
                         trie[w].c); 
            assert(!seen.test(trie[w].c)); 
            seen.set(trie[w].c); 
        } 
        auto parent = failure_map.at(v); 
        for (auto w : adjacent_vertices_range(parent, trie)) { 
            if (!seen.test(trie[w].c)) { 
                add_edge(v, w, trie); 
            } 
        } 
    }
} 

static 
vector<u32> findDistFromRoot(const LitTrie &trie) { 
    vector<u32> dist(num_vertices(trie), UINT32_MAX); 
    dist[trie[trie.root].index] = 0; 

    // BFS to find dist from root. 
    breadth_first_search( 
        trie, trie.root, 
        visitor(make_bfs_visitor(record_distances( 
            make_iterator_property_map(dist.begin(), 
                                       get(&LitTrieVertexProps::index, trie)), 
            boost::on_tree_edge())))); 

    return dist; 
} 
 
static 
vector<u32> findDistToAccept(const LitTrie &trie) { 
    vector<u32> dist(num_vertices(trie), UINT32_MAX); 
 
    // Start with all reporting vertices. 
    deque<LitTrieVertex> q; 
    for (auto v : vertices_range(trie)) { 
        if (!trie[v].reports.empty()) { 
            q.push_back(v); 
            dist[trie[v].index] = 0; 
        }
    }

    // Custom BFS, since we have a pile of sources. 
    while (!q.empty()) { 
        auto v = q.front(); 
        q.pop_front(); 
        u32 d = dist[trie[v].index]; 
 
        for (auto u : inv_adjacent_vertices_range(v, trie)) { 
            auto &u_dist = dist[trie[u].index]; 
            if (u_dist == UINT32_MAX) { 
                q.push_back(u); 
                u_dist = d + 1; 
            } 
        } 
    }

    return dist; 
} 

/** 
 * \brief Prune all vertices from the trie that do not lie on a path from root 
 * to accept of length <= max_depth. 
 */ 
static 
void pruneTrie(LitTrie &trie, u32 max_depth) { 
    DEBUG_PRINTF("pruning trie to %u\n", max_depth); 

    auto dist_from_root = findDistFromRoot(trie); 
    auto dist_to_accept = findDistToAccept(trie); 
 
    vector<LitTrieVertex> dead; 
    for (auto v : vertices_range(trie)) { 
        if (v == trie.root) { 
            continue; 
        } 
        auto v_index = trie[v].index; 
        DEBUG_PRINTF("vertex %zu: from_start=%u, to_accept=%u\n", trie[v].index, 
                     dist_from_root[v_index], dist_to_accept[v_index]); 
        assert(dist_from_root[v_index] != UINT32_MAX); 
        assert(dist_to_accept[v_index] != UINT32_MAX); 
        u32 min_path_len = dist_from_root[v_index] + dist_to_accept[v_index]; 
        if (min_path_len > max_depth) { 
            DEBUG_PRINTF("pruning vertex %zu (min path len %u)\n", 
                         trie[v].index, min_path_len); 
            clear_vertex(v, trie); 
            dead.push_back(v); 
        } 
    }

    if (dead.empty()) { 
        return; 
    }

    for (auto v : dead) { 
        remove_vertex(v, trie); 
    } 

    DEBUG_PRINTF("%zu vertices remain\n", num_vertices(trie)); 

    renumber_edges(trie); 
    renumber_vertices(trie); 
} 

static 
vector<CharReach> getAlphabet(const LitTrie &trie, bool nocase) { 
    vector<CharReach> esets = {CharReach::dot()}; 
    for (auto v : vertices_range(trie)) { 
        if (v == trie.root) { 
            continue; 
        }

        CharReach cr; 
        if (nocase) { 
            cr.set(mytoupper(trie[v].c)); 
            cr.set(mytolower(trie[v].c)); 
        } else { 
            cr.set(trie[v].c); 
        } 
 
        for (size_t i = 0; i < esets.size(); i++) { 
            if (esets[i].count() == 1) { 
                continue; 
            } 
 
            CharReach t = cr & esets[i]; 
            if (t.any() && t != esets[i]) { 
                esets[i] &= ~t; 
                esets.push_back(t); 
            } 
        } 
    }

    // For deterministic compiles. 
    sort(esets.begin(), esets.end()); 
    return esets; 
} 

static 
u16 buildAlphabet(const LitTrie &trie, bool nocase, 
                  array<u16, ALPHABET_SIZE> &alpha, 
                  array<u16, ALPHABET_SIZE> &unalpha) { 
    const auto &esets = getAlphabet(trie, nocase); 
 
    u16 i = 0; 
    for (const auto &cr : esets) { 
        u16 leader = cr.find_first(); 
        for (size_t s = cr.find_first(); s != cr.npos; s = cr.find_next(s)) { 
            alpha[s] = i; 
        } 
        unalpha[i] = leader; 
        i++; 
    }

    for (u16 j = N_CHARS; j < ALPHABET_SIZE; j++, i++) { 
        alpha[j] = i; 
        unalpha[i] = j; 
    } 

    DEBUG_PRINTF("alphabet size %u\n", i); 
    return i; 
} 

/** 
 * \brief Calculate state mapping, from vertex in trie to state index in BFS 
 * ordering. 
 */ 
static 
unordered_map<LitTrieVertex, u32> 
makeStateMap(const LitTrie &trie, const vector<LitTrieVertex> &ordering) { 
    unordered_map<LitTrieVertex, u32> state_ids; 
    state_ids.reserve(num_vertices(trie)); 
    u32 idx = DEAD_STATE + 1; 
    state_ids.emplace(trie.root, idx++); 
    for (auto v : ordering) { 
        state_ids.emplace(v, idx++); 
    } 
    assert(state_ids.size() == num_vertices(trie)); 
    return state_ids; 
}

/** \brief Construct a raw_dfa from a literal trie. */ 
static 
unique_ptr<raw_dfa> buildDfa(LitTrie &trie, bool nocase) { 
    DEBUG_PRINTF("trie has %zu states\n", num_vertices(trie)); 
 
    vector<LitTrieVertex> ordering; 
    unordered_map<LitTrieVertex, LitTrieVertex> failure_map; 
    buildAutomaton(trie, failure_map, ordering); 
 
    // Construct DFA states in BFS order. 
    const auto state_ids = makeStateMap(trie, ordering); 
 
    auto rdfa = std::make_unique<raw_dfa>(NFA_OUTFIX); 
 
    // Calculate alphabet. 
    array<u16, ALPHABET_SIZE> unalpha; 
    auto &alpha = rdfa->alpha_remap; 
    rdfa->alpha_size = buildAlphabet(trie, nocase, alpha, unalpha); 
 
    // Construct states and transitions. 
    const u16 root_state = state_ids.at(trie.root); 
    assert(root_state == DEAD_STATE + 1); 
    rdfa->start_anchored = root_state; 
    rdfa->start_floating = root_state; 
    rdfa->states.resize(num_vertices(trie) + 1, dstate(rdfa->alpha_size)); 
 
    // Dead state. 
    fill(rdfa->states[DEAD_STATE].next.begin(), 
         rdfa->states[DEAD_STATE].next.end(), DEAD_STATE); 
 
    for (auto u : vertices_range(trie)) { 
        auto u_state = state_ids.at(u); 
        DEBUG_PRINTF("state %u\n", u_state); 
        assert(u_state < rdfa->states.size()); 
        auto &ds = rdfa->states[u_state]; 
        ds.reports = trie[u].reports; 
        if (!ds.reports.empty()) { 
            DEBUG_PRINTF("reports: %s\n", as_string_list(ds.reports).c_str()); 
        } 
 
        // Set daddy state from failure map. 
        if (u == trie.root) { 
            ds.daddy = DEAD_STATE; 
        } else { 
            assert(contains(failure_map, u)); 
            ds.daddy = state_ids.at(failure_map.at(u)); 
        } 
 
        // By default, transition back to the root. 
        fill(ds.next.begin(), ds.next.end(), root_state); 
        // TOP should be a self-loop. 
        ds.next[alpha[TOP]] = u_state; 
 
        // Add in the real transitions. 
        for (auto v : adjacent_vertices_range(u, trie)) { 
            if (v == trie.root) { 
                continue; 
            } 
            auto v_state = state_ids.at(v); 
            u16 sym = alpha[trie[v].c]; 
            DEBUG_PRINTF("edge to %u on 0x%02x (sym %u)\n", v_state, 
                         trie[v].c, sym); 
            assert(sym < ds.next.size()); 
            assert(ds.next[sym] == root_state); 
            ds.next[sym] = v_state; 
        } 
    } 
 
    return rdfa; 
} 
 
#define MAX_GOOD_ACCEL_DEPTH 4

static
bool is_slow(const raw_dfa &rdfa, const set<dstate_id_t> &accel,
             u32 roseQuality) {
    /* we consider a dfa as slow if there is no way to quickly get into an accel
     * state/dead state. In these cases, it is more likely that we will be
     * running at our unaccelerated dfa speeds so the small write engine is only
     * competitive over a small region where start up costs are dominant. */

    if (roseQuality) {
        return true;
    }

    set<dstate_id_t> visited;
    set<dstate_id_t> next;
    set<dstate_id_t> curr;
    curr.insert(rdfa.start_anchored);

    u32 ialpha_size = rdfa.getImplAlphaSize();

    for (u32 i = 0; i < MAX_GOOD_ACCEL_DEPTH; i++) {
        next.clear();
        for (dstate_id_t s : curr) {
            if (contains(visited, s)) {
                continue;
            }
            visited.insert(s);
            if (s == DEAD_STATE || contains(accel, s)) {
                return false;
            }

            for (size_t j = 0; j < ialpha_size; j++) {
                next.insert(rdfa.states[s].next[j]);
            }
        }
        curr.swap(next);
    }

    return true;
}

static
bytecode_ptr<NFA> getDfa(raw_dfa &rdfa, const CompileContext &cc, 
                         const ReportManager &rm, bool has_non_literals, 
                         set<dstate_id_t> &accel_states) { 
    // If we determinised only literals, then we only need to consider the init 
    // states for acceleration. 
    bool only_accel_init = !has_non_literals; 
    bool trust_daddy_states = !has_non_literals; 
 
    bytecode_ptr<NFA> dfa = nullptr; 
    if (cc.grey.allowSmallWriteSheng) { 
        dfa = shengCompile(rdfa, cc, rm, only_accel_init, &accel_states); 
        if (!dfa) {
            dfa = sheng32Compile(rdfa, cc, rm, only_accel_init, &accel_states);
        }
        if (!dfa) {
            dfa = sheng64Compile(rdfa, cc, rm, only_accel_init, &accel_states);
        }
    } 
    if (!dfa) { 
        dfa = mcclellanCompile(rdfa, cc, rm, only_accel_init, 
                               trust_daddy_states, &accel_states); 
    } 
    return dfa; 
} 
 
static 
bytecode_ptr<NFA> prepEngine(raw_dfa &rdfa, u32 roseQuality, 
                             const CompileContext &cc, const ReportManager &rm, 
                             bool has_non_literals, u32 *start_offset, 
                             u32 *small_region) { 
    *start_offset = remove_leading_dots(rdfa);

    // Unleash the McClellan!
    set<dstate_id_t> accel_states;

    auto nfa = getDfa(rdfa, cc, rm, has_non_literals, accel_states); 
    if (!nfa) {
        DEBUG_PRINTF("DFA compile failed for smallwrite NFA\n"); 
        return nullptr;
    }

    if (is_slow(rdfa, accel_states, roseQuality)) {
        DEBUG_PRINTF("is slow\n"); 
        *small_region = cc.grey.smallWriteLargestBufferBad;
        if (*small_region <= *start_offset) {
            return nullptr;
        }
        if (clear_deeper_reports(rdfa, *small_region - *start_offset)) { 
            minimize_hopcroft(rdfa, cc.grey); 
            if (rdfa.start_anchored == DEAD_STATE) { 
                DEBUG_PRINTF("all patterns pruned out\n"); 
                return nullptr; 
            } 

            nfa = getDfa(rdfa, cc, rm, has_non_literals, accel_states); 
            if (!nfa) { 
                DEBUG_PRINTF("DFA compile failed for smallwrite NFA\n"); 
                assert(0); /* able to build orig dfa but not the trimmed? */ 
                return nullptr; 
            } 
        }
    } else {
        *small_region = cc.grey.smallWriteLargestBuffer;
    }

    assert(isDfaType(nfa->type)); 
    if (nfa->length > cc.grey.limitSmallWriteOutfixSize
        || nfa->length > cc.grey.limitDFASize) {
        DEBUG_PRINTF("smallwrite outfix size too large\n");
        return nullptr; /* this is just a soft failure - don't build smwr */
    }

    nfa->queueIndex = 0; /* dummy, small write API does not use queue */
    return nfa;
}

// SmallWriteBuild factory
unique_ptr<SmallWriteBuild> makeSmallWriteBuilder(size_t num_patterns, 
                                                  const ReportManager &rm, 
                                                  const CompileContext &cc) {
    return ue2::make_unique<SmallWriteBuildImpl>(num_patterns, rm, cc); 
}

bytecode_ptr<SmallWriteEngine> SmallWriteBuildImpl::build(u32 roseQuality) { 
    const bool has_literals = !is_empty(lit_trie) || !is_empty(lit_trie_nocase); 
    const bool has_non_literals = !dfas.empty(); 
    if (dfas.empty() && !has_literals) { 
        DEBUG_PRINTF("no smallwrite engine\n");
        poisoned = true;
        return nullptr;
    }

    if (poisoned) {
        DEBUG_PRINTF("some pattern could not be made into a smallwrite dfa\n");
        return nullptr;
    }

    // We happen to know that if the rose is high quality, we're going to limit 
    // depth further. 
    if (roseQuality) { 
        u32 max_depth = cc.grey.smallWriteLargestBufferBad; 
        if (!is_empty(lit_trie)) { 
            pruneTrie(lit_trie, max_depth); 
        } 
        if (!is_empty(lit_trie_nocase)) { 
            pruneTrie(lit_trie_nocase, max_depth); 
        } 
    } 
 
    if (!is_empty(lit_trie)) { 
        dfas.push_back(buildDfa(lit_trie, false)); 
        DEBUG_PRINTF("caseful literal dfa with %zu states\n", 
                     dfas.back()->states.size()); 
    } 
    if (!is_empty(lit_trie_nocase)) { 
        dfas.push_back(buildDfa(lit_trie_nocase, true)); 
        DEBUG_PRINTF("nocase literal dfa with %zu states\n", 
                     dfas.back()->states.size()); 
    } 
 
    if (dfas.empty()) { 
        DEBUG_PRINTF("no dfa, pruned everything away\n"); 
        return nullptr;
    }

    if (!mergeDfas(dfas, rm, cc)) { 
        dfas.clear(); 
        return nullptr; 
    } 
 
    assert(dfas.size() == 1); 
    auto rdfa = std::move(dfas.front()); 
    dfas.clear(); 
 
    DEBUG_PRINTF("building rdfa %p\n", rdfa.get());

    u32 start_offset;
    u32 small_region;
    auto nfa = prepEngine(*rdfa, roseQuality, cc, rm, has_non_literals, 
                          &start_offset, &small_region); 
    if (!nfa) {
        DEBUG_PRINTF("some smallwrite outfix could not be prepped\n");
        /* just skip the smallwrite optimization */
        poisoned = true;
        return nullptr;
    }

    u32 size = sizeof(SmallWriteEngine) + nfa->length;
    auto smwr = make_zeroed_bytecode_ptr<SmallWriteEngine>(size); 

    smwr->size = size;
    smwr->start_offset = start_offset;
    smwr->largestBuffer = small_region;

    /* copy in nfa after the smwr */
    assert(ISALIGNED_CL(smwr.get() + 1));
    memcpy(smwr.get() + 1, nfa.get(), nfa->length);

    DEBUG_PRINTF("smallwrite done %p\n", smwr.get());
    return smwr;
}

set<ReportID> SmallWriteBuildImpl::all_reports() const { 
    set<ReportID> reports; 
    if (poisoned) { 
        return reports; 
    } 
 
    for (const auto &rdfa : dfas) { 
        insert(&reports, ::ue2::all_reports(*rdfa)); 
    } 
 
    insert(&reports, ::ue2::all_reports(lit_trie)); 
    insert(&reports, ::ue2::all_reports(lit_trie_nocase)); 
 
    return reports; 
}

} // namespace ue2