1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
|
/*
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Rose construction from NGHolder for cases representing small literal
* sets.
*/
#include "ng_small_literal_set.h"
#include "grey.h"
#include "ng_holder.h"
#include "ng_util.h"
#include "rose/rose_build.h"
#include "util/compare.h"
#include "util/compile_context.h"
#include "util/container.h"
#include "util/graph_range.h"
#include "util/order_check.h"
#include "util/ue2string.h"
#include "ue2common.h"
#include <map>
#include <set>
#include <vector>
#include <boost/range/adaptor/map.hpp>
using namespace std;
using boost::adaptors::map_keys;
namespace ue2 {
/** \brief The maximum number of literals to accept per pattern. */
static const size_t MAX_LITERAL_SET_SIZE = 30;
/**
* \brief The maximum number of literals to accept per pattern where at least
* one is weak (has period < MIN_STRONG_PERIOD).
*/
static const size_t MAX_WEAK_LITERAL_SET_SIZE = 20;
/**
* \brief The minimum string period to consider a literal "strong" (and not
* apply the weak size limit).
*/
static const size_t MIN_STRONG_PERIOD = 3;
namespace {
struct sls_literal {
bool anchored;
bool eod;
ue2_literal s;
explicit sls_literal(bool a) : anchored(a), eod(false) {}
sls_literal append(char c, bool nocase) const {
sls_literal rv(anchored);
rv.s = s;
rv.s.push_back(ue2_literal::elem(c, nocase));
return rv;
}
};
static
bool operator<(const sls_literal &a, const sls_literal &b) {
ORDER_CHECK(anchored);
ORDER_CHECK(eod);
ORDER_CHECK(s);
return false;
}
} // namespace
static
bool checkLongMixedSensitivityLiterals(
const map<sls_literal, flat_set<ReportID>> &literals) {
const size_t len = MAX_MASK2_WIDTH;
for (const sls_literal &lit : literals | map_keys) {
if (mixed_sensitivity(lit.s) && lit.s.length() > len) {
return false;
}
}
return true;
}
static
bool findLiterals(const NGHolder &g,
map<sls_literal, flat_set<ReportID>> *literals) {
vector<NFAVertex> order = getTopoOrdering(g);
vector<set<sls_literal>> built(num_vertices(g));
vector<size_t> read_count(num_vertices(g));
for (auto it = order.rbegin(); it != order.rend(); ++it) {
NFAVertex v = *it;
set<sls_literal> &out = built[g[v].index];
read_count[g[v].index] = out_degree(v, g);
DEBUG_PRINTF("setting read_count to %zu for %zu\n",
read_count[g[v].index], g[v].index);
assert(out.empty());
if (v == g.start) {
out.insert(sls_literal(true));
continue;
} else if (v == g.startDs) {
out.insert(sls_literal(false));
continue;
}
bool eod = v == g.acceptEod;
bool accept = v == g.accept || v == g.acceptEod;
const CharReach &cr = g[v].char_reach;
for (auto u : inv_adjacent_vertices_range(v, g)) {
if (u == g.accept) {
continue;
}
if (u == g.start && edge(g.startDs, v, g).second) {
/* floating start states may have connections to start and
* startDs - don't create duplicate anchored literals */
DEBUG_PRINTF("skipping as floating\n");
continue;
}
set<sls_literal> &in = built[g[u].index];
DEBUG_PRINTF("getting from %zu (%zu reads to go)\n",
g[u].index, read_count[g[u].index]);
assert(!in.empty());
assert(read_count[g[u].index]);
for (const sls_literal &lit : in) {
if (accept) {
sls_literal accept_lit = lit; // copy
accept_lit.eod = eod;
insert(&(*literals)[accept_lit], g[u].reports);
continue;
}
for (size_t c = cr.find_first(); c != cr.npos;
c = cr.find_next(c)) {
bool nocase = ourisalpha(c) && cr.test(mytoupper(c))
&& cr.test(mytolower(c));
if (nocase && (char)c == mytolower(c)) {
continue; /* uppercase already handled us */
}
out.insert(lit.append((u8)c, nocase));
if (out.size() + literals->size() > MAX_LITERAL_SET_SIZE) {
DEBUG_PRINTF("too big %zu + %zu\n", out.size(),
literals->size());
return false;
}
}
}
read_count[g[u].index]--;
if (!read_count[g[u].index]) {
DEBUG_PRINTF("clearing %zu as finished reading\n", g[u].index);
in.clear();
}
}
}
return true;
}
static
size_t min_period(const map<sls_literal, flat_set<ReportID>> &literals) {
size_t rv = SIZE_MAX;
for (const sls_literal &lit : literals | map_keys) {
rv = min(rv, minStringPeriod(lit.s));
}
DEBUG_PRINTF("min period %zu\n", rv);
return rv;
}
// If this component is just a small set of literals and can be handled by
// Rose, feed it directly into rose.
bool handleSmallLiteralSets(RoseBuild &rose, const NGHolder &g,
const CompileContext &cc) {
if (!cc.grey.allowSmallLiteralSet) {
return false;
}
if (!isAcyclic(g)) {
/* literal sets would typically be acyclic... */
DEBUG_PRINTF("not acyclic\n");
return false;
}
if (!hasNarrowReachVertex(g, MAX_LITERAL_SET_SIZE * 2 + 1)) {
DEBUG_PRINTF("vertex with wide reach found\n");
return false;
}
DEBUG_PRINTF("looking for literals\n");
map<sls_literal, flat_set<ReportID>> literals;
if (!findLiterals(g, &literals)) {
DEBUG_PRINTF(":(\n");
return false;
}
assert(!literals.empty());
if (literals.size() > MAX_LITERAL_SET_SIZE) {
/* try a mask instead */
DEBUG_PRINTF("too many literals\n");
return false;
}
size_t period = min_period(literals);
if (period < MIN_STRONG_PERIOD &&
literals.size() > MAX_WEAK_LITERAL_SET_SIZE) {
DEBUG_PRINTF("too many literals with weak period\n");
return false;
}
if (!checkLongMixedSensitivityLiterals(literals)) {
DEBUG_PRINTF("long mixed\n");
return false;
}
DEBUG_PRINTF("adding %zu literals\n", literals.size());
for (const auto &m : literals) {
const sls_literal &lit = m.first;
const auto &reports = m.second;
rose.add(lit.anchored, lit.eod, lit.s, reports);
}
return true;
}
} // namespace ue2
|