1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
|
/*
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "rose_build_impl.h"
#include "ue2common.h"
#include "grey.h"
#include "rose_build_add_internal.h"
#include "rose_build_anchored.h"
#include "rose_in_util.h"
#include "hwlm/hwlm_literal.h"
#include "nfagraph/ng_depth.h"
#include "nfagraph/ng_dump.h"
#include "nfagraph/ng_holder.h"
#include "nfagraph/ng_limex.h"
#include "nfagraph/ng_reports.h"
#include "nfagraph/ng_util.h"
#include "nfagraph/ng_width.h"
#include "util/charreach.h"
#include "util/charreach_util.h"
#include "util/compare.h"
#include "util/compile_context.h"
#include "util/container.h"
#include "util/dump_charclass.h"
#include "util/graph.h"
#include "util/make_unique.h"
#include "util/ue2string.h"
#include "util/verify_types.h"
#include <algorithm>
#include <map>
#include <set>
#include <string>
#include <vector>
#include <utility>
using namespace std;
namespace ue2 {
#define MIN_MASK_LIT_LEN 2
#define MAX_MASK_SIZE 255
#define MAX_MASK_LITS 30
static
void findMaskLiteral(const vector<CharReach> &mask, bool streaming,
ue2_literal *lit, u32 *offset, const Grey &grey) {
bool case_fixed = false;
bool nocase = false;
size_t best_begin = 0;
size_t best_end = 0;
size_t best_len = 0;
size_t begin = 0;
size_t end = 0;
for (size_t i = 0; i < mask.size(); i++) {
bool fail = false;
if (mask[i].count() != 1 && !mask[i].isCaselessChar()) {
DEBUG_PRINTF("hit non-literal char, resetting at %zu\n", i);
fail = true;
}
if (!fail && streaming && (end >= grey.maxHistoryAvailable + 1)) {
DEBUG_PRINTF("hit literal limit, resetting at %zu\n", i);
fail = true;
}
if (!fail && case_fixed && mask[i].isAlpha()) {
if (nocase && mask[i].count() != 2) {
fail = true;
}
if (!nocase && mask[i].count() != 1) {
fail = true;
}
}
if (fail) {
case_fixed = false;
nocase = false;
size_t len = end - begin;
bool better = len > best_len;
if (better) {
best_begin = begin;
best_end = end;
best_len = len;
}
begin = i + 1;
end = i + 1;
} else {
assert(end == i);
end = i + 1;
if (mask[i].isAlpha()) {
case_fixed = true;
nocase = mask[i].count() == 2;
}
}
}
size_t len = end - begin;
/* Everybody would rather be trigger towards the end */
bool better = len >= best_len && mask.size() - end <= MAX_DELAY;
if (better) {
best_begin = begin;
best_end = end;
best_len = len;
}
for (size_t i = best_begin; i < best_end; i++) {
assert(mask[i].count() == 1 || mask[i].count() == 2);
lit->push_back(mask[i].find_first(), mask[i].count() > 1);
}
*offset = verify_u32(best_begin);
}
static
bool initFmlCandidates(const CharReach &cr, vector<ue2_literal> &cand) {
for (size_t i = cr.find_first(); i != cr.npos; i = cr.find_next(i)) {
char c = (char)i;
bool nocase = myisupper(c) && cr.test(mytolower(c));
if (myislower(c) && cr.test(mytoupper(c))) {
continue;
}
if (cand.size() >= MAX_MASK_LITS) {
DEBUG_PRINTF("hit lit limit of %u\n", MAX_MASK_LITS);
return false;
}
cand.emplace_back(c, nocase);
}
assert(cand.size() <= MAX_MASK_LITS);
return !cand.empty();
}
static
bool expandFmlCandidates(const CharReach &cr, vector<ue2_literal> &curr,
vector<ue2_literal> &cand) {
DEBUG_PRINTF("expanding string with cr of %zu\n", cr.count());
DEBUG_PRINTF(" current cand list size %zu\n", cand.size());
curr.clear();
for (size_t i = cr.find_first(); i != cr.npos; i = cr.find_next(i)) {
char c = (char)i;
bool nocase = myisupper(c) && cr.test(mytolower(c));
if (myislower(c) && cr.test(mytoupper(c))) {
continue;
}
for (const auto &lit : cand) {
if (curr.size() >= MAX_MASK_LITS) {
DEBUG_PRINTF("hit lit limit of %u\n", MAX_MASK_LITS);
return false;
}
curr.push_back(lit);
curr.back().push_back(c, nocase);
}
}
if (curr.back().length() > MAX_MASK2_WIDTH &&
any_of(begin(curr), end(curr), mixed_sensitivity)) {
DEBUG_PRINTF("mixed-sensitivity lit is too long, stopping\n");
return false;
}
assert(curr.size() <= MAX_MASK_LITS);
cand.swap(curr);
return true;
}
static
u32 scoreFmlCandidates(const vector<ue2_literal> &cand) {
if (cand.empty()) {
DEBUG_PRINTF("no candidates\n");
return 0;
}
const u32 len = cand.back().length();
DEBUG_PRINTF("length = %u count %zu\n", len, cand.size());
u32 min_period = len;
for (const auto &lit : cand) {
DEBUG_PRINTF("candidate: %s\n", dumpString(lit).c_str());
u32 period = lit.length() - maxStringSelfOverlap(lit);
min_period = min(min_period, period);
}
DEBUG_PRINTF("min_period %u\n", min_period);
u32 length_score =
(5 * min_period + len) * (cand.back().any_nocase() ? 90 : 100);
u32 count_penalty;
if (len > 4) {
count_penalty = 9 * len * cand.size();
} else {
count_penalty = 5 * cand.size();
}
if (length_score <= count_penalty) {
return 1;
}
return length_score - count_penalty;
}
/* favours later literals */
static
bool findMaskLiterals(const vector<CharReach> &mask, vector<ue2_literal> *lit,
u32 *minBound, u32 *length) {
*minBound = 0;
*length = 0;
vector<ue2_literal> candidates, best_candidates, curr_candidates;
u32 best_score = 0;
u32 best_minOffset = 0;
for (auto it = mask.begin(); it != mask.end(); ++it) {
candidates.clear();
if (!initFmlCandidates(*it, candidates)) {
DEBUG_PRINTF("failed to init\n");
continue;
}
DEBUG_PRINTF("++\n");
auto jt = it;
while (jt != mask.begin()) {
--jt;
DEBUG_PRINTF("--\n");
if (!expandFmlCandidates(*jt, curr_candidates, candidates)) {
DEBUG_PRINTF("expansion stopped\n");
break;
}
}
// Candidates have been expanded in reverse order.
for (auto &cand : candidates) {
cand = reverse_literal(cand);
}
u32 score = scoreFmlCandidates(candidates);
DEBUG_PRINTF("scored %u for literal set of size %zu\n", score,
candidates.size());
if (!candidates.empty() && score >= best_score) {
best_minOffset = it - mask.begin() - candidates.back().length() + 1;
best_candidates.swap(candidates);
best_score = score;
}
}
if (!best_score) {
DEBUG_PRINTF("no lits\n");
return false;
}
*minBound = best_minOffset;
*length = best_candidates.back().length();
DEBUG_PRINTF("best minbound %u length %u\n", *minBound, *length);
assert(all_of_in(best_candidates, [&](const ue2_literal &s) {
return s.length() == *length;
}));
*lit = std::move(best_candidates);
return true;
}
static
unique_ptr<NGHolder> buildMaskLhs(bool anchored, u32 prefix_len,
const vector<CharReach> &mask) {
DEBUG_PRINTF("build %slhs len %u/%zu\n", anchored ? "anc " : "", prefix_len,
mask.size());
unique_ptr<NGHolder> lhs = ue2::make_unique<NGHolder>(NFA_PREFIX);
assert(prefix_len);
assert(mask.size() >= prefix_len);
NFAVertex pred = anchored ? lhs->start : lhs->startDs;
u32 m_idx = 0;
while (prefix_len--) {
NFAVertex v = add_vertex(*lhs);
(*lhs)[v].char_reach = mask[m_idx++];
add_edge(pred, v, *lhs);
pred = v;
}
add_edge(pred, lhs->accept, *lhs);
(*lhs)[pred].reports.insert(0);
return lhs;
}
static
void buildLiteralMask(const vector<CharReach> &mask, vector<u8> &msk,
vector<u8> &cmp, u32 delay) {
msk.clear();
cmp.clear();
if (mask.size() <= delay) {
return;
}
// Construct an and/cmp mask from our mask ending at delay positions before
// the end of the literal, with max length HWLM_MASKLEN.
auto ite = mask.end() - delay;
auto it = ite - min(size_t{HWLM_MASKLEN}, mask.size() - delay);
for (; it != ite; ++it) {
msk.push_back(0);
cmp.push_back(0);
make_and_cmp_mask(*it, &msk.back(), &cmp.back());
}
assert(msk.size() == cmp.size());
assert(msk.size() <= HWLM_MASKLEN);
}
static
bool validateTransientMask(const vector<CharReach> &mask, bool anchored,
bool eod, const Grey &grey) {
assert(!mask.empty());
// An EOD anchored mask requires that everything fit into history, while an
// ordinary floating case can handle one byte more (i.e., max history size
// and one byte in the buffer).
const size_t max_width = grey.maxHistoryAvailable + (eod ? 0 : 1);
if (mask.size() > max_width) {
DEBUG_PRINTF("mask too long for max available history\n");
return false;
}
/* although anchored masks cannot be transient, short masks may be placed
* into the atable. */
if (anchored && mask.size() > grey.maxAnchoredRegion) {
return false;
}
vector<ue2_literal> lits;
u32 lit_minBound; /* minBound of each literal in lit */
u32 lit_length; /* length of each literal in lit */
if (!findMaskLiterals(mask, &lits, &lit_minBound, &lit_length)) {
DEBUG_PRINTF("failed to find any lits\n");
return false;
}
if (lits.empty()) {
return false;
}
const u32 delay = mask.size() - lit_length - lit_minBound;
if (delay > MAX_DELAY) {
DEBUG_PRINTF("delay %u is too much\n", delay);
return false;
}
if (lit_length == 1 && lits.size() > 3) {
DEBUG_PRINTF("no decent trigger\n");
return false;
}
// Mixed-sensitivity literals require benefits masks to implement, and thus
// have a maximum length. This has been taken into account in
// findMaskLiterals.
assert(lit_length <= MAX_MASK2_WIDTH ||
none_of(begin(lits), end(lits), mixed_sensitivity));
// Build the HWLM literal mask.
vector<u8> msk, cmp;
if (grey.roseHamsterMasks) {
buildLiteralMask(mask, msk, cmp, delay);
}
// We consider the HWLM mask length to run from the first non-zero byte to
// the end, and let max(mask length, literal length) be the effective
// literal length.
//
// A one-byte literal with no mask is too short, but a one-byte literal
// with a few bytes of mask information is OK.
u32 msk_length = distance(find_if(begin(msk), end(msk),
[](u8 v) { return v != 0; }), end(msk));
u32 eff_lit_length = max(lit_length, msk_length);
DEBUG_PRINTF("msk_length=%u, eff_lit_length = %u\n", msk_length,
eff_lit_length);
if (eff_lit_length < MIN_MASK_LIT_LEN) {
DEBUG_PRINTF("literals too short\n");
return false;
}
DEBUG_PRINTF("mask is ok\n");
return true;
}
static
bool maskIsNeeded(const ue2_literal &lit, const NGHolder &g) {
flat_set<NFAVertex> curr = {g.accept};
flat_set<NFAVertex> next;
for (auto it = lit.rbegin(), ite = lit.rend(); it != ite; ++it) {
const CharReach &cr = *it;
DEBUG_PRINTF("check %s\n", describeClass(*it).c_str());
next.clear();
for (auto v : curr) {
for (auto u : inv_adjacent_vertices_range(v, g)) {
if (isSubsetOf(cr, g[u].char_reach)) {
next.insert(u);
}
}
}
if (next.empty()) {
DEBUG_PRINTF("no path to start\n");
return true;
}
curr.swap(next);
}
for (auto v : curr) {
for (auto u : inv_adjacent_vertices_range(v, g)) {
if (u == g.start || u == g.startDs) {
DEBUG_PRINTF("literal spans graph from start to accept\n");
return false;
}
}
}
DEBUG_PRINTF("literal doesn't reach start\n");
return true;
}
static
void addTransientMask(RoseBuildImpl &build, const vector<CharReach> &mask,
const flat_set<ReportID> &reports, bool anchored,
bool eod) {
vector<ue2_literal> lits;
u32 lit_minBound; /* minBound of each literal in lit */
u32 lit_length; /* length of each literal in lit */
if (!findMaskLiterals(mask, &lits, &lit_minBound, &lit_length)) {
DEBUG_PRINTF("failed to find any lits\n");
assert(0);
return;
}
DEBUG_PRINTF("%zu literals, minBound=%u, length=%u\n", lits.size(),
lit_minBound, lit_length);
if (lits.empty()) {
assert(0);
return;
}
u32 delay = mask.size() - lit_length - lit_minBound;
assert(delay <= MAX_DELAY);
DEBUG_PRINTF("delay=%u\n", delay);
shared_ptr<NGHolder> mask_graph = buildMaskLhs(anchored, mask.size(), mask);
u32 mask_lag = 0; /* TODO */
// Everyone gets the same report ID.
ReportID mask_report = build.getNewNfaReport();
set_report(*mask_graph, mask_report);
// Build the HWLM literal mask.
vector<u8> msk, cmp;
if (build.cc.grey.roseHamsterMasks) {
buildLiteralMask(mask, msk, cmp, delay);
}
/* adjust bounds to be relative to trigger rather than mask */
const u32 v_min_offset = add_rose_depth(0, mask.size());
const u32 v_max_offset =
add_rose_depth(anchored ? 0 : ROSE_BOUND_INF, mask.size());
RoseGraph &g = build.g;
// By default, masked literals go into the floating table (except for eod
// cases).
enum rose_literal_table table = ROSE_FLOATING;
RoseVertex eod_v = RoseGraph::null_vertex();
if (eod) {
eod_v = add_vertex(g);
g[eod_v].eod_accept = true;
insert(&g[eod_v].reports, reports);
g[eod_v].min_offset = v_min_offset;
g[eod_v].max_offset = v_max_offset;
// Note: because this is a transient mask, we know that we can match it
// completely inside the history buffer. So, using the EOD literal
// table is always safe.
table = ROSE_EOD_ANCHORED;
// Widen the EOD table window to cover the mask.
ENSURE_AT_LEAST(&build.ematcher_region_size, mask.size());
}
const flat_set<ReportID> no_reports;
for (const auto &lit : lits) {
u32 lit_id = build.getLiteralId(lit, msk, cmp, delay, table);
const RoseVertex parent = anchored ? build.anchored_root : build.root;
bool use_mask = delay || maskIsNeeded(lit, *mask_graph);
auto v = createVertex(&build, parent, 0, ROSE_BOUND_INF, lit_id,
lit.length(), eod ? no_reports : reports);
if (use_mask) {
g[v].left.graph = mask_graph;
g[v].left.lag = mask_lag;
g[v].left.leftfix_report = mask_report;
} else {
// Make sure our edge bounds are correct.
RoseEdge e = edge(parent, v, g);
g[e].minBound = 0;
g[e].maxBound = anchored ? 0 : ROSE_BOUND_INF;
g[e].history = anchored ? ROSE_ROLE_HISTORY_ANCH
: ROSE_ROLE_HISTORY_NONE;
}
// Set offsets correctly.
g[v].min_offset = v_min_offset;
g[v].max_offset = v_max_offset;
if (eod) {
RoseEdge e = add_edge(v, eod_v, g);
g[e].minBound = 0;
g[e].maxBound = 0;
g[e].history = ROSE_ROLE_HISTORY_LAST_BYTE;
}
}
}
static
unique_ptr<NGHolder> buildMaskRhs(const flat_set<ReportID> &reports,
const vector<CharReach> &mask,
u32 suffix_len) {
assert(suffix_len);
assert(mask.size() > suffix_len);
unique_ptr<NGHolder> rhs = ue2::make_unique<NGHolder>(NFA_SUFFIX);
NGHolder &h = *rhs;
NFAVertex succ = h.accept;
u32 m_idx = mask.size() - 1;
while (suffix_len--) {
NFAVertex u = add_vertex(h);
if (succ == h.accept) {
h[u].reports.insert(reports.begin(), reports.end());
}
h[u].char_reach = mask[m_idx--];
add_edge(u, succ, h);
succ = u;
}
NFAEdge e = add_edge(h.start, succ, h);
h[e].tops.insert(DEFAULT_TOP);
return rhs;
}
static
void doAddMask(RoseBuildImpl &tbi, bool anchored, const vector<CharReach> &mask,
const ue2_literal &lit, u32 prefix_len, u32 suffix_len,
const flat_set<ReportID> &reports) {
/* Note: bounds are relative to literal start */
RoseInGraph ig;
RoseInVertex s = add_vertex(RoseInVertexProps::makeStart(anchored), ig);
RoseInVertex v = add_vertex(RoseInVertexProps::makeLiteral(lit), ig);
DEBUG_PRINTF("pref + lit = %u\n", prefix_len);
assert(prefix_len >= lit.length());
// prefix len is relative to end of literal.
u32 minBound = prefix_len - lit.length();
if (minBound) {
if (anchored && prefix_len > tbi.cc.grey.maxAnchoredRegion) {
DEBUG_PRINTF("too deep\n");
/* see if there is an anchored literal we can also hang off */
ue2_literal lit2;
u32 lit2_offset;
vector<CharReach> mask2 = mask;
assert(mask2.size() > tbi.cc.grey.maxAnchoredRegion);
mask2.resize(MIN(tbi.cc.grey.maxAnchoredRegion, minBound));
findMaskLiteral(mask2, tbi.cc.streaming, &lit2, &lit2_offset,
tbi.cc.grey);
if (lit2.length() >= MIN_MASK_LIT_LEN) {
u32 prefix2_len = lit2_offset + lit2.length();
assert(prefix2_len < minBound);
RoseInVertex u
= add_vertex(RoseInVertexProps::makeLiteral(lit2), ig);
if (lit2_offset){
DEBUG_PRINTF("building lhs (off %u)\n", lit2_offset);
shared_ptr<NGHolder> lhs2
= buildMaskLhs(true, lit2_offset, mask);
add_edge(s, u, RoseInEdgeProps(lhs2, lit2.length()), ig);
} else {
add_edge(s, u, RoseInEdgeProps(0, 0), ig);
}
/* midfix */
DEBUG_PRINTF("building mhs\n");
vector<CharReach> mask3(mask.begin() + prefix2_len, mask.end());
u32 overlap = maxOverlap(lit2, lit, 0);
u32 delay = lit.length() - overlap;
shared_ptr<NGHolder> mhs
= buildMaskLhs(true, minBound - prefix2_len + overlap,
mask3);
mhs->kind = NFA_INFIX;
setTops(*mhs);
add_edge(u, v, RoseInEdgeProps(mhs, delay), ig);
DEBUG_PRINTF("add anch literal too!\n");
goto do_rhs;
}
}
shared_ptr<NGHolder> lhs = buildMaskLhs(anchored, minBound, mask);
add_edge(s, v, RoseInEdgeProps(lhs, lit.length()), ig);
} else {
u32 maxBound = anchored ? minBound : ROSE_BOUND_INF;
add_edge(s, v, RoseInEdgeProps(minBound, maxBound), ig);
}
do_rhs:
if (suffix_len) {
shared_ptr<NGHolder> rhs = buildMaskRhs(reports, mask, suffix_len);
RoseInVertex a =
add_vertex(RoseInVertexProps::makeAccept(set<ReportID>()), ig);
add_edge(v, a, RoseInEdgeProps(rhs, 0), ig);
} else {
/* Note: masks have no eod connections */
RoseInVertex a
= add_vertex(RoseInVertexProps::makeAccept(reports), ig);
add_edge(v, a, RoseInEdgeProps(0U, 0U), ig);
}
calcVertexOffsets(ig);
bool rv = tbi.addRose(ig, false);
assert(rv); /* checkAllowMask should have prevented this */
if (!rv) {
throw std::exception();
}
}
static
bool checkAllowMask(const vector<CharReach> &mask, ue2_literal *lit,
u32 *prefix_len, u32 *suffix_len,
const CompileContext &cc) {
assert(!mask.empty());
u32 lit_offset;
findMaskLiteral(mask, cc.streaming, lit, &lit_offset, cc.grey);
if (lit->length() < MIN_MASK_LIT_LEN && lit->length() != mask.size()) {
DEBUG_PRINTF("need more literal - bad mask\n");
return false;
}
DEBUG_PRINTF("mask lit '%s', len=%zu at offset=%u\n",
dumpString(*lit).c_str(), lit->length(), lit_offset);
assert(!cc.streaming || lit->length() <= cc.grey.maxHistoryAvailable + 1);
/* literal is included in the prefix nfa so that matches from the prefix
* can't occur in the history buffer - probably should tweak the NFA API
* to allow such matches not to be suppressed */
*prefix_len = lit_offset + lit->length();
*suffix_len = mask.size() - *prefix_len;
DEBUG_PRINTF("prefix_len=%u, suffix_len=%u\n", *prefix_len, *suffix_len);
/* check if we can backtrack sufficiently */
if (cc.streaming && *prefix_len > cc.grey.maxHistoryAvailable + 1) {
DEBUG_PRINTF("too much lag\n");
return false;
}
if (*suffix_len > MAX_MASK_SIZE || *prefix_len > MAX_MASK_SIZE) {
DEBUG_PRINTF("too big\n");
return false;
}
return true;
}
bool RoseBuildImpl::add(bool anchored, const vector<CharReach> &mask,
const flat_set<ReportID> &reports) {
if (validateTransientMask(mask, anchored, false, cc.grey)) {
bool eod = false;
addTransientMask(*this, mask, reports, anchored, eod);
return true;
}
ue2_literal lit;
u32 prefix_len = 0;
u32 suffix_len = 0;
if (!checkAllowMask(mask, &lit, &prefix_len, &suffix_len, cc)) {
return false;
}
/* we know that the mask can be handled now, start playing with the rose
* graph */
doAddMask(*this, anchored, mask, lit, prefix_len, suffix_len, reports);
return true;
}
bool RoseBuildImpl::validateMask(const vector<CharReach> &mask,
UNUSED const flat_set<ReportID> &reports,
bool anchored, bool eod) const {
return validateTransientMask(mask, anchored, eod, cc.grey);
}
static
unique_ptr<NGHolder> makeAnchoredGraph(const vector<CharReach> &mask,
const flat_set<ReportID> &reports,
bool eod) {
auto gp = ue2::make_unique<NGHolder>();
NGHolder &g = *gp;
NFAVertex u = g.start;
for (const auto &cr : mask) {
NFAVertex v = add_vertex(g);
g[v].char_reach = cr;
add_edge(u, v, g);
u = v;
}
g[u].reports = reports;
add_edge(u, eod ? g.acceptEod : g.accept, g);
return gp;
}
static
bool addAnchoredMask(RoseBuildImpl &build, const vector<CharReach> &mask,
const flat_set<ReportID> &reports, bool eod) {
if (!build.cc.grey.allowAnchoredAcyclic) {
return false;
}
auto g = makeAnchoredGraph(mask, reports, eod);
assert(g);
return build.addAnchoredAcyclic(*g);
}
void RoseBuildImpl::addMask(const vector<CharReach> &mask,
const flat_set<ReportID> &reports, bool anchored,
bool eod) {
if (anchored && addAnchoredMask(*this, mask, reports, eod)) {
DEBUG_PRINTF("added mask as anchored acyclic graph\n");
return;
}
addTransientMask(*this, mask, reports, anchored, eod);
}
} // namespace ue2
|