1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
|
/*
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \file
* \brief Literal analysis and scoring.
*/
#include "ng_literal_analysis.h"
#include "ng_holder.h"
#include "ng_split.h"
#include "ng_util.h"
#include "ue2common.h"
#include "rose/rose_common.h"
#include "util/compare.h"
#include "util/depth.h"
#include "util/graph.h"
#include "util/graph_range.h"
#include "util/graph_small_color_map.h"
#include "util/ue2_graph.h"
#include "util/ue2string.h"
#include <algorithm>
#include <fstream>
#include <queue>
#include <boost/graph/boykov_kolmogorov_max_flow.hpp>
using namespace std;
namespace ue2 {
/** Maximum number of paths to generate. */
static const u32 MAX_WIDTH = 11;
/** Scoring adjustment for 'uniqueness' in literal. */
static const u64a WEIGHT_OF_UNIQUENESS = 250;
namespace {
/* Small literal graph type used for the suffix tree used in
* compressAndScore. */
struct LitGraphVertexProps {
LitGraphVertexProps() = default;
explicit LitGraphVertexProps(ue2_literal::elem c_in) : c(move(c_in)) {}
ue2_literal::elem c; // string element (char + bool)
size_t index = 0; // managed by ue2_graph
};
struct LitGraphEdgeProps {
LitGraphEdgeProps() = default;
explicit LitGraphEdgeProps(u64a score_in) : score(score_in) {}
u64a score = NO_LITERAL_AT_EDGE_SCORE;
size_t index = 0; // managed by ue2_graph
};
struct LitGraph
: public ue2_graph<LitGraph, LitGraphVertexProps, LitGraphEdgeProps> {
LitGraph() : root(add_vertex(*this)), sink(add_vertex(*this)) {}
const vertex_descriptor root;
const vertex_descriptor sink;
};
typedef LitGraph::vertex_descriptor LitVertex;
typedef LitGraph::edge_descriptor LitEdge;
typedef pair<LitVertex, NFAVertex> VertexPair;
typedef std::queue<VertexPair> LitVertexQ;
} // namespace
#ifdef DUMP_SUPPORT
/** \brief Dump the literal graph in Graphviz format. */
static UNUSED
void dumpGraph(const char *filename, const LitGraph &lg) {
ofstream fout(filename);
fout << "digraph G {" << endl;
for (auto v : vertices_range(lg)) {
fout << lg[v].index;
if (v == lg.root) {
fout << "[label=\"ROOT\"];";
} else if (v == lg.sink) {
fout << "[label=\"SINK\"];";
} else {
ue2_literal s;
s.push_back(lg[v].c);
fout << "[label=\"" << dumpString(s) << "\"];";
}
fout << endl;
}
for (const auto &e : edges_range(lg)) {
LitVertex u = source(e, lg), v = target(e, lg);
fout << lg[u].index << " -> " << lg[v].index << "[label=\""
<< lg[e].score << "\"]"
<< ";" << endl;
}
fout << "}" << endl;
}
#endif // DUMP_SUPPORT
static
bool allowExpand(size_t numItems, size_t totalPathsSoFar) {
if (numItems == 0) {
return false;
}
if (numItems + totalPathsSoFar > MAX_WIDTH) {
return false;
}
return true;
}
static
LitVertex addToLitGraph(LitGraph &lg, LitVertex pred,
const ue2_literal::elem &c) {
// Check if we already have this in the graph.
for (auto v : adjacent_vertices_range(pred, lg)) {
if (v == lg.sink) {
continue;
}
if (lg[v].c == c) {
return v;
}
}
LitVertex lv = add_vertex(LitGraphVertexProps(c), lg);
add_edge(pred, lv, lg);
return lv;
}
static
void addToQueue(LitVertexQ &workQ, LitGraph &lg, LitVertex pred,
const CharReach &cr, NFAVertex v) {
for (size_t i = cr.find_first(); i != CharReach::npos;
i = cr.find_next(i)) {
if (myisupper(i) && cr.test(mytolower(i))) {
// ignore upper half of a nocase pair
continue;
}
bool nocase = myislower(i) && cr.test(mytoupper(i));
ue2_literal::elem c((char)i, nocase);
LitVertex lv = addToLitGraph(lg, pred, c);
workQ.push(VertexPair(lv, v));
}
}
static
void initWorkQueue(LitVertexQ &workQ, LitGraph &lg, const NGHolder &g,
const NFAEdge &e) {
NFAVertex u = source(e, g);
NFAVertex v = target(e, g);
const CharReach &cr = g[v].char_reach;
if (!allowExpand(cr.count(), 0)) {
return;
}
addToQueue(workQ, lg, lg.root, cr, u);
}
static
u32 crCardinality(const CharReach &cr) {
// Special-case for handling dots, much faster than running the find_next
// loop below.
if (cr.all()) {
return 230; // [^A-Z]
}
u32 rv = 0;
for (size_t i = cr.find_first(); i != CharReach::npos;
i = cr.find_next(i)) {
if (myisupper(i) && cr.test(mytolower(i))) {
// ignore upper half of a nocase pair
continue;
}
rv++;
}
return rv;
}
/** Filter out literals that include other literals as suffixes. We do this by
* identifying vertices connected to the sink and removing their other
* out-edges. */
static
void filterLitGraph(LitGraph &lg) {
for (auto v : inv_adjacent_vertices_range(lg.sink, lg)) {
remove_out_edge_if(v, [&lg](const LitEdge &e) {
return target(e, lg) != lg.sink;
}, lg);
}
// We could do a DFS-and-prune here, if we wanted. Right now, we just
// handle it in extractLiterals by throwing away paths that don't run all
// the way from sink to root.
}
/** Extracts all the literals from the given literal graph. Walks the graph
* from each predecessor of the sink (note: it's a suffix tree except for this
* convenience) towards the source, storing each string as we go. */
static
void extractLiterals(const LitGraph &lg, set<ue2_literal> &s) {
ue2_literal lit;
for (auto u : inv_adjacent_vertices_range(lg.sink, lg)) {
lit.clear();
while (u != lg.root) {
lit.push_back(lg[u].c);
assert(in_degree(u, lg) <= 1);
LitGraph::inv_adjacency_iterator ai2, ae2;
tie(ai2, ae2) = inv_adjacent_vertices(u, lg);
if (ai2 == ae2) {
// Path has been cut, time for the next literal.
goto next_literal;
}
u = *ai2;
}
s.insert(lit);
next_literal:
;
}
}
#ifndef NDEBUG
static
bool hasSuffixLiterals(const set<ue2_literal> &s) {
for (auto it = s.begin(), ite = s.end(); it != ite; ++it) {
for (auto jt = std::next(it); jt != ite; ++jt) {
if (isSuffix(*it, *jt) || isSuffix(*jt, *it)) {
DEBUG_PRINTF("'%s' and '%s' have suffix issues\n",
dumpString(*it).c_str(),
dumpString(*jt).c_str());
return true;
}
}
}
return false;
}
#endif
static
void processWorkQueue(const NGHolder &g, const NFAEdge &e,
set<ue2_literal> &s) {
if (is_special(target(e, g), g)) {
return;
}
LitGraph lg;
LitVertexQ workQ;
initWorkQueue(workQ, lg, g, e);
while (!workQ.empty()) {
const LitVertex lv = workQ.front().first;
const NFAVertex &t = workQ.front().second;
const CharReach &cr = g[t].char_reach;
u32 cr_card = crCardinality(cr);
size_t numItems = cr_card * in_degree(t, g);
size_t committed_count = workQ.size() + in_degree(lg.sink, lg) - 1;
if (g[t].index == NODE_START) {
// reached start, add to literal set
add_edge_if_not_present(lv, lg.sink, lg);
goto next_work_elem;
}
// Expand next vertex
if (allowExpand(numItems, committed_count)) {
for (auto u : inv_adjacent_vertices_range(t, g)) {
addToQueue(workQ, lg, lv, cr, u);
}
goto next_work_elem;
}
// Expand this vertex
if (allowExpand(cr_card, committed_count)) {
for (size_t i = cr.find_first(); i != CharReach::npos;
i = cr.find_next(i)) {
if (myisupper(i) && cr.test(mytolower(i))) {
// ignore upper half of a nocase pair
continue;
}
bool nocase = myislower(i) && cr.test(mytoupper(i));
ue2_literal::elem c((char)i, nocase);
LitVertex lt = addToLitGraph(lg, lv, c);
add_edge_if_not_present(lt, lg.sink, lg);
}
goto next_work_elem;
}
// add to literal set
add_edge_if_not_present(lv, lg.sink, lg);
next_work_elem:
workQ.pop();
}
filterLitGraph(lg);
//dumpGraph("litgraph.dot", lg);
extractLiterals(lg, s);
// Our literal set should contain no literal that is a suffix of another.
assert(!hasSuffixLiterals(s));
DEBUG_PRINTF("edge %zu (%zu->%zu) produced %zu literals\n", g[e].index,
g[source(e, g)].index, g[target(e, g)].index, s.size());
}
bool bad_mixed_sensitivity(const ue2_literal &s) {
/* TODO: if the mixed cases is entirely within MAX_MASK2_WIDTH of the end,
* we should be able to handle it */
return mixed_sensitivity(s) && s.length() > MAX_MASK2_WIDTH;
}
static
u64a litUniqueness(const string &s) {
CharReach seen(s);
return seen.count();
}
/** Count the significant bits of this literal (i.e. seven for nocase alpha,
* eight for everything else). */
static
u64a litCountBits(const ue2_literal &lit) {
u64a n = 0;
for (const auto &c : lit) {
n += c.nocase ? 7 : 8;
}
return n;
}
/** Returns a fairly arbitrary score for the given literal, used to compare the
* suitability of different candidates. */
static
u64a scoreLiteral(const ue2_literal &s) {
// old scoring scheme: SUM(s in S: 1/s.len()^2)
// now weight (currently 75/25) with number of unique chars
// in the string
u64a len = litCountBits(s);
u64a lenUnique = litUniqueness(s.get_string()) * 8;
u64a weightedLen = (1000ULL - WEIGHT_OF_UNIQUENESS) * len +
WEIGHT_OF_UNIQUENESS * lenUnique;
weightedLen /= 8;
DEBUG_PRINTF("scored literal '%s' %llu\n",
escapeString(s.get_string()).c_str(), weightedLen);
return weightedLen;
}
/**
* calculateScore has the following properties:
* - score of literal is the same as the score of the reversed literal;
* - score of substring of literal is worse than the original literal's score;
* - score of any literal should be non-zero.
*/
static
u64a calculateScore(const ue2_literal &s) {
if (s.empty()) {
return NO_LITERAL_AT_EDGE_SCORE;
}
u64a weightedLen = scoreLiteral(s);
DEBUG_PRINTF("len %zu, wl %llu\n", s.length(), weightedLen);
u64a rv = 1000000000000000ULL/(weightedLen * weightedLen * weightedLen);
if (!rv) {
rv = 1;
}
DEBUG_PRINTF("len %zu, score %llu\n", s.length(), rv);
return rv;
}
/** Adds a literal in reverse order, building up a suffix tree. */
static
void addReversedLiteral(const ue2_literal &lit, LitGraph &lg) {
DEBUG_PRINTF("literal: '%s'\n", escapeString(lit).c_str());
ue2_literal suffix;
LitVertex v = lg.root;
for (auto it = lit.rbegin(), ite = lit.rend(); it != ite; ++it) {
suffix.push_back(*it);
LitVertex w;
for (auto v2 : adjacent_vertices_range(v, lg)) {
if (v2 != lg.sink && lg[v2].c == *it) {
w = v2;
goto next_char;
}
}
w = add_vertex(LitGraphVertexProps(*it), lg);
add_edge(v, w, LitGraphEdgeProps(calculateScore(suffix)), lg);
next_char:
v = w;
}
// Wire the last vertex to the sink.
add_edge(v, lg.sink, lg);
}
static
void extractLiterals(const vector<LitEdge> &cutset, const LitGraph &lg,
set<ue2_literal> &s) {
for (const auto &e : cutset) {
LitVertex u = source(e, lg);
LitVertex v = target(e, lg);
ue2_literal lit;
lit.push_back(lg[v].c);
while (u != lg.root) {
lit.push_back(lg[u].c);
assert(in_degree(u, lg) == 1);
LitGraph::inv_adjacency_iterator ai, ae;
tie(ai, ae) = inv_adjacent_vertices(u, lg);
if (ai == ae) {
// Path has been cut, time for the next literal.
goto next_literal;
}
u = *ai;
}
DEBUG_PRINTF("extracted: '%s'\n", escapeString(lit).c_str());
s.insert(lit);
next_literal:
;
}
}
#ifdef DEBUG
static UNUSED
const char *describeColor(small_color c) {
switch (c) {
case small_color::white:
return "white";
case small_color::gray:
return "gray";
case small_color::black:
return "black";
default:
return "unknown";
}
}
#endif
/**
* The BGL's boykov_kolmogorov_max_flow requires that all edges have their
* reverse edge in the graph. This function adds them, returning a vector
* mapping edge index to reverse edge. Note: LitGraph should be a DAG so there
* should be no existing reverse_edges.
*/
static
vector<LitEdge> add_reverse_edges_and_index(LitGraph &lg) {
const size_t edge_count = num_edges(lg);
vector<LitEdge> fwd_edges;
fwd_edges.reserve(edge_count);
for (const auto &e : edges_range(lg)) {
fwd_edges.push_back(e);
}
vector<LitEdge> rev_map(2 * edge_count);
for (const auto &e : fwd_edges) {
LitVertex u = source(e, lg);
LitVertex v = target(e, lg);
assert(!edge(v, u, lg).second);
LitEdge rev = add_edge(v, u, LitGraphEdgeProps(0), lg).first;
rev_map[lg[e].index] = rev;
rev_map[lg[rev].index] = e;
}
return rev_map;
}
static
void findMinCut(LitGraph &lg, vector<LitEdge> &cutset) {
cutset.clear();
//dumpGraph("litgraph.dot", lg);
assert(!in_degree(lg.root, lg));
assert(!out_degree(lg.sink, lg));
size_t num_real_edges = num_edges(lg);
// Add reverse edges for the convenience of the BGL's max flow algorithm.
vector<LitEdge> rev_edges = add_reverse_edges_and_index(lg);
const auto v_index_map = get(&LitGraphVertexProps::index, lg);
const auto e_index_map = get(&LitGraphEdgeProps::index, lg);
const size_t num_verts = num_vertices(lg);
auto colors = make_small_color_map(lg);
vector<s32> distances(num_verts);
vector<LitEdge> predecessors(num_verts);
vector<u64a> residuals(num_edges(lg));
UNUSED u64a flow = boykov_kolmogorov_max_flow(lg,
get(&LitGraphEdgeProps::score, lg),
make_iterator_property_map(residuals.begin(), e_index_map),
make_iterator_property_map(rev_edges.begin(), e_index_map),
make_iterator_property_map(predecessors.begin(), v_index_map),
colors,
make_iterator_property_map(distances.begin(), v_index_map),
v_index_map, lg.root, lg.sink);
DEBUG_PRINTF("done, flow = %llu\n", flow);
/* remove reverse edges */
remove_edge_if([&](const LitEdge &e) {
return lg[e].index >= num_real_edges;
}, lg);
vector<LitEdge> white_cut, black_cut;
u64a white_flow = 0, black_flow = 0;
for (const auto &e : edges_range(lg)) {
const LitVertex u = source(e, lg), v = target(e, lg);
const auto ucolor = get(colors, u);
const auto vcolor = get(colors, v);
DEBUG_PRINTF("edge %zu:%s -> %zu:%s score %llu\n", lg[u].index,
describeColor(ucolor), lg[v].index, describeColor(vcolor),
lg[e].score);
if (ucolor != small_color::white && vcolor == small_color::white) {
assert(v != lg.sink);
white_cut.push_back(e);
white_flow += lg[e].score;
}
if (ucolor == small_color::black && vcolor != small_color::black) {
assert(v != lg.sink);
black_cut.push_back(e);
black_flow += lg[e].score;
}
}
DEBUG_PRINTF("white flow = %llu, black flow = %llu\n",
white_flow, black_flow);
assert(white_flow && black_flow);
if (white_flow <= black_flow) {
DEBUG_PRINTF("selected white cut\n");
cutset.swap(white_cut);
} else {
DEBUG_PRINTF("selected black cut\n");
cutset.swap(black_cut);
}
DEBUG_PRINTF("min cut has %zu edges\n", cutset.size());
assert(!cutset.empty());
}
/** Takes a set of literals and derives a better one from them, returning its
* score. Literals with a common suffix S will be replaced with S. (for
* example, {foobar, fooobar} -> {oobar}).
*/
u64a compressAndScore(set<ue2_literal> &s) {
if (s.empty()) {
return NO_LITERAL_AT_EDGE_SCORE;
}
if (s.size() == 1) {
return calculateScore(*s.begin());
}
UNUSED u64a initialScore = scoreSet(s);
DEBUG_PRINTF("begin, initial literals have score %llu\n",
initialScore);
LitGraph lg;
for (const auto &lit : s) {
addReversedLiteral(lit, lg);
}
DEBUG_PRINTF("suffix tree has %zu vertices and %zu edges\n",
num_vertices(lg), num_edges(lg));
vector<LitEdge> cutset;
findMinCut(lg, cutset);
s.clear();
extractLiterals(cutset, lg, s);
u64a score = scoreSet(s);
DEBUG_PRINTF("compressed score is %llu\n", score);
assert(score <= initialScore);
return score;
}
/* like compressAndScore, but replaces long mixed sensitivity literals with
* something weaker. */
u64a sanitizeAndCompressAndScore(set<ue2_literal> &lits) {
const size_t maxExploded = 8; // only case-explode this far
/* TODO: the whole compression thing could be made better by systematically
* considering replacing literal sets not just by common suffixes but also
* by nocase literals. */
vector<ue2_literal> replacements;
for (auto it = lits.begin(); it != lits.end();) {
auto jt = it;
++it;
if (!bad_mixed_sensitivity(*jt)) {
continue;
}
/* we have to replace *jt with something... */
ue2_literal s = *jt;
lits.erase(jt);
vector<ue2_literal> exploded;
for (auto cit = caseIterateBegin(s); cit != caseIterateEnd(); ++cit) {
exploded.emplace_back(*cit, false);
if (exploded.size() > maxExploded) {
goto dont_explode;
}
}
insert(&replacements, replacements.end(), exploded);
continue;
dont_explode:
make_nocase(&s);
replacements.push_back(s);
}
insert(&lits, replacements);
return compressAndScore(lits);
}
u64a scoreSet(const set<ue2_literal> &s) {
if (s.empty()) {
return NO_LITERAL_AT_EDGE_SCORE;
}
u64a score = 1ULL;
for (const auto &lit : s) {
score += calculateScore(lit);
}
return score;
}
set<ue2_literal> getLiteralSet(const NGHolder &g, const NFAEdge &e) {
set<ue2_literal> s;
processWorkQueue(g, e, s);
return s;
}
set<ue2_literal> getLiteralSet(const NGHolder &g, const NFAVertex &v,
bool only_first_encounter) {
set<ue2_literal> s;
if (is_special(v, g)) {
return s;
}
set<ue2_literal> ls;
for (const auto &e : in_edges_range(v, g)) {
if (source(e, g) == v && only_first_encounter) {
continue; /* ignore self loop on root vertex as we are interested in
* the first time we visit the vertex on the way to
* accept. In fact, we can ignore any back edges - but
* they would require a bit of effort to discover. */
}
ls = getLiteralSet(g, e);
if (ls.empty()) {
s.clear();
return s;
} else {
s.insert(ls.begin(), ls.end());
}
}
return s;
}
vector<u64a> scoreEdges(const NGHolder &g, const flat_set<NFAEdge> &known_bad) {
assert(hasCorrectlyNumberedEdges(g));
vector<u64a> scores(num_edges(g));
for (const auto &e : edges_range(g)) {
u32 eidx = g[e].index;
assert(eidx < scores.size());
if (contains(known_bad, e)) {
scores[eidx] = NO_LITERAL_AT_EDGE_SCORE;
} else {
set<ue2_literal> ls = getLiteralSet(g, e);
scores[eidx] = compressAndScore(ls);
}
}
return scores;
}
bool splitOffLeadingLiteral(const NGHolder &g, ue2_literal *lit_out,
NGHolder *rhs) {
DEBUG_PRINTF("looking for leading floating literal\n");
set<NFAVertex> s_succ;
insert(&s_succ, adjacent_vertices(g.start, g));
set<NFAVertex> sds_succ;
insert(&sds_succ, adjacent_vertices(g.startDs, g));
bool floating = is_subset_of(s_succ, sds_succ);
if (!floating) {
DEBUG_PRINTF("not floating\n");
return false;
}
sds_succ.erase(g.startDs);
if (sds_succ.size() != 1) {
DEBUG_PRINTF("branchy root\n");
return false;
}
NFAVertex u = g.startDs;
NFAVertex v = *sds_succ.begin();
while (true) {
DEBUG_PRINTF("validating vertex %zu\n", g[v].index);
assert(v != g.acceptEod && v != g.accept);
const CharReach &cr = g[v].char_reach;
if (cr.count() != 1 && !cr.isCaselessChar()) {
break;
}
// Rose can only handle mixed-sensitivity literals up to the max mask
// length.
if (lit_out->length() >= MAX_MASK2_WIDTH) {
if (mixed_sensitivity(*lit_out)) {
DEBUG_PRINTF("long and mixed sensitivity\n");
break;
}
if (ourisalpha((char)cr.find_first())) {
if (cr.isCaselessChar() != lit_out->any_nocase()) {
DEBUG_PRINTF("stop at mixed sensitivity on '%c'\n",
(char)cr.find_first());
break;
}
}
}
if (edge(v, g.accept, g).second || edge(v, g.acceptEod, g).second) {
DEBUG_PRINTF("connection to accept\n");
break;
}
lit_out->push_back(cr.find_first(), cr.isCaselessChar());
u = v;
if (out_degree(v, g) != 1) {
DEBUG_PRINTF("out_degree != 1\n");
break;
}
v = *adjacent_vertices(v, g).first;
if (in_degree(v, g) != 1) {
DEBUG_PRINTF("blargh\n"); /* picks up cases where there is no path
* to case accept (large cycles),
* ensures term */
break;
}
}
if (lit_out->empty()) {
return false;
}
assert(u != g.startDs);
unordered_map<NFAVertex, NFAVertex> rhs_map;
vector<NFAVertex> pivots = make_vector_from(adjacent_vertices(u, g));
splitRHS(g, pivots, rhs, &rhs_map);
DEBUG_PRINTF("literal is '%s' (len %zu)\n", dumpString(*lit_out).c_str(),
lit_out->length());
assert(is_triggered(*rhs));
return true;
}
bool getTrailingLiteral(const NGHolder &g, ue2_literal *lit_out) {
if (in_degree(g.acceptEod, g) != 1) {
return false;
}
NFAVertex v = getSoleSourceVertex(g, g.accept);
if (!v) {
return false;
}
set<ue2_literal> s = getLiteralSet(g, v, false);
if (s.size() != 1) {
return false;
}
const ue2_literal &lit = *s.begin();
if (lit.length() > MAX_MASK2_WIDTH && mixed_sensitivity(lit)) {
DEBUG_PRINTF("long & mixed-sensitivity, Rose can't handle this.\n");
return false;
}
*lit_out = lit;
return true;
}
bool literalIsWholeGraph(const NGHolder &g, const ue2_literal &lit) {
NFAVertex v = g.accept;
for (auto it = lit.rbegin(), ite = lit.rend(); it != ite; ++it) {
NGHolder::inv_adjacency_iterator ai, ae;
tie(ai, ae) = inv_adjacent_vertices(v, g);
if (ai == ae) {
assert(0); // no predecessors?
return false;
}
v = *ai++;
if (ai != ae) {
DEBUG_PRINTF("branch, fail\n");
return false;
}
if (is_special(v, g)) {
DEBUG_PRINTF("special found, fail\n");
return false;
}
const CharReach &cr_g = g[v].char_reach;
const CharReach &cr_l = *it;
if (!cr_l.isSubsetOf(cr_g)) {
/* running over the prefix is needed to prevent false postives */
DEBUG_PRINTF("reach fail\n");
return false;
}
}
// Our last value for v should have only start states for predecessors.
for (auto u : inv_adjacent_vertices_range(v, g)) {
if (!is_any_start(u, g)) {
DEBUG_PRINTF("pred is not start\n");
return false;
}
}
assert(num_vertices(g) == lit.length() + N_SPECIALS);
DEBUG_PRINTF("ok\n");
return true;
}
} // namespace ue2
|