aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/hyperscan/src/nfagraph/ng_uncalc_components.cpp
blob: 1bdc0980b976c1b67f2522e5633fac6a6e401ff4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
/*
 * Copyright (c) 2015-2016, Intel Corporation 
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of Intel Corporation nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/** \file
 * \brief NFA graph merging ("uncalc")
 *
 * The file contains our collection of NFA graph merging strategies.
 *
 * NFAGraph merging is generally guided by the length of the common prefix
 * between NFAGraph pairs.
 */
#include "grey.h"
#include "ng_holder.h"
#include "ng_limex.h"
#include "ng_redundancy.h"
#include "ng_region.h"
#include "ng_uncalc_components.h"
#include "ng_util.h"
#include "ue2common.h"
#include "util/compile_context.h"
#include "util/container.h"
#include "util/graph_range.h"
#include "util/ue2string.h"

#include <algorithm>
#include <deque>
#include <map>
#include <queue>
#include <set>
#include <vector>

#include <boost/range/adaptor/map.hpp> 
 
using namespace std;
using boost::adaptors::map_values; 

namespace ue2 {

static const u32 FAST_STATE_LIMIT = 256; /**< largest possible desirable NFA */

/** Sentinel value meaning no component has yet been selected. */
static const u32 NO_COMPONENT = ~0U; 

static const u32 UNUSED_STATE = ~0U; 

namespace { 
struct ranking_info { 
    explicit ranking_info(const NGHolder &h) : to_vertex(getTopoOrdering(h)) { 
        u32 rank = 0; 
 
        reverse(to_vertex.begin(), to_vertex.end()); 
 
        for (NFAVertex v : to_vertex) { 
            to_rank[v] = rank++; 
        }
 
        for (NFAVertex v : vertices_range(h)) { 
            if (!contains(to_rank, v)) { 
                to_rank[v] = UNUSED_STATE; 
            } 
        } 
    }

    NFAVertex at(u32 ranking) const { return to_vertex.at(ranking); } 
    u32 get(NFAVertex v) const { return to_rank.at(v); } 
    u32 size() const { return (u32)to_vertex.size(); } 
    u32 add_to_tail(NFAVertex v) { 
        u32 rank = size(); 
        to_rank[v] = rank; 
        to_vertex.push_back(v); 
        return rank; 
    }

private: 
    vector<NFAVertex> to_vertex; 
    unordered_map<NFAVertex, u32> to_rank; 
}; 
}

static never_inline
bool cplVerticesMatch(const NGHolder &ga, NFAVertex va,
                      const NGHolder &gb, NFAVertex vb) {
    // Must have the same reachability.
    if (ga[va].char_reach != gb[vb].char_reach) {
        return false;
    }

    // If they're start vertices, they must be the same one.
    if (is_any_start(va, ga) || is_any_start(vb, gb)) {
        if (ga[va].index != gb[vb].index) {
            return false;
        }
    }

    bool va_accept = edge(va, ga.accept, ga).second;
    bool vb_accept = edge(vb, gb.accept, gb).second;
    bool va_acceptEod = edge(va, ga.acceptEod, ga).second;
    bool vb_acceptEod = edge(vb, gb.acceptEod, gb).second;

    // Must have the same accept/acceptEod edges.
    if (va_accept != vb_accept || va_acceptEod != vb_acceptEod) {
        return false;
    }

    return true;
}

static never_inline
u32 cplCommonReachAndSimple(const NGHolder &ga, const ranking_info &a_ranking, 
                            const NGHolder &gb, const ranking_info &b_ranking) { 
    u32 ml = min(a_ranking.size(), b_ranking.size()); 
    if (ml > 65535) {
        ml = 65535;
    }

    // Count the number of common vertices which share reachability, report and
    // "startedness" properties.
    u32 max = 0;
    for (; max < ml; max++) {
        if (!cplVerticesMatch(ga, a_ranking.at(max), gb, b_ranking.at(max))) { 
            break;
        }
    }

    return max;
}

static 
u32 commonPrefixLength(const NGHolder &ga, const ranking_info &a_ranking, 
                       const NGHolder &gb, const ranking_info &b_ranking) { 
    /* upper bound on the common region based on local properties */
    u32 max = cplCommonReachAndSimple(ga, a_ranking, gb, b_ranking); 
    DEBUG_PRINTF("cpl upper bound %u\n", max);

    while (max > 0) {
        /* shrink max region based on in-edges from outside the region */
        for (size_t j = max; j > 0; j--) {
            NFAVertex a_v = a_ranking.at(j - 1); 
            NFAVertex b_v = b_ranking.at(j - 1); 
            for (auto u : inv_adjacent_vertices_range(a_v, ga)) { 
                u32 state_id = a_ranking.get(u); 
                if (state_id != UNUSED_STATE && state_id >= max) { 
                    max = j - 1;
                    DEBUG_PRINTF("lowering max to %u\n", max);
                    goto next_vertex;
                }
            }

            for (auto u : inv_adjacent_vertices_range(b_v, gb)) { 
                u32 state_id = b_ranking.get(u); 
                if (state_id != UNUSED_STATE && state_id >= max) { 
                    max = j - 1;
                    DEBUG_PRINTF("lowering max to %u\n", max);
                    goto next_vertex;
                }
            }

        next_vertex:;
        }

        /* Ensure that every pair of vertices has same out-edges to vertices in
           the region. */
        for (size_t i = 0; i < max; i++) { 
            size_t a_count = 0;
            size_t b_count = 0;

            for (NFAEdge a_edge : out_edges_range(a_ranking.at(i), ga)) { 
                u32 sid = a_ranking.get(target(a_edge, ga)); 
                if (sid == UNUSED_STATE || sid >= max) { 
                    continue;
                }

                a_count++;

                NFAEdge b_edge = edge(b_ranking.at(i), b_ranking.at(sid), gb); 

                if (!b_edge) { 
                    max = i;
                    DEBUG_PRINTF("lowering max to %u due to edge %zu->%u\n",
                                 max, i, sid);
                    goto try_smaller; 
                }

                if (ga[a_edge].tops != gb[b_edge].tops) { 
                    max = i;
                    DEBUG_PRINTF("tops don't match on edge %zu->%u\n", i, sid); 
                    goto try_smaller; 
                }
            }

            for (NFAVertex b_v : adjacent_vertices_range(b_ranking.at(i), gb)) { 
                u32 sid = b_ranking.get(b_v); 
                if (sid == UNUSED_STATE || sid >= max) { 
                    continue;
                }

                b_count++;
            }

            if (a_count != b_count) {
                max = i;
                DEBUG_PRINTF("lowering max to %u due to a,b count (a_count=%zu," 
                             " b_count=%zu)\n", max, a_count, b_count); 
                goto try_smaller; 
            }
        }

        DEBUG_PRINTF("survived checks, returning cpl %u\n", max); 
        return max; 
    try_smaller:; 
    }

    DEBUG_PRINTF("failed to find any common region\n");
    return 0;
}

u32 commonPrefixLength(const NGHolder &ga, const NGHolder &gb) { 
    return commonPrefixLength(ga, ranking_info(ga), gb, ranking_info(gb)); 
} 
 
static never_inline
void mergeNfaComponent(NGHolder &dest, const NGHolder &vic, size_t common_len) { 
    assert(&dest != &vic); 
 
    auto dest_info = ranking_info(dest); 
    auto vic_info = ranking_info(vic); 
 
    map<NFAVertex, NFAVertex> vmap; // vic -> dest

    vmap[vic.start]     = dest.start;
    vmap[vic.startDs]   = dest.startDs;
    vmap[vic.accept]    = dest.accept;
    vmap[vic.acceptEod] = dest.acceptEod;
    vmap[NGHolder::null_vertex()] = NGHolder::null_vertex(); 

    // For vertices in the common len, add to vmap and merge in the reports, if
    // any.
    for (u32 i = 0; i < common_len; i++) {
        NFAVertex v_old = vic_info.at(i); 
        NFAVertex v = dest_info.at(i); 
        vmap[v_old] = v;

        const auto &reports = vic[v_old].reports;
        dest[v].reports.insert(reports.begin(), reports.end());
    }

    // Add in vertices beyond the common len 
    for (u32 i = common_len; i < vic_info.size(); i++) { 
        NFAVertex v_old = vic_info.at(i); 

        if (is_special(v_old, vic)) {
            // Dest already has start vertices, just merge the reports.
            u32 idx = vic[v_old].index;
            NFAVertex v = dest.getSpecialVertex(idx);
            const auto &reports = vic[v_old].reports;
            dest[v].reports.insert(reports.begin(), reports.end());
            continue;
        }

        NFAVertex v = add_vertex(vic[v_old], dest);
        dest_info.add_to_tail(v); 
        vmap[v_old] = v;
    }

    /* add edges */
    DEBUG_PRINTF("common_len=%zu\n", common_len);
    for (const auto &e : edges_range(vic)) {
        NFAVertex u_old = source(e, vic); 
        NFAVertex v_old = target(e, vic); 
        NFAVertex u = vmap[u_old]; 
        NFAVertex v = vmap[v_old]; 
        bool uspecial = is_special(u, dest);
        bool vspecial = is_special(v, dest);

        // Skip stylised edges that are already present.
        if (uspecial && vspecial && edge(u, v, dest).second) {
            continue;
        }

        // We're in the common region if v's state ID is low enough, unless v
        // is a special (an accept), in which case we use u's state ID.
        bool in_common_region = dest_info.get(v) < common_len; 
        if (vspecial && dest_info.get(u) < common_len) { 
            in_common_region = true;
        }

        DEBUG_PRINTF("adding idx=%zu (state %u) -> idx=%zu (state %u)%s\n", 
                     dest[u].index, dest_info.get(u), 
                     dest[v].index, dest_info.get(v), 
                     in_common_region ? " [common]" : "");

        if (in_common_region) {
            if (!is_special(v, dest)) {
                DEBUG_PRINTF("skipping common edge\n");
                assert(edge(u, v, dest).second);
                // Should never merge edges with different top values.
                assert(vic[e].tops == dest[edge(u, v, dest)].tops); 
                continue;
            } else {
                assert(is_any_accept(v, dest));
                // If the edge exists in both graphs, skip it.
                if (edge(u, v, dest).second) {
                    DEBUG_PRINTF("skipping common edge to accept\n");
                    continue;
                }
            }
        }

        assert(!edge(u, v, dest).second);
        add_edge(u, v, vic[e], dest);
    }

    renumber_edges(dest); 
    renumber_vertices(dest); 
}

namespace {
struct NfaMergeCandidateH {
    NfaMergeCandidateH(size_t cpl_in, NGHolder *first_in, NGHolder *second_in,
                       u32 tb_in)
        : cpl(cpl_in), first(first_in), second(second_in), tie_breaker(tb_in) {}

    size_t cpl;       //!< common prefix length
    NGHolder *first;  //!< first component to merge
    NGHolder *second; //!< second component to merge
    u32 tie_breaker;  //!< for determinism

    bool operator<(const NfaMergeCandidateH &other) const {
        if (cpl != other.cpl) {
            return cpl < other.cpl;
        } else {
            return tie_breaker < other.tie_breaker;
        }
    }
};

} // end namespace

/** Returns true if graphs \p h1 and \p h2 can (and should) be merged. */
static
bool shouldMerge(const NGHolder &ha, const NGHolder &hb, size_t cpl, 
                 const ReportManager *rm, const CompileContext &cc) { 
    size_t combinedStateCount = num_vertices(ha) + num_vertices(hb) - cpl; 

    combinedStateCount -= 2 * 2; /* discount accepts from both */ 
 
    if (is_triggered(ha)) { 
        /* allow for a state for each top, ignore existing starts */ 
        combinedStateCount -= 2; /* for start, startDs */ 
        auto tops = getTops(ha); 
        insert(&tops, getTops(hb)); 
        combinedStateCount += tops.size(); 
    } 
 
    if (combinedStateCount > FAST_STATE_LIMIT) {
        // More complex implementability check.
        NGHolder h_temp;
        cloneHolder(h_temp, ha);
        assert(h_temp.kind == hb.kind);
        mergeNfaComponent(h_temp, hb, cpl);
        reduceImplementableGraph(h_temp, SOM_NONE, rm, cc);
        u32 numStates = isImplementableNFA(h_temp, rm, cc);
        DEBUG_PRINTF("isImplementableNFA returned %u states\n", numStates);
        if (!numStates) {
            DEBUG_PRINTF("not implementable\n");
            return false;
        } else if (numStates > FAST_STATE_LIMIT) {
            DEBUG_PRINTF("too many states to merge\n");
            return false;
        }
    }

    return true;
}

/** Returns true if the graph has start vertices that are compatible for
 * merging. Rose may generate all sorts of wacky vacuous cases, and the merge
 * code isn't currently up to handling them. */
static
bool compatibleStarts(const NGHolder &ga, const NGHolder &gb) {
    // Start and startDs must have the same self-loops.
    return (edge(ga.startDs, ga.startDs, ga).second ==
            edge(gb.startDs, gb.startDs, gb).second) &&
           (edge(ga.start, ga.start, ga).second ==
            edge(gb.start, gb.start, gb).second);
}

static never_inline
void buildNfaMergeQueue(const vector<NGHolder *> &cluster,
                        priority_queue<NfaMergeCandidateH> *pq) {
    const size_t cs = cluster.size();
    assert(cs < NO_COMPONENT);

    // First, make sure all holders have numbered states and collect their
    // counts.
    vector<ranking_info> states_map; 
    states_map.reserve(cs); 
    for (size_t i = 0; i < cs; i++) {
        assert(cluster[i]);
        assert(states_map.size() == i); 
        const NGHolder &g = *(cluster[i]); 
        states_map.emplace_back(g); 
    }

    vector<u16> seen_cpl(cs * cs, 0);
    vector<u32> best_comp(cs, NO_COMPONENT);

    /* TODO: understand, explain */
    for (u32 ci = 0; ci < cs; ci++) {
        for (u32 cj = ci + 1; cj < cs; cj++) {
            u16 cpl = 0;
            bool calc = false;

            if (best_comp[ci] != NO_COMPONENT) {
                u32 bc = best_comp[ci];
                if (seen_cpl[bc + cs * cj] < seen_cpl[bc + cs * ci]) {
                    cpl = seen_cpl[bc + cs * cj];
                    DEBUG_PRINTF("using cached cpl from %u %u\n", bc, cpl);
                    calc = true;
                }
            }

            if (!calc && best_comp[cj] != NO_COMPONENT) {
                u32 bc = best_comp[cj];
                if (seen_cpl[bc + cs * ci] < seen_cpl[bc + cs * cj]) {
                    cpl = seen_cpl[bc + cs * ci];
                    DEBUG_PRINTF("using cached cpl from %u %u\n", bc, cpl);
                    calc = true;
                }
            }

            NGHolder &g_i = *(cluster[ci]);
            NGHolder &g_j = *(cluster[cj]);

            if (!compatibleStarts(g_i, g_j)) {
                continue;
            }

            if (!calc) {
                cpl = commonPrefixLength(g_i, states_map[ci],
                                         g_j, states_map[cj]);
            }

            seen_cpl[ci + cs * cj] = cpl;
            seen_cpl[cj + cs * ci] = cpl;

            if (best_comp[cj] == NO_COMPONENT
                || seen_cpl[best_comp[cj] + cs * cj] < cpl) {
                best_comp[cj] = ci;
            }

            DEBUG_PRINTF("cpl %u %u = %u\n", ci, cj, cpl);

            pq->push(NfaMergeCandidateH(cpl, cluster[ci], cluster[cj],
                                        ci * cs + cj));
        }
    }
}

/** 
 * True if the graphs have mergeable starts. 
 * 
 * Nowadays, this means that any vacuous edges must have the same tops. In 
 * addition, mixed-accept cases need to have matching reports. 
 */ 
static
bool mergeableStarts(const NGHolder &h1, const NGHolder &h2) {
    if (!isVacuous(h1) || !isVacuous(h2)) { 
        return true; 
    } 

    // Vacuous edges from startDs should not occur: we have better ways to 
    // implement true dot-star relationships. Just in case they do, ban them 
    // from being merged unless they have identical reports. 
    if (is_match_vertex(h1.startDs, h1) || is_match_vertex(h2.startDs, h2)) { 
        assert(0); 
        return false; 
    }
 
    /* TODO: relax top checks if reports match */ 
 
    // If both graphs have edge (start, accept), the tops must match. 
    NFAEdge e1_accept = edge(h1.start, h1.accept, h1); 
    NFAEdge e2_accept = edge(h2.start, h2.accept, h2); 
    if (e1_accept && e2_accept && h1[e1_accept].tops != h2[e2_accept].tops) { 
        return false; 
    }

    // If both graphs have edge (start, acceptEod), the tops must match. 
    NFAEdge e1_eod = edge(h1.start, h1.acceptEod, h1); 
    NFAEdge e2_eod = edge(h2.start, h2.acceptEod, h2); 
    if (e1_eod && e2_eod && h1[e1_eod].tops != h2[e2_eod].tops) { 
        return false; 
    } 

    // If one graph has an edge to accept and the other has an edge to 
    // acceptEod, the reports must match for the merge to be safe. 
    if ((e1_accept && e2_eod) || (e2_accept && e1_eod)) { 
        if (h1[h1.start].reports != h2[h2.start].reports) { 
            return false;
        }
    }

    return true;
}

/** Merge graph \p ga into graph \p gb. Returns false on failure. */
bool mergeNfaPair(const NGHolder &ga, NGHolder &gb, const ReportManager *rm, 
                  const CompileContext &cc) {
    assert(ga.kind == gb.kind);

    // Vacuous NFAs require special checks on their starts to ensure that tops 
    // match, and that reports match for mixed-accept cases. 
    if (!mergeableStarts(ga, gb)) {
        DEBUG_PRINTF("starts aren't mergeable\n");
        return false;
    }

    u32 cpl = commonPrefixLength(ga, gb); 
    if (!shouldMerge(gb, ga, cpl, rm, cc)) { 
        return false;
    }

    mergeNfaComponent(gb, ga, cpl);
    reduceImplementableGraph(gb, SOM_NONE, rm, cc);
    return true;
}

map<NGHolder *, NGHolder *> mergeNfaCluster(const vector<NGHolder *> &cluster, 
                                            const ReportManager *rm, 
                                            const CompileContext &cc) { 
    map<NGHolder *, NGHolder *> merged; 
 
    if (cluster.size() < 2) {
        return merged; 
    }

    DEBUG_PRINTF("new cluster, size %zu\n", cluster.size());

    priority_queue<NfaMergeCandidateH> pq;
    buildNfaMergeQueue(cluster, &pq);

    while (!pq.empty()) {
        NGHolder &pholder = *pq.top().first;
        NGHolder &vholder = *pq.top().second;
        pq.pop();

        if (contains(merged, &pholder) || contains(merged, &vholder)) {
            DEBUG_PRINTF("dead\n");
            continue;
        }

        if (!mergeNfaPair(vholder, pholder, rm, cc)) {
            DEBUG_PRINTF("merge failed\n");
            continue;
        }

        merged.emplace(&vholder, &pholder);

        // Seek closure.
        for (auto &m : merged) {
            if (m.second == &vholder) {
                m.second = &pholder;
            }
        }
    }
 
    return merged; 
}

} // namespace ue2