1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
/*
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Network flow (min flow, max cut) algorithms.
*/
#include "ng_netflow.h"
#include "ng_holder.h"
#include "ng_literal_analysis.h"
#include "ng_util.h"
#include "ue2common.h"
#include "util/container.h"
#include "util/graph_range.h"
#include "util/graph_small_color_map.h"
#include <algorithm>
#include <boost/graph/boykov_kolmogorov_max_flow.hpp>
using namespace std;
using boost::default_color_type;
namespace ue2 {
static
void addReverseEdge(const NGHolder &g, vector<NFAEdge> &reverseEdge,
NFAEdge fwd, NFAEdge rev) {
u32 fwdIndex = g[fwd].index;
u32 revIndex = g[rev].index;
// Make sure our vector is big enough.
size_t sz = max(fwdIndex, revIndex) + 1;
if (reverseEdge.size() < sz) {
reverseEdge.resize(sz);
}
// Add entries to list.
reverseEdge[fwdIndex] = rev;
reverseEdge[revIndex] = fwd;
}
/** Add temporary reverse edges to the graph \p g, as they are required by the
* BGL's boykov_kolmogorov_max_flow algorithm. */
static
void addReverseEdges(NGHolder &g, vector<NFAEdge> &reverseEdge,
vector<u64a> &capacityMap) {
// We're probably going to need space for 2x edge count.
const size_t numEdges = num_edges(g);
reverseEdge.reserve(numEdges * 2);
capacityMap.reserve(numEdges * 2);
// To avoid walking the graph for _ages_, we build a temporary map of all
// edges indexed by vertex pair for existence checks.
map<pair<size_t, size_t>, NFAEdge> allEdges;
for (const auto &e : edges_range(g)) {
NFAVertex u = source(e, g), v = target(e, g);
size_t uidx = g[u].index, vidx = g[v].index;
allEdges[make_pair(uidx, vidx)] = e;
}
// Now we walk over all edges and add their reverse edges to the reverseEdge
// vector, also adding them to the graph when they don't already exist.
for (const auto &m : allEdges) {
const NFAEdge &fwd = m.second;
const size_t uidx = m.first.first, vidx = m.first.second;
auto it = allEdges.find(make_pair(vidx, uidx));
if (it == allEdges.end()) {
// No reverse edge, add one.
NFAVertex u = source(fwd, g), v = target(fwd, g);
NFAEdge rev = add_edge(v, u, g);
it = allEdges.insert(make_pair(make_pair(vidx, uidx), rev)).first;
// Add to capacity map.
u32 revIndex = g[rev].index;
if (capacityMap.size() < revIndex + 1) {
capacityMap.resize(revIndex + 1);
}
capacityMap[revIndex] = 0;
}
addReverseEdge(g, reverseEdge, fwd, it->second);
}
}
/** Remove all edges with indices >= \p idx. */
static
void removeEdgesFromIndex(NGHolder &g, vector<u64a> &capacityMap, u32 idx) {
remove_edge_if([&](const NFAEdge &e) { return g[e].index >= idx; }, g);
capacityMap.resize(idx);
renumber_edges(g);
}
/** A wrapper around boykov_kolmogorov_max_flow, returns the max flow and
* colour map (from which we can find the min cut). */
static
u64a getMaxFlow(NGHolder &h, const vector<u64a> &capacityMap_in,
decltype(make_small_color_map(NGHolder())) &colorMap) {
vector<u64a> capacityMap = capacityMap_in;
NFAVertex src = h.start;
NFAVertex sink = h.acceptEod;
// netflow relies on these stylised edges, as all starts should be covered
// by our source and all accepts by our sink.
assert(edge(h.start, h.startDs, h).second);
assert(edge(h.accept, h.acceptEod, h).second);
// The boykov_kolmogorov_max_flow algorithm requires us to have reverse
// edges for all edges in the graph, so we create them here (and remove
// them after the call).
const unsigned int numRealEdges = num_edges(h);
vector<NFAEdge> reverseEdges;
addReverseEdges(h, reverseEdges, capacityMap);
const unsigned int numTotalEdges = num_edges(h);
const unsigned int numVertices = num_vertices(h);
vector<u64a> edgeResiduals(numTotalEdges);
vector<NFAEdge> predecessors(numVertices);
vector<s32> distances(numVertices);
auto v_index_map = get(vertex_index, h);
auto e_index_map = get(edge_index, h);
u64a flow = boykov_kolmogorov_max_flow(h,
make_iterator_property_map(capacityMap.begin(), e_index_map),
make_iterator_property_map(edgeResiduals.begin(), e_index_map),
make_iterator_property_map(reverseEdges.begin(), e_index_map),
make_iterator_property_map(predecessors.begin(), v_index_map),
colorMap,
make_iterator_property_map(distances.begin(), v_index_map),
v_index_map,
src, sink);
// Remove reverse edges from graph.
removeEdgesFromIndex(h, capacityMap, numRealEdges);
assert(num_edges(h) == numRealEdges);
DEBUG_PRINTF("flow = %llu\n", flow);
return flow;
}
/** Returns a min cut (in \p cutset) for the graph in \p h. */
vector<NFAEdge> findMinCut(NGHolder &h, const vector<u64a> &scores) {
assert(hasCorrectlyNumberedEdges(h));
assert(hasCorrectlyNumberedVertices(h));
auto colors = make_small_color_map(h);
u64a flow = getMaxFlow(h, scores, colors);
vector<NFAEdge> picked_white;
vector<NFAEdge> picked_black;
u64a observed_black_flow = 0;
u64a observed_white_flow = 0;
for (const auto &e : edges_range(h)) {
NFAVertex from = source(e, h);
NFAVertex to = target(e, h);
u64a ec = scores[h[e].index];
if (ec == 0) {
continue; // skips, among other things, reverse edges
}
auto fromColor = get(colors, from);
auto toColor = get(colors, to);
if (fromColor != small_color::white && toColor == small_color::white) {
assert(ec <= INVALID_EDGE_CAP);
DEBUG_PRINTF("found white cut edge %zu->%zu cap %llu\n",
h[from].index, h[to].index, ec);
observed_white_flow += ec;
picked_white.push_back(e);
}
if (fromColor == small_color::black && toColor != small_color::black) {
assert(ec <= INVALID_EDGE_CAP);
DEBUG_PRINTF("found black cut edge %zu->%zu cap %llu\n",
h[from].index, h[to].index, ec);
observed_black_flow += ec;
picked_black.push_back(e);
}
}
DEBUG_PRINTF("min flow = %llu b flow = %llu w flow %llu\n", flow,
observed_black_flow, observed_white_flow);
if (min(observed_white_flow, observed_black_flow) != flow) {
DEBUG_PRINTF("bad cut\n");
}
if (observed_white_flow < observed_black_flow) {
return picked_white;
} else {
return picked_black;
}
}
} // namespace ue2
|