aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/hyperscan/src/rose/rose_build_matchers.cpp
blob: f172c095368c046d0bd780a746dd030ad5f63c7d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
/* 
 * Copyright (c) 2016-2019, Intel Corporation
 * 
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions are met: 
 * 
 *  * Redistributions of source code must retain the above copyright notice, 
 *    this list of conditions and the following disclaimer. 
 *  * Redistributions in binary form must reproduce the above copyright 
 *    notice, this list of conditions and the following disclaimer in the 
 *    documentation and/or other materials provided with the distribution. 
 *  * Neither the name of Intel Corporation nor the names of its contributors 
 *    may be used to endorse or promote products derived from this software 
 *    without specific prior written permission. 
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
 * POSSIBILITY OF SUCH DAMAGE. 
 */ 
 
/** 
 * \file 
 * \brief Rose build: code for constructing literal tables. 
 */ 
 
#include "rose_build_matchers.h" 
 
#include "rose_build_dump.h" 
#include "rose_build_impl.h" 
#include "rose_build_lit_accel.h" 
#include "rose_build_width.h" 
#include "hwlm/hwlm_build.h" 
#include "hwlm/hwlm_internal.h" 
#include "hwlm/hwlm_literal.h" 
#include "nfa/castlecompile.h" 
#include "nfa/nfa_api_queue.h" 
#include "util/charreach_util.h" 
#include "util/compile_context.h" 
#include "util/compile_error.h" 
#include "util/dump_charclass.h" 
#include "util/make_unique.h" 
#include "util/report.h" 
#include "util/report_manager.h" 
#include "util/verify_types.h" 
#include "ue2common.h" 
 
#include <iomanip> 
#include <sstream> 
 
#include <boost/range/adaptor/map.hpp> 
#include <boost/range/adaptor/reversed.hpp> 
 
using namespace std; 
using boost::adaptors::map_values; 
 
namespace ue2 { 
 
static const size_t MAX_ACCEL_STRING_LEN = 16; 
 
#if defined(DEBUG) || defined(DUMP_SUPPORT) 
static UNUSED 
string dumpMask(const vector<u8> &v) { 
    ostringstream oss; 
    for (u8 e : v) { 
        oss << setfill('0') << setw(2) << hex << (unsigned int)e; 
    } 
    return oss.str(); 
} 
#endif 
 
static 
bool maskFromLeftGraph(const LeftEngInfo &left, vector<u8> &msk, 
                       vector<u8> &cmp) { 
    const u32 lag = left.lag; 
    const ReportID report = left.leftfix_report; 
 
    DEBUG_PRINTF("leftfix with lag %u, report %u\n", lag, report); 
 
    assert(left.graph); 
    const NGHolder &h = *left.graph; 
    assert(in_degree(h.acceptEod, h) == 1); // no eod reports 
 
    // Start with the set of reporter vertices for this leftfix. 
    set<NFAVertex> curr; 
    for (auto u : inv_adjacent_vertices_range(h.accept, h)) { 
        if (contains(h[u].reports, report)) { 
            curr.insert(u); 
        } 
    } 
    assert(!curr.empty()); 
 
    size_t i = HWLM_MASKLEN - lag - 1; 
    do { 
        if (curr.empty() || contains(curr, h.start) 
            || contains(curr, h.startDs)) { 
            DEBUG_PRINTF("end of the road\n"); 
            break; 
        } 
 
        set<NFAVertex> next; 
        CharReach cr; 
        for (NFAVertex v : curr) { 
            const auto &v_cr = h[v].char_reach; 
            DEBUG_PRINTF("vertex %zu, reach %s\n", h[v].index, 
                         describeClass(v_cr).c_str()); 
            cr |= v_cr; 
            insert(&next, inv_adjacent_vertices(v, h)); 
        } 
        make_and_cmp_mask(cr, &msk.at(i), &cmp.at(i)); 
        DEBUG_PRINTF("%zu: reach=%s, msk=%u, cmp=%u\n", i, 
                     describeClass(cr).c_str(), msk[i], cmp[i]); 
        curr.swap(next); 
    } while (i-- > 0); 
 
    return true; 
} 
 
static 
bool maskFromLeftCastle(const LeftEngInfo &left, vector<u8> &msk, 
                        vector<u8> &cmp) { 
    const u32 lag = left.lag; 
    const ReportID report = left.leftfix_report; 
 
    DEBUG_PRINTF("leftfix with lag %u, report %u\n", lag, report); 
 
    assert(left.castle); 
    const CastleProto &c = *left.castle; 
 
    depth min_width(depth::infinity()); 
    for (const PureRepeat &repeat : c.repeats | map_values) { 
        if (contains(repeat.reports, report)) { 
            min_width = min(min_width, repeat.bounds.min); 
        } 
    } 
 
    DEBUG_PRINTF("castle min width for this report is %s\n", 
                 min_width.str().c_str()); 
 
    if (!min_width.is_finite() || min_width == depth(0)) { 
        DEBUG_PRINTF("bad min width\n"); 
        return false; 
    } 
 
    u32 len = min_width; 
    u32 end = HWLM_MASKLEN - lag; 
    for (u32 i = end; i > end - min(end, len); i--) { 
        make_and_cmp_mask(c.reach(), &msk.at(i - 1), &cmp.at(i - 1)); 
    } 
 
    return true; 
} 
 
static 
bool maskFromLeft(const LeftEngInfo &left, vector<u8> &msk, vector<u8> &cmp) { 
    if (left.lag >= HWLM_MASKLEN) { 
        DEBUG_PRINTF("too much lag\n"); 
        return false; 
    } 
 
    if (left.graph) { 
        return maskFromLeftGraph(left, msk, cmp); 
    } else if (left.castle) { 
        return maskFromLeftCastle(left, msk, cmp); 
    } 
 
    return false; 
} 
 
static 
bool maskFromPreds(const RoseBuildImpl &build, const rose_literal_id &id, 
                   const RoseVertex v, vector<u8> &msk, vector<u8> &cmp) { 
    const RoseGraph &g = build.g; 
 
    // For right now, wuss out and only handle cases with one pred. 
    if (in_degree(v, g) != 1) { 
        return false; 
    } 
 
    // Root successors have no literal before them. 
    if (build.isRootSuccessor(v)) { 
        return false; 
    } 
 
    // If we have a single predecessor with a short bound, we may be able to 
    // fill out a mask with the trailing bytes of the previous literal. This 
    // allows us to improve literals like the 'bar' in 'fo.bar'. 
 
    RoseEdge e = *(in_edges(v, g).first); 
    u32 bound = g[e].maxBound; 
    if (bound != g[e].minBound || bound >= HWLM_MASKLEN) { 
        return false; 
    } 
 
    bound += id.s.length(); 
    if (bound >= HWLM_MASKLEN) { 
        return false; 
    } 
 
    DEBUG_PRINTF("bound %u\n", bound); 
 
    RoseVertex u = source(e, g); 
    if (g[u].literals.size() != 1) { 
        DEBUG_PRINTF("u has %zu literals\n", g[u].literals.size()); 
        return false; 
    } 
 
    u32 u_lit_id = *(g[u].literals.begin()); 
    const rose_literal_id &u_id = build.literals.at(u_lit_id); 
    DEBUG_PRINTF("u has lit: %s\n", escapeString(u_id.s).c_str()); 
 
    // Number of characters to take from the back of u's literal. 
    size_t u_len = u_id.s.length(); 
    size_t u_sublen = min(u_len, (size_t)HWLM_MASKLEN - bound); 
 
    size_t i = HWLM_MASKLEN - (bound + u_sublen); 
 
    ue2_literal::const_iterator it, ite; 
    for (it = u_id.s.begin() + (u_len - u_sublen), ite = u_id.s.end(); 
            it != ite; ++it) { 
        make_and_cmp_mask(*it, &msk.at(i), &cmp.at(i)); 
        ++i; 
    } 
 
    return true; 
} 
 
static 
bool addSurroundingMask(const RoseBuildImpl &build, const rose_literal_id &id, 
                        const RoseVertex v, vector<u8> &msk, vector<u8> &cmp) { 
    // Start with zero masks. 
    msk.assign(HWLM_MASKLEN, 0); 
    cmp.assign(HWLM_MASKLEN, 0); 
 
    const LeftEngInfo &left = build.g[v].left; 
    if (left && left.lag < HWLM_MASKLEN) { 
        if (maskFromLeft(left, msk, cmp)) { 
            DEBUG_PRINTF("mask from a leftfix!\n"); 
            return true; 
        } 
    } 
 
    if (id.s.length() < HWLM_MASKLEN) { 
        if (maskFromPreds(build, id, v, msk, cmp)) { 
            DEBUG_PRINTF("mask from preds!\n"); 
            return true; 
        } 
    } 
 
    return false; 
} 
 
static 
bool hamsterMaskCombine(vector<u8> &msk, vector<u8> &cmp, 
                        const vector<u8> &v_msk, const vector<u8> &v_cmp) { 
    assert(msk.size() == HWLM_MASKLEN && cmp.size() == HWLM_MASKLEN); 
    assert(v_msk.size() == HWLM_MASKLEN && v_cmp.size() == HWLM_MASKLEN); 
 
    u8 all_masks = 0; 
 
    for (size_t i = 0; i < HWLM_MASKLEN; i++) { 
        u8 filter = ~(cmp[i] ^ v_cmp[i]); 
        msk[i] &= v_msk[i]; 
        msk[i] &= filter; 
        cmp[i] &= filter; 
 
        all_masks |= msk[i]; 
    } 
 
    // Return false if we have no bits on in any mask elements. 
    return all_masks != 0; 
} 
 
static 
bool addSurroundingMask(const RoseBuildImpl &build, const rose_literal_id &id, 
                        const rose_literal_info &info, vector<u8> &msk, 
                        vector<u8> &cmp) { 
    if (!build.cc.grey.roseHamsterMasks) { 
        return false; 
    } 
 
    if (!info.delayed_ids.empty()) { 
        // Not safe to add masks to delayed literals at this late stage. 
        return false; 
    } 
 
    msk.assign(HWLM_MASKLEN, 0); 
    cmp.assign(HWLM_MASKLEN, 0); 
 
    size_t num = 0; 
    vector<u8> v_msk, v_cmp; 
 
    for (RoseVertex v : info.vertices) { 
        if (!addSurroundingMask(build, id, v, v_msk, v_cmp)) { 
            DEBUG_PRINTF("no mask\n"); 
            return false; 
        } 
 
        if (!num++) { 
            // First (or only) vertex, this becomes the mask/cmp pair. 
            msk = v_msk; 
            cmp = v_cmp; 
        } else { 
            // Multiple vertices with potentially different masks. We combine 
            // them into an 'advisory' mask. 
            if (!hamsterMaskCombine(msk, cmp, v_msk, v_cmp)) { 
                DEBUG_PRINTF("mask went to zero\n"); 
                return false; 
            } 
        } 
    } 
 
    normaliseLiteralMask(id.s, msk, cmp); 
 
    if (msk.empty()) { 
        DEBUG_PRINTF("no mask\n"); 
        return false; 
    } 
 
    DEBUG_PRINTF("msk=%s, cmp=%s\n", dumpMask(msk).c_str(), 
                 dumpMask(cmp).c_str()); 
    return true; 
} 
 
void findMoreLiteralMasks(RoseBuildImpl &build) { 
    if (!build.cc.grey.roseHamsterMasks) { 
        return; 
    } 
 
    vector<u32> candidates; 
    for (u32 id = 0; id < build.literals.size(); id++) { 
        const auto &lit = build.literals.at(id); 
 
        if (lit.delay || build.isDelayed(id)) { 
            continue; 
        } 
 
        // Literal masks are only allowed for literals that will end up in an 
        // HWLM table. 
        switch (lit.table) { 
        case ROSE_FLOATING: 
        case ROSE_EOD_ANCHORED: 
        case ROSE_ANCHORED_SMALL_BLOCK: 
            break; 
        default: 
            continue; 
        } 
 
        candidates.push_back(id); 
    } 
 
    for (const u32 &id : candidates) { 
        const auto &lit = build.literals.at(id); 
        auto &lit_info = build.literal_info.at(id); 
 
        vector<u8> msk, cmp; 
        if (!addSurroundingMask(build, lit, lit_info, msk, cmp)) { 
            continue; 
        } 
        DEBUG_PRINTF("found surrounding mask for lit_id=%u (%s)\n", id, 
                     dumpString(lit.s).c_str()); 
        u32 new_id = build.getLiteralId(lit.s, msk, cmp, lit.delay, lit.table); 
        if (new_id == id) { 
            continue; 
        } 
        DEBUG_PRINTF("replacing with new lit_id=%u\n", new_id); 
 
        // Note that our new literal may already exist and have vertices, etc. 
        // We assume that this transform is happening prior to group assignment. 
        assert(lit_info.group_mask == 0); 
        auto &new_info = build.literal_info.at(new_id); 
 
        // Move the vertices across. 
        new_info.vertices.insert(begin(lit_info.vertices), 
                                 end(lit_info.vertices)); 
        for (auto v : lit_info.vertices) { 
            build.g[v].literals.erase(id); 
            build.g[v].literals.insert(new_id); 
        } 
        lit_info.vertices.clear(); 
 
        // Preserve other properties. 
        new_info.requires_benefits = lit_info.requires_benefits; 
    } 
} 
 
// The mask already associated with the literal and any mask due to 
// mixed-case is mandatory. 
static 
void addLiteralMask(const rose_literal_id &id, vector<u8> &msk, 
                    vector<u8> &cmp) { 
    const size_t suffix_len = min(id.s.length(), size_t{HWLM_MASKLEN}); 
    bool mixed_suffix = mixed_sensitivity_in(id.s.end() - suffix_len, 
                                             id.s.end()); 
 
    if (id.msk.empty() && !mixed_suffix) { 
        return; 
    } 
 
    while (msk.size() < HWLM_MASKLEN) { 
        msk.insert(msk.begin(), 0); 
        cmp.insert(cmp.begin(), 0); 
    } 
 
    if (!id.msk.empty()) { 
        assert(id.msk.size() <= HWLM_MASKLEN); 
        assert(id.msk.size() == id.cmp.size()); 
        for (size_t i = 0; i < id.msk.size(); i++) { 
            size_t mand_offset = msk.size() - i - 1; 
            size_t lit_offset = id.msk.size() - i - 1; 
            msk[mand_offset] = id.msk[lit_offset]; 
            cmp[mand_offset] = id.cmp[lit_offset]; 
        } 
    } 
 
    if (mixed_suffix) { 
        auto it = id.s.rbegin(); 
        for (size_t i = 0; i < suffix_len; ++i, ++it) { 
            const auto &c = *it; 
            if (!c.nocase) { 
                size_t offset = HWLM_MASKLEN - i - 1; 
                DEBUG_PRINTF("offset %zu must match 0x%02x exactly\n", offset, 
                             c.c); 
                make_and_cmp_mask(c, &msk[offset], &cmp[offset]); 
            } 
        } 
    } 
 
    normaliseLiteralMask(id.s, msk, cmp); 
} 
 
static 
bool isDirectHighlander(const RoseBuildImpl &build, const u32 id, 
                        const rose_literal_info &info) { 
    if (!build.isDirectReport(id)) { 
        return false; 
    } 
 
    auto is_simple_exhaustible = [&build](ReportID rid) { 
        const Report &report = build.rm.getReport(rid); 
        return isSimpleExhaustible(report); 
    }; 
 
    assert(!info.vertices.empty()); 
    for (const auto &v : info.vertices) { 
        const auto &reports = build.g[v].reports; 
        assert(!reports.empty()); 
        if (!all_of(begin(reports), end(reports), 
                    is_simple_exhaustible)) { 
            return false; 
        } 
    } 
    return true; 
} 
 
// Called by isNoRunsLiteral below. 
static 
bool isNoRunsVertex(const RoseBuildImpl &build, RoseVertex u) { 
    const RoseGraph &g = build.g; 
    if (!g[u].isBoring()) { 
        DEBUG_PRINTF("u=%zu is not boring\n", g[u].index); 
        return false; 
    } 
 
    if (!g[u].reports.empty()) { 
        DEBUG_PRINTF("u=%zu has accept\n", g[u].index); 
        return false; 
    } 
 
    /* TODO: handle non-root roles as well. It can't be that difficult... */ 
 
    if (in_degree(u, g) != 1) { 
        DEBUG_PRINTF("u=%zu is not a root role\n", g[u].index); 
        return false; 
    } 
 
    RoseEdge e = edge(build.root, u, g); 
 
    if (!e) { 
        DEBUG_PRINTF("u=%zu is not a root role\n", g[u].index); 
        return false; 
    } 
 
    if (g[e].minBound != 0 || g[e].maxBound != ROSE_BOUND_INF) { 
        DEBUG_PRINTF("u=%zu has bounds from root\n", g[u].index); 
        return false; 
    } 
 
    for (const auto &oe : out_edges_range(u, g)) { 
        RoseVertex v = target(oe, g); 
        if (g[oe].maxBound != ROSE_BOUND_INF) { 
            DEBUG_PRINTF("edge (%zu,%zu) has max bound\n", g[u].index, 
                         g[v].index); 
            return false; 
        } 
        if (g[v].left) { 
            DEBUG_PRINTF("v=%zu has rose prefix\n", g[v].index); 
            return false; 
        } 
    } 
    return true; 
} 
 
static 
bool isNoRunsLiteral(const RoseBuildImpl &build, const u32 id, 
                     const rose_literal_info &info, const size_t max_len) { 
    DEBUG_PRINTF("lit id %u\n", id); 
 
    if (info.requires_benefits) { 
        DEBUG_PRINTF("requires benefits\n"); // which would need confirm 
        return false; 
    } 
 
    size_t len = build.literals.at(id).s.length(); 
    if (len > max_len) { 
        DEBUG_PRINTF("long literal, requires confirm\n"); 
        return false; 
    } 
 
    if (len > ROSE_SHORT_LITERAL_LEN_MAX) { 
        DEBUG_PRINTF("medium-length literal, requires confirm\n"); 
        return false; 
    } 
 
    if (isDirectHighlander(build, id, info)) { 
        DEBUG_PRINTF("highlander direct report\n"); 
        return true; 
    } 
 
    // Undelayed vertices. 
    for (RoseVertex v : info.vertices) { 
        if (!isNoRunsVertex(build, v)) { 
            return false; 
        } 
    } 
 
    // Delayed vertices. 
    for (u32 d : info.delayed_ids) { 
        assert(d < build.literal_info.size()); 
        const rose_literal_info &delayed_info = build.literal_info.at(d); 
        assert(delayed_info.undelayed_id == id); 
        for (RoseVertex v : delayed_info.vertices) { 
            if (!isNoRunsVertex(build, v)) { 
                return false; 
            } 
        } 
    } 
 
    DEBUG_PRINTF("is no-runs literal\n"); 
    return true; 
} 
 
static 
bool isNoRunsFragment(const RoseBuildImpl &build, const LitFragment &f, 
                      const size_t max_len) { 
    // For the fragment to be marked "no runs", every literal it fires must 
    // need no further confirmation work. 
    return all_of_in(f.lit_ids, [&](u32 lit_id) { 
        const auto &info = build.literal_info.at(lit_id); 
        return isNoRunsLiteral(build, lit_id, info, max_len); 
    }); 
} 
 
static 
const raw_puff &getChainedPuff(const RoseBuildImpl &build, 
                               const Report &report) { 
    DEBUG_PRINTF("chained report, event %u\n", report.onmatch); 
 
    // MPV has already been moved to the outfixes vector. 
    assert(!build.mpv_outfix); 
 
    auto mpv_outfix_it = find_if( 
        begin(build.outfixes), end(build.outfixes), 
        [](const OutfixInfo &outfix) { return outfix.is_nonempty_mpv(); }); 
    assert(mpv_outfix_it != end(build.outfixes)); 
    const auto *mpv = mpv_outfix_it->mpv(); 
 
    u32 puff_index = report.onmatch - MQE_TOP_FIRST; 
    assert(puff_index < mpv->triggered_puffettes.size()); 
    return mpv->triggered_puffettes.at(puff_index); 
} 
 
/** 
 * \brief Returns a conservative estimate of the minimum offset at which the 
 * given literal can lead to a report. 
 * 
 * TODO: This could be made more precise by calculating a "distance to accept" 
 * for every vertex in the graph; right now we're only accurate for leaf nodes. 
 */ 
static 
u64a literalMinReportOffset(const RoseBuildImpl &build, 
                           const rose_literal_id &lit, 
                           const rose_literal_info &info) { 
    const auto &g = build.g; 
 
    const u32 lit_len = verify_u32(lit.elength()); 
 
    u64a lit_min_offset = UINT64_MAX; 
 
    for (const auto &v : info.vertices) { 
        DEBUG_PRINTF("vertex %zu min_offset=%u\n", g[v].index, g[v].min_offset); 
 
        u64a vert_offset = g[v].min_offset; 
 
        if (vert_offset >= lit_min_offset) { 
            continue; 
        } 
 
        u64a min_offset = UINT64_MAX; 
 
        for (const auto &id : g[v].reports) { 
            const Report &report = build.rm.getReport(id); 
            DEBUG_PRINTF("report id %u, min offset=%llu\n", id, 
                         report.minOffset); 
            if (report.type == INTERNAL_ROSE_CHAIN) { 
                // This vertex triggers an MPV, which will fire reports after 
                // repeating for a while. 
                assert(report.minOffset == 0); // Should not have bounds. 
                const auto &puff = getChainedPuff(build, report); 
                DEBUG_PRINTF("chained puff repeats=%u\n", puff.repeats); 
                const Report &puff_report = build.rm.getReport(puff.report); 
                DEBUG_PRINTF("puff report %u, min offset=%llu\n", puff.report, 
                              puff_report.minOffset); 
                min_offset = min(min_offset, max(vert_offset + puff.repeats, 
                                                 puff_report.minOffset)); 
            } else { 
                DEBUG_PRINTF("report min offset=%llu\n", report.minOffset); 
                min_offset = min(min_offset, max(vert_offset, 
                                                 report.minOffset)); 
            } 
        } 
 
        if (g[v].suffix) { 
            depth suffix_width = findMinWidth(g[v].suffix, g[v].suffix.top); 
            assert(suffix_width.is_reachable()); 
            DEBUG_PRINTF("suffix with width %s\n", suffix_width.str().c_str()); 
            min_offset = min(min_offset, vert_offset + suffix_width); 
        } 
 
        if (!isLeafNode(v, g) || min_offset == UINT64_MAX) { 
            min_offset = vert_offset; 
        } 
 
        lit_min_offset = min(lit_min_offset, min_offset); 
    } 
 
    // If this literal in the undelayed literal corresponding to some delayed 
    // literals, we must take their minimum offsets into account. 
    for (const u32 &delayed_id : info.delayed_ids) { 
        const auto &delayed_lit = build.literals.at(delayed_id); 
        const auto &delayed_info = build.literal_info.at(delayed_id); 
        u64a delayed_min_offset = literalMinReportOffset(build, delayed_lit, 
                                                         delayed_info); 
        DEBUG_PRINTF("delayed_id=%u, min_offset = %llu\n", delayed_id, 
                     delayed_min_offset); 
        lit_min_offset = min(lit_min_offset, delayed_min_offset); 
    } 
 
    // If we share a vertex with a shorter literal, our min offset might dip 
    // below the length of this one. 
    lit_min_offset = max(lit_min_offset, u64a{lit_len}); 
 
    return lit_min_offset; 
} 
 
template<class Container> 
void trim_to_suffix(Container &c, size_t len) { 
    if (c.size() <= len) { 
        return; 
    } 
 
    size_t suffix_len = c.size() - len; 
    c.erase(c.begin(), c.begin() + suffix_len); 
} 
 
namespace { 
 
/** \brief Prototype for literal matcher construction. */ 
struct MatcherProto { 
    /** \brief Literal fragments used to construct the literal matcher. */ 
    vector<hwlmLiteral> lits; 
 
    /** \brief Longer literals used for acceleration analysis. */ 
    vector<AccelString> accel_lits; 
 
    /** \brief The history required by the literal matcher. */ 
    size_t history_required = 0; 
 
    /** \brief Insert the contents of another MatcherProto. */ 
    void insert(const MatcherProto &a); 
}; 
} 
 
static 
void addFragmentLiteral(const RoseBuildImpl &build, MatcherProto &mp, 
                        const LitFragment &f, u32 id, size_t max_len) { 
    const rose_literal_id &lit = build.literals.at(id); 
 
    DEBUG_PRINTF("lit='%s' (len %zu)\n", dumpString(lit.s).c_str(), 
                 lit.s.length()); 
 
    vector<u8> msk = lit.msk; // copy 
    vector<u8> cmp = lit.cmp; // copy 
 
    bool noruns = isNoRunsFragment(build, f, max_len); 
    DEBUG_PRINTF("fragment is %s\n", noruns ? "noruns" : "not noruns"); 
 
    auto lit_final = lit.s; // copy 
 
    if (lit_final.length() > ROSE_SHORT_LITERAL_LEN_MAX) { 
        DEBUG_PRINTF("truncating to tail of length %zu\n", 
                     size_t{ROSE_SHORT_LITERAL_LEN_MAX}); 
        lit_final.erase(0, lit_final.length() - ROSE_SHORT_LITERAL_LEN_MAX); 
        // We shouldn't have set a threshold below 8 chars. 
        assert(msk.size() <= ROSE_SHORT_LITERAL_LEN_MAX); 
        assert(!noruns); 
    } 
 
    addLiteralMask(lit, msk, cmp); 
 
    const auto &s_final = lit_final.get_string(); 
    bool nocase = lit_final.any_nocase(); 
 
    DEBUG_PRINTF("id=%u, s='%s', nocase=%d, noruns=%d, msk=%s, cmp=%s\n", 
                 f.fragment_id, escapeString(s_final).c_str(), (int)nocase, 
                 noruns, dumpMask(msk).c_str(), dumpMask(cmp).c_str()); 
 
    if (!maskIsConsistent(s_final, nocase, msk, cmp)) { 
        DEBUG_PRINTF("msk/cmp for literal can't match, skipping\n"); 
        return; 
    } 
 
    const auto &groups = f.groups; 
 
    mp.lits.emplace_back(move(s_final), nocase, noruns, f.fragment_id, 
                         groups, msk, cmp); 
} 
 
static 
void addAccelLiteral(MatcherProto &mp, const rose_literal_id &lit, 
                     const rose_literal_info &info, size_t max_len) { 
    const auto &s = lit.s; // copy 
 
    DEBUG_PRINTF("lit='%s' (len %zu)\n", dumpString(s).c_str(), s.length()); 
 
    vector<u8> msk = lit.msk; // copy 
    vector<u8> cmp = lit.cmp; // copy 
    addLiteralMask(lit, msk, cmp); 
 
    if (!maskIsConsistent(s.get_string(), s.any_nocase(), msk, cmp)) { 
        DEBUG_PRINTF("msk/cmp for literal can't match, skipping\n"); 
        return; 
    } 
 
    // Literals used for acceleration must be limited to max_len, as that's all 
    // we can see in history. 
    string s_final = lit.s.get_string(); 
    trim_to_suffix(s_final, max_len); 
    trim_to_suffix(msk, max_len); 
    trim_to_suffix(cmp, max_len); 
 
    mp.accel_lits.emplace_back(s_final, lit.s.any_nocase(), msk, cmp, 
                               info.group_mask); 
} 
 
/** 
 * \brief Build up a vector of literals (and associated other data) for the 
 * given table. 
 * 
 * If max_offset is specified (and not ROSE_BOUND_INF), then literals that can 
 * only lead to a pattern match after max_offset may be excluded. 
 */ 
static 
MatcherProto makeMatcherProto(const RoseBuildImpl &build, 
                              const vector<LitFragment> &fragments, 
                              rose_literal_table table, bool delay_rebuild, 
                              size_t max_len, u32 max_offset = ROSE_BOUND_INF) { 
    MatcherProto mp; 
 
    if (delay_rebuild) { 
        assert(table == ROSE_FLOATING); 
        assert(build.cc.streaming); 
    } 
 
    vector<u32> used_lit_ids; 
 
    for (const auto &f : fragments) { 
        assert(!f.lit_ids.empty()); 
 
        // All literals that share a fragment are in the same table. 
        if (build.literals.at(f.lit_ids.front()).table != table) { 
            continue; // next fragment. 
        } 
 
        DEBUG_PRINTF("fragment %u, %zu lit_ids\n", f.fragment_id, 
                     f.lit_ids.size()); 
 
        used_lit_ids.clear(); 
        for (u32 id : f.lit_ids) { 
            const rose_literal_id &lit = build.literals.at(id); 
            assert(id < build.literal_info.size()); 
            const auto &info = build.literal_info.at(id); 
            if (lit.delay) { 
                continue; /* delay id's are virtual-ish */ 
            } 
 
            // When building the delay rebuild table, we only want to include 
            // literals that have delayed variants. 
            if (delay_rebuild && info.delayed_ids.empty()) { 
                DEBUG_PRINTF("not needed for delay rebuild\n"); 
                continue; 
            } 
 
            if (max_offset != ROSE_BOUND_INF) { 
                u64a min_report = literalMinReportOffset(build, lit, info); 
                if (min_report > max_offset) { 
                    DEBUG_PRINTF("min report offset=%llu exceeds " 
                                 "max_offset=%u\n", min_report, max_offset); 
                    continue; 
                } 
            } 
 
            used_lit_ids.push_back(id); 
        } 
 
        if (used_lit_ids.empty()) { 
            continue; // next fragment. 
        } 
 
        // Build our fragment (for the HWLM matcher) from the first literal. 
        addFragmentLiteral(build, mp, f, used_lit_ids.front(), max_len); 
 
        for (u32 id : used_lit_ids) { 
            const rose_literal_id &lit = build.literals.at(id); 
            assert(id < build.literal_info.size()); 
            const auto &info = build.literal_info.at(id); 
 
            // All literals contribute accel information. 
            addAccelLiteral(mp, lit, info, max_len); 
 
            // All literals contribute to history requirement in streaming mode. 
            if (build.cc.streaming) { 
                size_t lit_hist_len = 
                    max(lit.msk.size(), min(lit.s.length(), max_len)); 
                lit_hist_len = lit_hist_len ? lit_hist_len - 1 : 0; 
                DEBUG_PRINTF("lit requires %zu bytes of history\n", 
                             lit_hist_len); 
                assert(lit_hist_len <= build.cc.grey.maxHistoryAvailable); 
                mp.history_required = max(mp.history_required, lit_hist_len); 
            } 
        } 
    } 
 
    sort_and_unique(mp.lits); 
    sort_and_unique(mp.accel_lits); 
 
    return mp; 
} 
 
void MatcherProto::insert(const MatcherProto &a) { 
    ::ue2::insert(&lits, lits.end(), a.lits); 
    ::ue2::insert(&accel_lits, accel_lits.end(), a.accel_lits); 
    sort_and_unique(lits); 
    sort_and_unique(accel_lits); 
    history_required = max(history_required, a.history_required); 
} 
 
static 
void buildAccel(const RoseBuildImpl &build, 
                const vector<AccelString> &accel_lits, HWLM &hwlm) { 
    if (!build.cc.grey.hamsterAccelForward) { 
        return; 
    } 
 
    if (hwlm.type == HWLM_ENGINE_NOOD) { 
        return; 
    } 
 
    buildForwardAccel(&hwlm, accel_lits, build.getInitialGroups()); 
} 
 
bytecode_ptr<HWLM> 
buildHWLMMatcher(const RoseBuildImpl &build, LitProto *litProto) { 
    if (!litProto) { 
        return nullptr; 
    } 
    auto hwlm = hwlmBuild(*litProto->hwlmProto, build.cc, 
                          build.getInitialGroups()); 
    if (!hwlm) { 
        throw CompileError("Unable to generate bytecode."); 
    } 
 
    buildAccel(build, litProto->accel_lits, *hwlm); 
 
    DEBUG_PRINTF("built eod-anchored literal table size %zu bytes\n", 
                 hwlm.size()); 
    return hwlm; 
} 
 
unique_ptr<LitProto> 
buildFloatingMatcherProto(const RoseBuildImpl &build, 
                          const vector<LitFragment> &fragments, 
                          size_t longLitLengthThreshold, 
                          rose_group *fgroups, 
                          size_t *historyRequired) { 
    DEBUG_PRINTF("Floating literal matcher\n"); 
    *fgroups = 0; 
 
     auto mp = makeMatcherProto(build, fragments, ROSE_FLOATING, false, 
                                           longLitLengthThreshold); 
     if (mp.lits.empty()) { 
         DEBUG_PRINTF("empty floating matcher\n"); 
         return nullptr; 
     } 
     dumpMatcherLiterals(mp.lits, "floating", build.cc.grey); 
 
     for (const hwlmLiteral &lit : mp.lits) { 
         *fgroups |= lit.groups; 
     } 
 
     if (build.cc.streaming) { 
         DEBUG_PRINTF("history_required=%zu\n", mp.history_required); 
         assert(mp.history_required <= build.cc.grey.maxHistoryAvailable); 
         *historyRequired = max(*historyRequired, mp.history_required); 
     } 
 
     auto proto = hwlmBuildProto(mp.lits, false, build.cc); 
 
     if (!proto) { 
        throw CompileError("Unable to generate literal matcher proto."); 
     } 
 
     return ue2::make_unique<LitProto>(move(proto), mp.accel_lits); 
} 
 
unique_ptr<LitProto> 
buildDelayRebuildMatcherProto(const RoseBuildImpl &build, 
                              const vector<LitFragment> &fragments, 
                              size_t longLitLengthThreshold) { 
    DEBUG_PRINTF("Delay literal matcher\n"); 
    if (!build.cc.streaming) { 
        DEBUG_PRINTF("not streaming\n"); 
        return nullptr; 
    } 
 
    auto mp = makeMatcherProto(build, fragments, ROSE_FLOATING, true, 
                               longLitLengthThreshold); 
    if (mp.lits.empty()) { 
        DEBUG_PRINTF("empty delay rebuild matcher\n"); 
        return nullptr; 
    } 
    dumpMatcherLiterals(mp.lits, "delay_rebuild", build.cc.grey); 
 
 
    auto proto = hwlmBuildProto(mp.lits, false, build.cc); 
 
    if (!proto) { 
        throw CompileError("Unable to generate literal matcher proto."); 
    } 
 
    return ue2::make_unique<LitProto>(move(proto), mp.accel_lits); 
} 
 
unique_ptr<LitProto> 
buildSmallBlockMatcherProto(const RoseBuildImpl &build, 
                            const vector<LitFragment> &fragments) { 
    DEBUG_PRINTF("Small block literal matcher\n"); 
    if (build.cc.streaming) { 
        DEBUG_PRINTF("streaming mode\n"); 
        return nullptr; 
    } 
 
    u32 float_min = findMinWidth(build, ROSE_FLOATING); 
    if (float_min > ROSE_SMALL_BLOCK_LEN) { 
        DEBUG_PRINTF("floating table has large min width %u, fail\n", 
                     float_min); 
        return nullptr; 
    } 
 
    auto mp = makeMatcherProto(build, fragments, ROSE_FLOATING, false, 
                               ROSE_SMALL_BLOCK_LEN, ROSE_SMALL_BLOCK_LEN); 
    if (mp.lits.empty()) { 
        DEBUG_PRINTF("no floating table\n"); 
        return nullptr; 
    } else if (mp.lits.size() == 1) { 
        DEBUG_PRINTF("single floating literal, noodle will be fast enough\n"); 
        return nullptr; 
    } 
 
    auto mp_anchored = makeMatcherProto(build, fragments, 
                                        ROSE_ANCHORED_SMALL_BLOCK, false, 
                                        ROSE_SMALL_BLOCK_LEN, 
                                        ROSE_SMALL_BLOCK_LEN); 
    if (mp_anchored.lits.empty()) { 
        DEBUG_PRINTF("no small-block anchored literals\n"); 
        return nullptr; 
    } 
 
    mp.insert(mp_anchored); 
    dumpMatcherLiterals(mp.lits, "smallblock", build.cc.grey); 
 
    // None of our literals should be longer than the small block limit. 
    assert(all_of(begin(mp.lits), end(mp.lits), [](const hwlmLiteral &lit) { 
        return lit.s.length() <= ROSE_SMALL_BLOCK_LEN; 
    })); 
 
    if (mp.lits.empty()) { 
        DEBUG_PRINTF("no literals shorter than small block len\n"); 
        return nullptr; 
    } 
 
    auto proto = hwlmBuildProto(mp.lits, false, build.cc); 
 
    if (!proto) { 
        throw CompileError("Unable to generate literal matcher proto."); 
    } 
 
    return ue2::make_unique<LitProto>(move(proto), mp.accel_lits); 
} 
 
unique_ptr<LitProto> 
buildEodAnchoredMatcherProto(const RoseBuildImpl &build, 
                             const vector<LitFragment> &fragments) { 
    DEBUG_PRINTF("Eod anchored literal matcher\n"); 
    auto mp = makeMatcherProto(build, fragments, ROSE_EOD_ANCHORED, false, 
                               build.ematcher_region_size); 
 
    if (mp.lits.empty()) { 
        DEBUG_PRINTF("no eod anchored literals\n"); 
        assert(!build.ematcher_region_size); 
        return nullptr; 
    } 
    dumpMatcherLiterals(mp.lits, "eod", build.cc.grey); 
 
    assert(build.ematcher_region_size); 
 
    auto proto = hwlmBuildProto(mp.lits, false, build.cc); 
 
    if (!proto) { 
        throw CompileError("Unable to generate literal matcher proto."); 
    } 
 
    return ue2::make_unique<LitProto>(move(proto), mp.accel_lits); 
} 
 
} // namespace ue2