1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
/*
* Copyright (c) 2018-2020, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Parse and build ParsedLogical::logicalTree and combInfoMap.
*/
#include "logical_combination.h"
#include "parser/parse_error.h"
#include "util/container.h"
#include "hs_compile.h"
#include "allocator.h"
#include <vector>
using namespace std;
namespace ue2 {
u32 ParsedLogical::getLogicalKey(u32 a) {
auto it = toLogicalKeyMap.find(a);
if (it == toLogicalKeyMap.end()) {
// get size before assigning to avoid wacky LHS shenanigans
u32 size = toLogicalKeyMap.size();
bool inserted;
tie(it, inserted) = toLogicalKeyMap.emplace(a, size);
assert(inserted);
}
DEBUG_PRINTF("%u -> lkey %u\n", it->first, it->second);
return it->second;
}
u32 ParsedLogical::getCombKey(u32 a) {
auto it = toCombKeyMap.find(a);
if (it == toCombKeyMap.end()) {
u32 size = toCombKeyMap.size();
bool inserted;
tie(it, inserted) = toCombKeyMap.emplace(a, size);
assert(inserted);
}
DEBUG_PRINTF("%u -> ckey %u\n", it->first, it->second);
return it->second;
}
void ParsedLogical::addRelateCKey(u32 lkey, u32 ckey) {
auto it = lkey2ckeys.find(lkey);
if (it == lkey2ckeys.end()) {
bool inserted;
tie(it, inserted) = lkey2ckeys.emplace(lkey, set<u32>());
assert(inserted);
}
it->second.insert(ckey);
DEBUG_PRINTF("lkey %u belongs to combination key %u\n",
it->first, ckey);
}
#define TRY_RENUM_OP(ckey) \
do { \
if (ckey & LOGICAL_OP_BIT) { \
ckey = (ckey & ~LOGICAL_OP_BIT) + toLogicalKeyMap.size(); \
} \
} while(0)
u32 ParsedLogical::logicalTreeAdd(u32 op, u32 left, u32 right) {
LogicalOp lop;
assert((LOGICAL_OP_BIT & (u32)logicalTree.size()) == 0);
lop.id = LOGICAL_OP_BIT | (u32)logicalTree.size();
lop.op = op;
lop.lo = left;
lop.ro = right;
logicalTree.push_back(lop);
return lop.id;
}
void ParsedLogical::combinationInfoAdd(UNUSED u32 ckey, u32 id, u32 ekey,
u32 lkey_start, u32 lkey_result,
u64a min_offset, u64a max_offset) {
assert(ckey == combInfoMap.size());
CombInfo ci;
ci.id = id;
ci.ekey = ekey;
ci.start = lkey_start;
ci.result = lkey_result;
ci.min_offset = min_offset;
ci.max_offset = max_offset;
combInfoMap.push_back(ci);
DEBUG_PRINTF("ckey %u (id %u) -> lkey %u..%u, ekey=0x%x\n", ckey, ci.id,
ci.start, ci.result, ci.ekey);
}
void ParsedLogical::validateSubIDs(const unsigned *ids,
const char *const *expressions,
const unsigned *flags,
unsigned elements) {
for (const auto &it : toLogicalKeyMap) {
bool unknown = true;
u32 i = 0;
for (i = 0; i < elements; i++) {
if ((ids ? ids[i] : 0) == it.first) {
unknown = false;
break;
}
}
if (unknown) {
throw CompileError("Unknown sub-expression id.");
}
if (contains(toCombKeyMap, it.first)) {
throw CompileError("Have combination of combination.");
}
if (flags && (flags[i] & HS_FLAG_SOM_LEFTMOST)) {
throw CompileError("Have SOM flag in sub-expression.");
}
if (flags && (flags[i] & HS_FLAG_PREFILTER)) {
throw CompileError("Have PREFILTER flag in sub-expression.");
}
hs_compile_error_t *compile_err = NULL;
hs_expr_info_t *info = NULL;
hs_error_t err = hs_expression_info(expressions[i],
flags ? flags[i] : 0, &info,
&compile_err);
if (err != HS_SUCCESS) {
hs_free_compile_error(compile_err);
throw CompileError("Run hs_expression_info() failed.");
}
if (!info) {
throw CompileError("Get hs_expr_info_t failed.");
} else {
if (info->unordered_matches) {
throw CompileError("Have unordered match in sub-expressions.");
}
hs_misc_free(info);
}
}
}
void ParsedLogical::logicalKeyRenumber() {
// renumber operation lkey in op vector
for (auto &op : logicalTree) {
TRY_RENUM_OP(op.id);
TRY_RENUM_OP(op.lo);
TRY_RENUM_OP(op.ro);
}
// renumber operation lkey in info map
for (auto &ci : combInfoMap) {
TRY_RENUM_OP(ci.start);
TRY_RENUM_OP(ci.result);
}
}
struct LogicalOperator {
LogicalOperator(u32 op_in, u32 paren_in)
: op(op_in), paren(paren_in) {}
u32 op;
u32 paren;
};
static
u32 toOperator(char c) {
u32 op = UNKNOWN_OP;
switch (c) {
case '!' :
op = LOGICAL_OP_NOT;
break;
case '&' :
op = LOGICAL_OP_AND;
break;
case '|' :
op = LOGICAL_OP_OR;
break;
default:
break;
};
return op;
}
static
bool cmpOperator(const LogicalOperator &op1, const LogicalOperator &op2) {
if (op1.paren < op2.paren) {
return false;
}
if (op1.paren > op2.paren) {
return true;
}
assert(op1.paren == op2.paren);
if (op1.op > op2.op) {
return false;
}
if (op1.op < op2.op) {
return true;
}
return true;
}
static
u32 fetchSubID(const char *logical, u32 &digit, u32 end) {
if (digit == (u32)-1) { // no digit parsing in progress
return (u32)-1;
}
assert(end > digit);
if (end - digit > 9) {
throw LocatedParseError("Expression id too large");
}
u32 mult = 1;
u32 sum = 0;
for (u32 j = end - 1; (j >= digit) && (j != (u32)-1) ; j--) {
assert(isdigit(logical[j]));
sum += (logical[j] - '0') * mult;
mult *= 10;
}
digit = (u32)-1;
return sum;
}
static
void popOperator(vector<LogicalOperator> &op_stack, vector<u32> &subid_stack,
ParsedLogical &pl) {
if (subid_stack.empty()) {
throw LocatedParseError("Not enough operand");
}
u32 right = subid_stack.back();
subid_stack.pop_back();
u32 left = 0;
if (op_stack.back().op != LOGICAL_OP_NOT) {
if (subid_stack.empty()) {
throw LocatedParseError("Not enough operand");
}
left = subid_stack.back();
subid_stack.pop_back();
}
subid_stack.push_back(pl.logicalTreeAdd(op_stack.back().op, left, right));
op_stack.pop_back();
}
void ParsedLogical::parseLogicalCombination(unsigned id, const char *logical,
u32 ekey, u64a min_offset,
u64a max_offset) {
u32 ckey = getCombKey(id);
vector<LogicalOperator> op_stack;
vector<u32> subid_stack;
u32 lkey_start = INVALID_LKEY; // logical operation's lkey
u32 paren = 0; // parentheses
u32 digit = (u32)-1; // digit start offset, invalid offset is -1
u32 subid = (u32)-1;
u32 i;
try {
for (i = 0; logical[i]; i++) {
if (isdigit(logical[i])) {
if (digit == (u32)-1) { // new digit start
digit = i;
}
} else {
if ((subid = fetchSubID(logical, digit, i)) != (u32)-1) {
subid_stack.push_back(getLogicalKey(subid));
addRelateCKey(subid_stack.back(), ckey);
}
if (logical[i] == ' ') { // skip whitespace
continue;
}
if (logical[i] == '(') {
paren += 1;
} else if (logical[i] == ')') {
if (paren <= 0) {
throw LocatedParseError("Not enough left parentheses");
}
paren -= 1;
} else {
u32 prio = toOperator(logical[i]);
if (prio != UNKNOWN_OP) {
LogicalOperator op(prio, paren);
while (!op_stack.empty()
&& cmpOperator(op_stack.back(), op)) {
popOperator(op_stack, subid_stack, *this);
if (lkey_start == INVALID_LKEY) {
lkey_start = subid_stack.back();
}
}
op_stack.push_back(op);
} else {
throw LocatedParseError("Unknown character");
}
}
}
}
if (paren != 0) {
throw LocatedParseError("Not enough right parentheses");
}
if ((subid = fetchSubID(logical, digit, i)) != (u32)-1) {
subid_stack.push_back(getLogicalKey(subid));
addRelateCKey(subid_stack.back(), ckey);
}
while (!op_stack.empty()) {
popOperator(op_stack, subid_stack, *this);
if (lkey_start == INVALID_LKEY) {
lkey_start = subid_stack.back();
}
}
if (subid_stack.size() != 1) {
throw LocatedParseError("Not enough operator");
}
} catch (LocatedParseError &error) {
error.locate(i);
throw;
}
u32 lkey_result = subid_stack.back(); // logical operation's lkey
if (lkey_start == INVALID_LKEY) {
throw CompileError("No logical operation.");
}
combinationInfoAdd(ckey, id, ekey, lkey_start, lkey_result,
min_offset, max_offset);
}
} // namespace ue2
|