aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/hyperscan/src/rose/rose_build_lookaround.cpp
blob: d0540d79b07d1e1e665d54b031019eb0540dfa15 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
/*
 * Copyright (c) 2015-2020, Intel Corporation
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of Intel Corporation nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/** \file
 * \brief Rose compile-time analysis for lookaround masks.
 */
#include "rose_build_lookaround.h"

#include "rose_build_impl.h"
#include "nfa/castlecompile.h"
#include "nfa/goughcompile.h"
#include "nfa/rdfa.h"
#include "nfagraph/ng_repeat.h"
#include "nfagraph/ng_util.h"
#include "util/container.h"
#include "util/dump_charclass.h"
#include "util/graph_range.h"
#include "util/flat_containers.h"
#include "util/verify_types.h"

#include <cstdlib>
#include <queue>
#include <sstream>

using namespace std;

namespace ue2 {

/** \brief Max search distance for reachability in front of a role. */
static const u32 MAX_FWD_LEN = 64;

/** \brief Max search distance for reachability behind a role. */
static const u32 MAX_BACK_LEN = 64;

/** \brief Max lookaround entries for a role. */
static const u32 MAX_LOOKAROUND_ENTRIES = 32;

/** \brief We would rather have lookarounds with smaller reach than this. */
static const u32 LOOKAROUND_WIDE_REACH = 200;

#if defined(DEBUG) || defined(DUMP_SUPPORT)
static UNUSED
string dump(const map<s32, CharReach> &look) {
    ostringstream oss;
    for (auto it = look.begin(), ite = look.end(); it != ite; ++it) {
        if (it != look.begin()) {
            oss << ", ";
        }
        oss << "{" << it->first << ": " << describeClass(it->second) << "}";
    }
    return oss.str();
}
#endif

static
void getForwardReach(const NGHolder &g, u32 top, map<s32, CharReach> &look) {
    flat_set<NFAVertex> curr, next;

    // Consider only successors of start with the required top.
    for (const auto &e : out_edges_range(g.start, g)) {
        NFAVertex v = target(e, g);
        if (v == g.startDs) {
            continue;
        }
        if (contains(g[e].tops, top)) {
            curr.insert(v);
        }
    }

    for (u32 i = 0; i < MAX_FWD_LEN; i++) {
        if (curr.empty() || contains(curr, g.accept) ||
            contains(curr, g.acceptEod)) {
            break;
        }

        next.clear();
        CharReach cr;

        for (auto v : curr) {
            assert(!is_special(v, g));
            cr |= g[v].char_reach;
            insert(&next, adjacent_vertices(v, g));
        }

        assert(cr.any());
        look[i] |= cr;
        curr.swap(next);
    }
}

static
void getBackwardReach(const NGHolder &g, ReportID report, u32 lag,
                      map<s32, CharReach> &look) {
    flat_set<NFAVertex> curr, next;

    for (auto v : inv_adjacent_vertices_range(g.accept, g)) {
        if (contains(g[v].reports, report)) {
            curr.insert(v);
        }
    }

    for (u32 i = lag + 1; i <= MAX_BACK_LEN; i++) {
        if (curr.empty() || contains(curr, g.start) ||
            contains(curr, g.startDs)) {
            break;
        }

        next.clear();
        CharReach cr;

        for (auto v : curr) {
            assert(!is_special(v, g));
            cr |= g[v].char_reach;
            insert(&next, inv_adjacent_vertices(v, g));
        }

        assert(cr.any());
        look[0 - i] |= cr;
        curr.swap(next);
    }
}

static
void getForwardReach(const CastleProto &castle, u32 top,
                     map<s32, CharReach> &look) {
    depth len = castle.repeats.at(top).bounds.min;
    len = min(len, depth(MAX_FWD_LEN));
    assert(len.is_finite());

    const CharReach &cr = castle.reach();
    for (u32 i = 0; i < len; i++) {
        look[i] |= cr;
    }
}

static
void getBackwardReach(const CastleProto &castle, ReportID report, u32 lag,
                      map<s32, CharReach> &look) {
    depth min_depth = depth::infinity();
    for (const auto &m : castle.repeats) {
        const PureRepeat &pr = m.second;
        if (contains(pr.reports, report)) {
            min_depth = min(min_depth, pr.bounds.min);
        }
    }

    if (!min_depth.is_finite()) {
        assert(0);
        return;
    }

    const CharReach &cr = castle.reach();
    for (u32 i = lag + 1; i <= min(lag + (u32)min_depth, MAX_BACK_LEN);
         i++) {
        look[0 - i] |= cr;
    }
}

static
void getForwardReach(const raw_dfa &rdfa, map<s32, CharReach> &look) {
    if (rdfa.states.size() < 2) {
        return;
    }

    flat_set<dstate_id_t> curr, next;
    curr.insert(rdfa.start_anchored);

    for (u32 i = 0; i < MAX_FWD_LEN && !curr.empty(); i++) {
        next.clear();
        CharReach cr;

        for (const auto state_id : curr) {
            const dstate &ds = rdfa.states[state_id];

            if (!ds.reports.empty() || !ds.reports_eod.empty()) {
                return;
            }

            for (unsigned c = 0; c < N_CHARS; c++) {
                dstate_id_t succ = ds.next[rdfa.alpha_remap[c]];
                if (succ != DEAD_STATE) {
                    cr.set(c);
                    next.insert(succ);
                }
            }
        }

        assert(cr.any());
        look[i] |= cr;
        curr.swap(next);
    }
}

static
void getSuffixForwardReach(const suffix_id &suff, u32 top,
                           map<s32, CharReach> &look) {
    if (suff.graph()) {
        getForwardReach(*suff.graph(), top, look);
    } else if (suff.castle()) {
        getForwardReach(*suff.castle(), top, look);
    } else if (suff.dfa()) {
        assert(top == 0); // DFA isn't multi-top capable.
        getForwardReach(*suff.dfa(), look);
    } else if (suff.haig()) {
        assert(top == 0); // DFA isn't multi-top capable.
        getForwardReach(*suff.haig(), look);
    }
}

static
void getRoseForwardReach(const left_id &left, u32 top,
                         map<s32, CharReach> &look) {
    if (left.graph()) {
        getForwardReach(*left.graph(), top, look);
    } else if (left.castle()) {
        getForwardReach(*left.castle(), top, look);
    } else if (left.dfa()) {
        assert(top == 0); // DFA isn't multi-top capable.
        getForwardReach(*left.dfa(), look);
    } else if (left.haig()) {
        assert(top == 0); // DFA isn't multi-top capable.
        getForwardReach(*left.haig(), look);
    }
}

static
void combineForwardMasks(const vector<map<s32, CharReach> > &rose_look,
                         map<s32, CharReach> &look) {
    for (u32 i = 0; i < MAX_FWD_LEN; i++) {
        for (const auto &rlook : rose_look) {
            if (contains(rlook, i)) {
                look[i] |= rlook.at(i);
            } else {
                look[i].setall();
            }
        }
    }
}

static
void findForwardReach(const RoseGraph &g, const RoseVertex v,
                      map<s32, CharReach> &look) {
    if (!g[v].reports.empty()) {
        DEBUG_PRINTF("acceptor\n");
        return;
    }

    // Non-leaf vertices can pick up a mask per successor prefix rose
    // engine.
    vector<map<s32, CharReach>> rose_look;
    for (const auto &e : out_edges_range(v, g)) {
        RoseVertex t = target(e, g);
        if (!g[t].left) {
            DEBUG_PRINTF("successor %zu has no leftfix\n", g[t].index);
            return;
        }
        rose_look.push_back(map<s32, CharReach>());
        getRoseForwardReach(g[t].left, g[e].rose_top, rose_look.back());
    }

    if (g[v].suffix) {
        DEBUG_PRINTF("suffix engine\n");
        rose_look.push_back(map<s32, CharReach>());
        getSuffixForwardReach(g[v].suffix, g[v].suffix.top, rose_look.back());
    }

    combineForwardMasks(rose_look, look);
}

static
void findBackwardReach(const RoseGraph &g, const RoseVertex v,
                       map<s32, CharReach> &look) {
    if (!g[v].left) {
        return;
    }

    DEBUG_PRINTF("leftfix, report=%u, lag=%u\n", g[v].left.leftfix_report,
                 g[v].left.lag);

    if (g[v].left.graph) {
        getBackwardReach(*g[v].left.graph, g[v].left.leftfix_report,
                         g[v].left.lag, look);
    } else if (g[v].left.castle) {
        getBackwardReach(*g[v].left.castle, g[v].left.leftfix_report,
                         g[v].left.lag, look);
    }

    // TODO: implement DFA variants if necessary.
}

static
void normalise(map<s32, CharReach> &look) {
    // We can erase entries where the reach is "all characters".
    vector<s32> dead;
    for (const auto &m : look) {
        if (m.second.all()) {
            dead.push_back(m.first);
        }
    }
    erase_all(&look, dead);
}

namespace {

struct LookPriority {
    explicit LookPriority(const map<s32, CharReach> &look_in) : look(look_in) {}

    bool operator()(s32 a, s32 b) const {
        const CharReach &a_reach = look.at(a);
        const CharReach &b_reach = look.at(b);
        if (a_reach.count() != b_reach.count()) {
            return a_reach.count() < b_reach.count();
        }
        return abs(a) < abs(b);
    }

private:
    const map<s32, CharReach> &look;
};

} // namespace

static
bool isFloodProne(const map<s32, CharReach> &look, const CharReach &flood_cr) {
    for (const auto &m : look) {
        const CharReach &look_cr = m.second;
        if (!overlaps(look_cr, flood_cr)) {
            return false;
        }
    }
    DEBUG_PRINTF("look can't escape flood on %s\n",
                  describeClass(flood_cr).c_str());
    return true;
}

static
bool isFloodProne(const map<s32, CharReach> &look,
                  const set<CharReach> &flood_reach) {
    if (flood_reach.empty()) {
        return false;
    }

    for (const CharReach &flood_cr : flood_reach) {
        if (isFloodProne(look, flood_cr)) {
            return true;
        }
    }

    return false;
}

static
void reduce(map<s32, CharReach> &look, set<CharReach> &flood_reach) {
    if (look.size() <= MAX_LOOKAROUND_ENTRIES) {
        return;
    }

    DEBUG_PRINTF("before reduce: %s\n", dump(look).c_str());

    // First, remove floods that we already can't escape; they shouldn't affect
    // the analysis below.
    for (auto it = flood_reach.begin(); it != flood_reach.end();) {
        if (isFloodProne(look, *it)) {
            DEBUG_PRINTF("removing inescapable flood on %s from analysis\n",
                         describeClass(*it).c_str());
            flood_reach.erase(it++);
        } else {
            ++it;
        }
    }

    LookPriority cmp(look);
    priority_queue<s32, vector<s32>, LookPriority> pq(cmp);
    for (const auto &m : look) {
        pq.push(m.first);
    }

    while (!pq.empty() && look.size() > MAX_LOOKAROUND_ENTRIES) {
        s32 d = pq.top();
        assert(contains(look, d));
        const CharReach cr(look[d]); // copy
        pq.pop();

        DEBUG_PRINTF("erasing {%d: %s}\n", d, describeClass(cr).c_str());
        look.erase(d);

        // If removing this entry would result in us becoming flood_prone on a
        // particular flood_reach case, reinstate it and move on.
        if (isFloodProne(look, flood_reach)) {
            DEBUG_PRINTF("reinstating {%d: %s} due to flood-prone check\n", d,
                         describeClass(cr).c_str());
            look.insert(make_pair(d, cr));
        }
    }

    while (!pq.empty()) {
        s32 d = pq.top();
        assert(contains(look, d));
        const CharReach cr(look[d]); // copy
        pq.pop();

        if (cr.count() < LOOKAROUND_WIDE_REACH) {
            continue;
        }

        DEBUG_PRINTF("erasing {%d: %s}\n", d, describeClass(cr).c_str());
        look.erase(d);

        // If removing this entry would result in us becoming flood_prone on a
        // particular flood_reach case, reinstate it and move on.
        if (isFloodProne(look, flood_reach)) {
            DEBUG_PRINTF("reinstating {%d: %s} due to flood-prone check\n", d,
                         describeClass(cr).c_str());
            look.insert(make_pair(d, cr));
        }
    }

    DEBUG_PRINTF("after reduce: %s\n", dump(look).c_str());
}

static
void findFloodReach(const RoseBuildImpl &tbi, const RoseVertex v,
                    set<CharReach> &flood_reach) {
    for (u32 lit_id : tbi.g[v].literals) {
        const ue2_literal &s = tbi.literals.at(lit_id).s;
        if (s.empty()) {
            continue;
        }
        if (is_flood(s)) {
            CharReach cr(*s.begin());
            DEBUG_PRINTF("flood-prone with reach: %s\n",
                          describeClass(cr).c_str());
            flood_reach.insert(cr);
        }
    }
}


namespace {
struct LookProto {
    LookProto(s32 offset_in, CharReach reach_in)
        : offset(offset_in), reach(move(reach_in)) {}
    s32 offset;
    CharReach reach;
};
}

static
vector<LookProto> findLiteralReach(const rose_literal_id &lit) {
    vector<LookProto> look;
    look.reserve(lit.s.length());

    s32 i = 0 - lit.s.length() - lit.delay;
    for (const auto &c : lit.s) {
        look.emplace_back(i, c);
        i++;
    }

    return look;
}

static
vector<LookProto> findLiteralReach(const RoseBuildImpl &build,
                                   const RoseVertex v) {
    bool first = true;
    vector<LookProto> look;

    for (u32 lit_id : build.g[v].literals) {
        const rose_literal_id &lit = build.literals.at(lit_id);
        auto lit_look = findLiteralReach(lit);

        if (first) {
            look = std::move(lit_look);
            first = false;
            continue;
        }

        // Erase elements from look with keys not in lit_look. Where a key is
        // in both maps, union its reach with the lookaround.
        auto jt = begin(lit_look);
        for (auto it = begin(look); it != end(look);) {
            if (jt == end(lit_look)) {
                // No further lit_look entries, erase remaining elements from
                // look.
                look.erase(it, end(look));
                break;
            }
            if (it->offset < jt->offset) {
                // Offset is present in look but not in lit_look, erase.
                it = look.erase(it);
            } else if (it->offset > jt->offset) {
                // Offset is preset in lit_look but not in look, ignore.
                ++jt;
            } else {
                // Offset is present in both, union its reach with look.
                it->reach |= jt->reach;
                ++it;
                ++jt;
            }
        }
    }

    return look;
}

/**
 * Trim lookaround checks from the prefix that overlap with the literals
 * themselves.
 */
static
void trimLiterals(const RoseBuildImpl &build, const RoseVertex v,
                  map<s32, CharReach> &look) {
    DEBUG_PRINTF("pre-trim lookaround: %s\n", dump(look).c_str());

    for (const auto &m : findLiteralReach(build, v)) {
        auto it = look.find(m.offset);
        if (it == end(look)) {
            continue;
        }
        if (m.reach.isSubsetOf(it->second)) {
            DEBUG_PRINTF("can trim entry at %d\n", it->first);
            look.erase(it);
        }
    }

    DEBUG_PRINTF("post-trim lookaround: %s\n", dump(look).c_str());
}

static
void normaliseLeftfix(map<s32, CharReach> &look) {
    // We can erase entries where the reach is "all characters", except for the
    // very first one -- this might be required to establish a minimum bound on
    // the literal's match offset.

    // TODO: It would be cleaner to use a literal program instruction to check
    // the minimum bound explicitly.

    if (look.empty()) {
        return;
    }

    const auto earliest = begin(look)->first;

    vector<s32> dead;
    for (const auto &m : look) {
        if (m.second.all() && m.first != earliest) {
            dead.push_back(m.first);
        }
    }
    erase_all(&look, dead);
}

static
bool trimMultipathLeftfix(const RoseBuildImpl &build, const RoseVertex v,
                          vector<map<s32, CharReach>> &looks) {
    size_t path_count = 0;
    for (auto &look : looks) {
        ++path_count;
        DEBUG_PRINTF("Path #%ld\n", path_count);

        assert(!look.empty());
        trimLiterals(build, v, look);

        if (look.empty()) {
            return false;
        }

        // Could be optimized here, just keep the empty byte of the longest path
        normaliseLeftfix(look);

        if (look.size() > MAX_LOOKAROUND_ENTRIES) {
            DEBUG_PRINTF("lookaround too big (%zu entries)\n", look.size());
            return false;
        }
    }
    return true;
}

static
void transToLookaround(const vector<map<s32, CharReach>> &looks,
                       vector<vector<LookEntry>> &lookarounds) {
    for (const auto &look : looks) {
        vector<LookEntry> lookaround;
        DEBUG_PRINTF("lookaround: %s\n", dump(look).c_str());
        lookaround.reserve(look.size());
        for (const auto &m : look) {
            if (m.first < -128 || m.first > 127) {
                DEBUG_PRINTF("range too big\n");
                lookarounds.clear();
                return;
            }
            s8 offset = verify_s8(m.first);
            lookaround.emplace_back(offset, m.second);
        }
        lookarounds.push_back(lookaround);
    }
}

void findLookaroundMasks(const RoseBuildImpl &tbi, const RoseVertex v,
                         vector<LookEntry> &lookaround) {
    lookaround.clear();

    const RoseGraph &g = tbi.g;

    map<s32, CharReach> look;
    findBackwardReach(g, v, look);
    findForwardReach(g, v, look);
    trimLiterals(tbi, v, look);

    if (look.empty()) {
        return;
    }

    normalise(look);

    if (look.empty()) {
        return;
    }

    set<CharReach> flood_reach;
    findFloodReach(tbi, v, flood_reach);
    reduce(look, flood_reach);

    if (look.empty()) {
        return;
    }

    DEBUG_PRINTF("lookaround: %s\n", dump(look).c_str());
    lookaround.reserve(look.size());
    for (const auto &m : look) {
        s8 offset = verify_s8(m.first);
        lookaround.emplace_back(offset, m.second);
    }
}

static
bool checkShuftiBuckets(const vector<map<s32, CharReach>> &looks,
                        u32 bucket_size) {
    set<u32> bucket;
    for (const auto &look : looks) {
        for (const auto &l : look) {
            CharReach cr = l.second;
            if (cr.count() > 128) {
                cr.flip();
            }
            map <u16, u16> lo2hi;

            for (size_t i = cr.find_first(); i != CharReach::npos;) {
                u8 it_hi = i >> 4;
                u16 low_encode = 0;
                while (i != CharReach::npos && (i >> 4) == it_hi) {
                    low_encode |= 1 << (i &0xf);
                    i = cr.find_next(i);
                }
                lo2hi[low_encode] |= 1 << it_hi;
            }

            for (const auto &it : lo2hi) {
                u32 hi_lo = (it.second << 16) | it.first;
                bucket.insert(hi_lo);
            }
        }
    }
    DEBUG_PRINTF("shufti has %lu bucket(s)\n", bucket.size());
    return bucket.size() <= bucket_size;
}

static
bool getTransientPrefixReach(const NGHolder &g, ReportID report, u32 lag,
                             vector<map<s32, CharReach>> &looks) {
    if (!isAcyclic(g)) {
        DEBUG_PRINTF("contains back-edge\n");
        return false;
    }

    // Must be floating chains wired to startDs.
    if (!isFloating(g)) {
        DEBUG_PRINTF("not a floating start\n");
        return false;
    }

    vector<NFAVertex> curr;
    for (auto v : inv_adjacent_vertices_range(g.accept, g)) {
        if (v == g.start || v == g.startDs) {
            DEBUG_PRINTF("empty graph\n");
            return true;
        }
        if (contains(g[v].reports, report)) {
            curr.push_back(v);
        }
    }

    assert(!curr.empty());

    u32 total_len = curr.size();

    for (const auto &v : curr) {
        looks.emplace_back(map<s32, CharReach>());
        looks.back()[0 - (lag + 1)] = g[v].char_reach;
    }

    bool curr_active = false;

    /* For each offset -i, we backwardly trace the path by vertices in curr.
     * Once there are more than 8 paths and more than 64 bits total_len,
     * which means that neither MULTIPATH_LOOKAROUND nor MULTIPATH_SHUFTI
     * could be successfully built, we will give up the path finding.
     * Otherwise, the loop will halt when all vertices in curr are startDs.
     */
    for (u32 i = lag + 2; i < (lag + 2) + MAX_BACK_LEN; i++) {
        curr_active = false;
        size_t curr_size = curr.size();
        if (curr.size() > 1 && i > lag + MULTIPATH_MAX_LEN) {
            DEBUG_PRINTF("range is larger than 16 in multi-path\n");
            return false;
        }

        for (size_t idx = 0; idx < curr_size; idx++) {
            NFAVertex v = curr[idx];
            if (v == g.startDs) {
                continue;
            }
            assert(!is_special(v, g));

            for (auto u : inv_adjacent_vertices_range(v, g)) {
                if (u == g.start || u == g.startDs) {
                    curr[idx] = g.startDs;
                    break;
                }
            }

            if (is_special(curr[idx], g)) {
                continue;
            }

            for (auto u : inv_adjacent_vertices_range(v, g)) {
                curr_active = true;
                if (curr[idx] == v) {
                    curr[idx] = u;
                    looks[idx][0 - i] = g[u].char_reach;
                    total_len++;
                } else {
                    curr.push_back(u);
                    looks.push_back(looks[idx]);
                    (looks.back())[0 - i] = g[u].char_reach;
                    total_len += looks.back().size();
                }

                if (curr.size() > MAX_LOOKAROUND_PATHS && total_len > 64) {
                    DEBUG_PRINTF("too many branches\n");
                    return false;
                }
            }
        }
        if (!curr_active) {
            break;
        }
    }

    if (curr_active) {
        DEBUG_PRINTF("single path too long\n");
        return false;
    }

    // More than 8 paths, check multi-path shufti.
    if (curr.size() > MAX_LOOKAROUND_PATHS) {
        u32 bucket_size = total_len > 32 ? 8 : 16;
        if (!checkShuftiBuckets(looks, bucket_size)) {
            DEBUG_PRINTF("shufti has too many buckets\n");
            return false;
        }
    }

    assert(!looks.empty());
    if (looks.size() == 1) {
        DEBUG_PRINTF("single lookaround\n");
    } else {
        DEBUG_PRINTF("multi-path lookaround\n");
    }
    DEBUG_PRINTF("done\n");
    return true;
}

bool makeLeftfixLookaround(const RoseBuildImpl &build, const RoseVertex v,
                           vector<vector<LookEntry>> &lookaround) {
    lookaround.clear();

    const RoseGraph &g = build.g;
    const left_id leftfix(g[v].left);

    if (!contains(build.transient, leftfix)) {
        DEBUG_PRINTF("not transient\n");
        return false;
    }

    if (!leftfix.graph()) {
        DEBUG_PRINTF("only supported for graphs so far\n");
        return false;
    }

    vector<map<s32, CharReach>> looks;
    if (!getTransientPrefixReach(*leftfix.graph(), g[v].left.leftfix_report,
                                 g[v].left.lag, looks)) {
        DEBUG_PRINTF("graph has loop or too large\n");
        return false;
    }

    if (!trimMultipathLeftfix(build, v, looks)) {
        return false;
    }
    transToLookaround(looks, lookaround);

    return !lookaround.empty();
}

void mergeLookaround(vector<LookEntry> &lookaround,
                     const vector<LookEntry> &more_lookaround) {
    if (lookaround.size() >= MAX_LOOKAROUND_ENTRIES) {
        DEBUG_PRINTF("big enough!\n");
        return;
    }

    // Don't merge lookarounds at offsets we already have entries for.
    flat_set<s8> offsets;
    for (const auto &e : lookaround) {
        offsets.insert(e.offset);
    }

    map<s32, CharReach> more;
    LookPriority cmp(more);
    priority_queue<s32, vector<s32>, LookPriority> pq(cmp);
    for (const auto &e : more_lookaround) {
        if (!contains(offsets, e.offset)) {
            more.emplace(e.offset, e.reach);
            pq.push(e.offset);
        }
    }

    while (!pq.empty() && lookaround.size() < MAX_LOOKAROUND_ENTRIES) {
        const s32 offset = pq.top();
        pq.pop();
        const auto &cr = more.at(offset);
        DEBUG_PRINTF("added {%d,%s}\n", offset, describeClass(cr).c_str());
        lookaround.emplace_back(verify_s8(offset), cr);
    }

    // Order by offset.
    sort(begin(lookaround), end(lookaround),
         [](const LookEntry &a, const LookEntry &b) {
             return a.offset < b.offset;
         });
}

} // namespace ue2