aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/hyperscan/src/nfagraph/ng_mcclellan.cpp
blob: 5a821a99f6f0938020b6d83f6990b7c33c70660f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
/*
 * Copyright (c) 2015-2018, Intel Corporation
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of Intel Corporation nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/** \file
 * \brief Build code for McClellan DFA.
 */
#include "ng_mcclellan.h"

#include "grey.h"
#include "nfa/dfa_min.h"
#include "nfa/rdfa.h"
#include "ng_holder.h"
#include "ng_mcclellan_internal.h"
#include "ng_squash.h"
#include "ng_util.h"
#include "ue2common.h"
#include "util/bitfield.h"
#include "util/determinise.h"
#include "util/flat_containers.h" 
#include "util/graph_range.h"
#include "util/hash.h" 
#include "util/hash_dynamic_bitset.h" 
#include "util/make_unique.h"
#include "util/report_manager.h"

#include <algorithm>
#include <functional>
#include <map>
#include <set>
#include <unordered_map> 
#include <vector>

#include <boost/dynamic_bitset.hpp>

using namespace std;
using boost::dynamic_bitset;

namespace ue2 {

#define FINAL_DFA_STATE_LIMIT 16383
#define DFA_STATE_LIMIT 1024
#define NFA_STATE_LIMIT 256

u16 buildAlphabetFromEquivSets(const std::vector<CharReach> &esets,
                               array<u16, ALPHABET_SIZE> &alpha,
                               array<u16, ALPHABET_SIZE> &unalpha) {
    u16 i = 0;
    for (; i < esets.size(); i++) {
        const CharReach &cr = esets[i];

#ifdef DEBUG
        DEBUG_PRINTF("eq set: ");
        for (size_t s = cr.find_first(); s != CharReach::npos;
             s = cr.find_next(s)) {
            printf("%02hhx ", (u8)s);
        }
        printf("-> %u\n", i);
#endif
        u16 leader = cr.find_first();
        for (size_t s = cr.find_first(); s != CharReach::npos;
             s = cr.find_next(s)) {
            alpha[s] = i;
        }
        unalpha[i] = leader;
    }

    for (u16 j = N_CHARS; j < ALPHABET_SIZE; j++, i++) {
        alpha[j] = i;
        unalpha[i] = j;
    }

    return i; // alphabet size
}

void calculateAlphabet(const NGHolder &g, array<u16, ALPHABET_SIZE> &alpha,
                       array<u16, ALPHABET_SIZE> &unalpha, u16 *alphasize) {
    vector<CharReach> esets(1, CharReach::dot());

    for (auto v : vertices_range(g)) {
        if (is_special(v, g)) {
            continue;
        }

        const CharReach &cr = g[v].char_reach;

        for (size_t i = 0; i < esets.size(); i++) {
            if (esets[i].count() == 1) {
                continue;
            }

            CharReach t = cr & esets[i];
            if (t.any() && t != esets[i]) {
                esets[i] &= ~t;
                esets.push_back(t);
            }
        }
    }
    // for deterministic compiles
    sort(esets.begin(), esets.end());

    assert(alphasize);
    *alphasize = buildAlphabetFromEquivSets(esets, alpha, unalpha);
}

static
bool allExternalReports(const ReportManager &rm,
                        const flat_set<ReportID> &reports) {
    for (auto report_id : reports) {
        if (!isExternalReport(rm.getReport(report_id))) {
            return false;
        }
    }

    return true;
}

static
dstate_id_t successor(const vector<dstate> &dstates, dstate_id_t c,
                      const array<u16, ALPHABET_SIZE> &alpha, symbol_t s) {
    return dstates[c].next[alpha[s]];
}

void getFullTransitionFromState(const raw_dfa &n, dstate_id_t state,
                                dstate_id_t *out_table) {
    for (u32 i = 0; i < ALPHABET_SIZE; i++) {
        out_table[i] = successor(n.states, state, n.alpha_remap, i);
    }
}

template<typename stateset>
static
void populateInit(const NGHolder &g, const flat_set<NFAVertex> &unused, 
                  stateset *init, stateset *init_deep,
                  vector<NFAVertex> *v_by_index) {
    for (auto v : vertices_range(g)) {
        if (contains(unused, v)) { 
            continue;
        }

        u32 vert_id = g[v].index;
        assert(vert_id < init->size());

        if (is_any_start(v, g)) {
            init->set(vert_id);
            if (hasSelfLoop(v, g) || is_triggered(g)) {
                DEBUG_PRINTF("setting %u\n", vert_id);
                init_deep->set(vert_id);
            }
        }
    }

    v_by_index->clear();
    v_by_index->resize(num_vertices(g), NGHolder::null_vertex()); 

    for (auto v : vertices_range(g)) {
        u32 vert_id = g[v].index;
        assert((*v_by_index)[vert_id] == NGHolder::null_vertex()); 
        (*v_by_index)[vert_id] = v;
    }

    if (is_triggered(g)) {
        *init_deep = *init;
    }
}

template<typename StateSet>
void populateAccepts(const NGHolder &g, const flat_set<NFAVertex> &unused, 
                     StateSet *accept, StateSet *acceptEod) {
    for (auto v : inv_adjacent_vertices_range(g.accept, g)) {
        if (contains(unused, v)) { 
            continue; 
        }
        accept->set(g[v].index); 
    }
    for (auto v : inv_adjacent_vertices_range(g.acceptEod, g)) {
        if (v == g.accept) {
            continue;
        }
        if (contains(unused, v)) { 
            continue; 
        }
        acceptEod->set(g[v].index); 
    }
}

static
bool canPruneEdgesFromAccept(const ReportManager &rm, const NGHolder &g) {
    bool seen = false;
    u32 ekey = 0;

    for (auto v : inv_adjacent_vertices_range(g.accept, g)) {
        if (is_special(v, g)) {
            continue;
        }

        for (auto report_id : g[v].reports) {
            const Report &ir = rm.getReport(report_id);

            if (!isSimpleExhaustible(ir)) {
                return false;
            }

            if (!seen) {
                seen = true;
                ekey = ir.ekey;
            } else if (ekey != ir.ekey) {
                return false;
            }
        }
    }

    /* need to check accept eod does not have any unseen reports as well */
    for (auto v : inv_adjacent_vertices_range(g.acceptEod, g)) {
        if (is_special(v, g)) {
            continue;
        }

        for (auto report_id : g[v].reports) {
            const Report &ir = rm.getReport(report_id);

            if (!isSimpleExhaustible(ir)) {
                return false;
            }

            if (!seen) {
                seen = true;
                ekey = ir.ekey;
            } else if (ekey != ir.ekey) {
                return false;
            }
        }
    }

    return true;
}

static
bool overhangMatchesTrigger(const vector<vector<CharReach> > &all_triggers,
                            vector<CharReach>::const_reverse_iterator itb,
                            vector<CharReach>::const_reverse_iterator ite) {
    for (const auto &trigger : all_triggers) {
        vector<CharReach>::const_reverse_iterator it = itb;
        vector<CharReach>::const_reverse_iterator kt = trigger.rbegin();
        for (; it != ite && kt != trigger.rend(); ++it, ++kt) {
            if ((*it & *kt).none()) {
                /* this trigger does not match the overhang, try next */
                goto try_next_trigger;
            }
        }

        return true;
    try_next_trigger:;
    }

    return false; /* no trigger matches the over hang */
}

static
bool triggerAllowed(const NGHolder &g, const NFAVertex v,
                    const vector<vector<CharReach> > &all_triggers,
                    const vector<CharReach> &trigger) {
    flat_set<NFAVertex> curr({v}); 
    flat_set<NFAVertex> next; 

    for (auto it = trigger.rbegin(); it != trigger.rend(); ++it) {
        next.clear();

        for (auto u : curr) {
            assert(u != g.startDs); /* triggered graphs should not use sds */
            if (u == g.start) {
                if (overhangMatchesTrigger(all_triggers, it, trigger.rend())) {
                    return true;
                }
                continue;
            }

            if ((g[u].char_reach & *it).none()) {
                continue;
            }
            insert(&next, inv_adjacent_vertices(u, g));
        }

        if (next.empty()) {
            return false;
        }

        next.swap(curr);
    }

    return true;
}

void markToppableStarts(const NGHolder &g, const flat_set<NFAVertex> &unused, 
                        bool single_trigger,
                        const vector<vector<CharReach>> &triggers,
                        dynamic_bitset<> *out) {
    if (single_trigger) {
        return; /* no live states can lead to new states */
    }

    for (auto v : vertices_range(g)) {
        if (contains(unused, v)) { 
            continue;
        }
        for (const auto &trigger : triggers) {
            if (triggerAllowed(g, v, triggers, trigger)) {
                DEBUG_PRINTF("idx %zu is valid location for top\n", g[v].index); 
                out->set(g[v].index); 
                break;
            }
        }
    }

    assert(out->test(g[g.start].index));
}

namespace {

template<typename Automaton_Traits> 
class Automaton_Base { 
public:
    using StateSet = typename Automaton_Traits::StateSet; 
    using StateMap = typename Automaton_Traits::StateMap; 

    Automaton_Base(const ReportManager *rm_in, const NGHolder &graph_in, 
                   bool single_trigger, 
                   const vector<vector<CharReach>> &triggers, bool prunable_in) 
        : rm(rm_in), graph(graph_in), numStates(num_vertices(graph)), 
          unused(getRedundantStarts(graph_in)), 
          init(Automaton_Traits::init_states(numStates)), 
          initDS(Automaton_Traits::init_states(numStates)), 
          squash(Automaton_Traits::init_states(numStates)), 
          accept(Automaton_Traits::init_states(numStates)), 
          acceptEod(Automaton_Traits::init_states(numStates)), 
          toppable(Automaton_Traits::init_states(numStates)), 
          dead(Automaton_Traits::init_states(numStates)), 
          prunable(prunable_in) { 
        populateInit(graph, unused, &init, &initDS, &v_by_index); 
        populateAccepts(graph, unused, &accept, &acceptEod); 

        start_anchored = DEAD_STATE + 1;
        if (initDS == init) {
            start_floating = start_anchored;
        } else if (initDS.any()) {
            start_floating = start_anchored + 1;
        } else {
            start_floating = DEAD_STATE;
        }

        calculateAlphabet(graph, alpha, unalpha, &alphasize);

        for (const auto &sq : findSquashers(graph)) {
            NFAVertex v = sq.first;
            u32 vert_id = graph[v].index;
            squash.set(vert_id);
            squash_mask[vert_id] 
                = Automaton_Traits::copy_states(std::move(sq.second), 
                                                numStates); 
        }

        cr_by_index = populateCR(graph, v_by_index, alpha);
        if (is_triggered(graph)) {
            dynamic_bitset<> temp(numStates); 
            markToppableStarts(graph, unused, single_trigger, triggers, 
                               &temp); 
            toppable = Automaton_Traits::copy_states(std::move(temp), 
                                                     numStates); 
        }
    }

public:
    void transition(const StateSet &in, StateSet *next) {
        transition_graph(*this, v_by_index, in, next);
    }

    const vector<StateSet> initial() {
        vector<StateSet> rv = {init}; 
        if (start_floating != DEAD_STATE && start_floating != start_anchored) {
            rv.push_back(initDS);
        }
        return rv;
    }

private:
    void reports_i(const StateSet &in, bool eod, flat_set<ReportID> &rv) {
        StateSet acc = in & (eod ? acceptEod : accept);
        for (size_t i = acc.find_first(); i != StateSet::npos;
             i = acc.find_next(i)) {
            NFAVertex v = v_by_index[i];
            DEBUG_PRINTF("marking report\n");
            const auto &my_reports = graph[v].reports;
            rv.insert(my_reports.begin(), my_reports.end());
        }
    }

public:
    void reports(const StateSet &in, flat_set<ReportID> &rv) {
        reports_i(in, false, rv);
    }
    void reportsEod(const StateSet &in, flat_set<ReportID> &rv) {
        reports_i(in, true, rv);
    }

    bool canPrune(const flat_set<ReportID> &test_reports) const {
        if (!rm || !prunable || !canPruneEdgesFromAccept(*rm, graph)) {
            return false;
        }
        return allExternalReports(*rm, test_reports);
    }
 
private:
    const ReportManager *rm;
public:
    const NGHolder &graph;
    u32 numStates;
    const flat_set<NFAVertex> unused; 
    vector<NFAVertex> v_by_index;
    vector<CharReach> cr_by_index; /* pre alpha'ed */
    StateSet init;
    StateSet initDS;
    StateSet squash; /* states which allow us to mask out other states */
    StateSet accept;
    StateSet acceptEod;
    StateSet toppable; /* states which are allowed to be on when a top arrives,
                        * triggered dfas only */
    StateSet dead; 
    map<u32, StateSet> squash_mask;
    bool prunable;
    array<u16, ALPHABET_SIZE> alpha;
    array<u16, ALPHABET_SIZE> unalpha;
    u16 alphasize;

    u16 start_anchored;
    u16 start_floating;
};

struct Big_Traits { 
    using StateSet = dynamic_bitset<>; 
    using StateMap = unordered_map<StateSet, dstate_id_t, hash_dynamic_bitset>; 

    static StateSet init_states(u32 num) { 
        return StateSet(num); 
    } 

    static StateSet copy_states(dynamic_bitset<> in, UNUSED u32 num) { 
        assert(in.size() == num); 
        return in; 
    } 
}; 

class Automaton_Big : public Automaton_Base<Big_Traits> { 
public: 
    Automaton_Big(const ReportManager *rm_in, const NGHolder &graph_in, 
                  bool single_trigger, 
                  const vector<vector<CharReach>> &triggers, bool prunable_in) 
        : Automaton_Base(rm_in, graph_in, single_trigger, triggers, 
                         prunable_in) {} 
}; 

struct Graph_Traits { 
    using StateSet = bitfield<NFA_STATE_LIMIT>; 
    using StateMap = unordered_map<StateSet, dstate_id_t>; 

    static StateSet init_states(UNUSED u32 num) { 
        assert(num <= NFA_STATE_LIMIT); 
        return StateSet(); 
    }

    static StateSet copy_states(const dynamic_bitset<> &in, u32 num) { 
        StateSet out = init_states(num); 
        for (size_t i = in.find_first(); i != in.npos && i < out.size();
             i = in.find_next(i)) {
            out.set(i);
        }
        return out;
    }
}; 

class Automaton_Graph : public Automaton_Base<Graph_Traits> { 
public:
    Automaton_Graph(const ReportManager *rm_in, const NGHolder &graph_in, 
                    bool single_trigger, 
                    const vector<vector<CharReach>> &triggers, bool prunable_in) 
        : Automaton_Base(rm_in, graph_in, single_trigger, triggers, 
                         prunable_in) {} 
}; 

} // namespace 

static 
bool startIsRedundant(const NGHolder &g) { 
    set<NFAVertex> start; 
    set<NFAVertex> startDs; 

    insert(&start, adjacent_vertices(g.start, g)); 
    insert(&startDs, adjacent_vertices(g.startDs, g)); 
 
    return start == startDs; 
} 
 
flat_set<NFAVertex> getRedundantStarts(const NGHolder &g) { 
    flat_set<NFAVertex> dead; 
    if (startIsRedundant(g)) { 
        dead.insert(g.start); 
    }
    if (proper_out_degree(g.startDs, g) == 0) { 
        dead.insert(g.startDs); 
    }
    return dead; 
} 

unique_ptr<raw_dfa> buildMcClellan(const NGHolder &graph, 
                                   const ReportManager *rm, bool single_trigger, 
                                   const vector<vector<CharReach>> &triggers,
                                   const Grey &grey, bool finalChance) {
    if (!grey.allowMcClellan) {
        return nullptr;
    }

    DEBUG_PRINTF("attempting to build %s mcclellan\n",
                 to_string(graph.kind).c_str());
    assert(allMatchStatesHaveReports(graph));

    bool prunable = grey.highlanderPruneDFA && has_managed_reports(graph); 
    assert(rm || !has_managed_reports(graph)); 
    if (!has_managed_reports(graph)) { 
        rm = nullptr;
    }

    assert(triggers.empty() == !is_triggered(graph));

    /* We must be getting desperate if it is an outfix, so use the final chance
     * state limit logic */
    u32 state_limit
        = (graph.kind == NFA_OUTFIX || finalChance) ? FINAL_DFA_STATE_LIMIT
                                                    : DFA_STATE_LIMIT;

    const u32 numStates = num_vertices(graph);
    DEBUG_PRINTF("determinising nfa with %u vertices\n", numStates);

    if (numStates > FINAL_DFA_STATE_LIMIT) { 
        DEBUG_PRINTF("rejecting nfa as too many vertices\n"); 
        return nullptr; 
    } 
 
    auto rdfa = ue2::make_unique<raw_dfa>(graph.kind); 
 
    if (numStates <= NFA_STATE_LIMIT) {
        /* Fast path. Automaton_Graph uses a bitfield internally to represent
         * states and is quicker than Automaton_Big. */
        Automaton_Graph n(rm, graph, single_trigger, triggers, prunable); 
        if (!determinise(n, rdfa->states, state_limit)) { 
            DEBUG_PRINTF("state limit exceeded\n");
            return nullptr; /* over state limit */
        }

        rdfa->start_anchored = n.start_anchored;
        rdfa->start_floating = n.start_floating;
        rdfa->alpha_size = n.alphasize;
        rdfa->alpha_remap = n.alpha;
    } else {
        /* Slow path. Too many states to use Automaton_Graph. */
        Automaton_Big n(rm, graph, single_trigger, triggers, prunable); 
        if (!determinise(n, rdfa->states, state_limit)) { 
            DEBUG_PRINTF("state limit exceeded\n");
            return nullptr; /* over state limit */
        }

        rdfa->start_anchored = n.start_anchored;
        rdfa->start_floating = n.start_floating;
        rdfa->alpha_size = n.alphasize;
        rdfa->alpha_remap = n.alpha;
    }

    minimize_hopcroft(*rdfa, grey);

    DEBUG_PRINTF("after determinised into %zu states, building impl dfa "
                 "(a,f) = (%hu,%hu)\n", rdfa->states.size(),
                 rdfa->start_anchored, rdfa->start_floating);

    return rdfa;
}

unique_ptr<raw_dfa> buildMcClellan(const NGHolder &g, const ReportManager *rm,
                                   const Grey &grey) {
    assert(!is_triggered(g));
    vector<vector<CharReach>> triggers;
    return buildMcClellan(g, rm, false, triggers, grey);
}

} // namespace ue2