1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
|
/*
* Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
* \brief NFA graph vertex depth calculations.
*/
#include "ng_depth.h"
#include "ng_util.h"
#include "ue2common.h"
#include "util/graph_range.h"
#include "util/graph_small_color_map.h"
#include <deque>
#include <vector>
#include <boost/graph/breadth_first_search.hpp>
#include <boost/graph/dag_shortest_paths.hpp>
#include <boost/graph/depth_first_search.hpp>
#include <boost/graph/filtered_graph.hpp>
#include <boost/graph/property_maps/constant_property_map.hpp>
#include <boost/graph/reverse_graph.hpp>
#include <boost/graph/topological_sort.hpp>
#include <boost/range/adaptor/reversed.hpp>
using namespace std;
using boost::filtered_graph;
using boost::make_filtered_graph;
using boost::make_constant_property;
using boost::reverse_graph;
using boost::adaptors::reverse;
namespace ue2 {
namespace {
/** Distance value used to indicate that the vertex can't be reached. */
static constexpr int DIST_UNREACHABLE = INT_MAX;
/**
* Distance value used to indicate that the distance to a vertex is infinite
* (for example, it's the max distance and there's a cycle in the path) or so
* large that we should consider it effectively infinite.
*/
static constexpr int DIST_INFINITY = INT_MAX - 1;
//
// Filters
//
template <class GraphT>
struct NodeFilter {
typedef typename GraphT::edge_descriptor EdgeT;
NodeFilter() {} // BGL filters must be default-constructible.
NodeFilter(const vector<bool> *bad_in, const GraphT *g_in)
: bad(bad_in), g(g_in) { }
bool operator()(const EdgeT &e) const {
assert(g && bad);
u32 src_idx = (*g)[source(e, *g)].index;
u32 tar_idx = (*g)[target(e, *g)].index;
if (tar_idx == NODE_START_DOTSTAR) {
return false;
}
return !(*bad)[src_idx] && !(*bad)[tar_idx];
}
private:
const vector<bool> *bad = nullptr;
const GraphT *g = nullptr;
};
template <class GraphT>
struct StartFilter {
typedef typename GraphT::edge_descriptor EdgeT;
StartFilter() {} // BGL filters must be default-constructible.
explicit StartFilter(const GraphT *g_in) : g(g_in) { }
bool operator()(const EdgeT &e) const {
assert(g);
u32 src_idx = (*g)[source(e, *g)].index;
u32 tar_idx = (*g)[target(e, *g)].index;
// Remove our stylised edges from anchored start to startDs.
if (src_idx == NODE_START && tar_idx == NODE_START_DOTSTAR) {
return false;
}
// Also remove the equivalent in the reversed direction.
if (src_idx == NODE_ACCEPT_EOD && tar_idx == NODE_ACCEPT) {
return false;
}
return true;
}
private:
const GraphT *g = nullptr;
};
} // namespace
template<class Graph>
static
vector<bool> findLoopReachable(const Graph &g,
const typename Graph::vertex_descriptor src) {
vector<bool> deadNodes(num_vertices(g));
using Edge = typename Graph::edge_descriptor;
using Vertex = typename Graph::vertex_descriptor;
using EdgeSet = set<Edge>;
EdgeSet deadEdges;
BackEdges<EdgeSet> be(deadEdges);
auto colors = make_small_color_map(g);
depth_first_search(g, be, colors, src);
auto af = make_bad_edge_filter(&deadEdges);
auto acyclic_g = make_filtered_graph(g, af);
vector<Vertex> topoOrder; /* actually reverse topological order */
topoOrder.reserve(deadNodes.size());
topological_sort(acyclic_g, back_inserter(topoOrder), color_map(colors));
for (const auto &e : deadEdges) {
size_t srcIdx = g[source(e, g)].index;
if (srcIdx != NODE_START_DOTSTAR) {
deadNodes[srcIdx] = true;
}
}
for (auto v : reverse(topoOrder)) {
for (const auto &e : in_edges_range(v, g)) {
if (deadNodes[g[source(e, g)].index]) {
deadNodes[g[v].index] = true;
break;
}
}
}
return deadNodes;
}
template <class GraphT>
static
void calcDepthFromSource(const GraphT &g,
typename GraphT::vertex_descriptor srcVertex,
const vector<bool> &deadNodes, vector<int> &dMin,
vector<int> &dMax) {
typedef typename GraphT::edge_descriptor EdgeT;
const size_t numVerts = num_vertices(g);
NodeFilter<GraphT> nf(&deadNodes, &g);
StartFilter<GraphT> sf(&g);
/* minimum distance needs to run on a graph with .*start unreachable
* from start */
typedef filtered_graph<GraphT, StartFilter<GraphT> > StartFilteredGraph;
const StartFilteredGraph mindist_g(g, sf);
/* maximum distance needs to run on a graph without cycles & nodes
* reachable from cycles */
typedef filtered_graph<GraphT, NodeFilter<GraphT> > NodeFilteredGraph;
const NodeFilteredGraph maxdist_g(g, nf);
// Record distance of each vertex from source using one of the following
// algorithms.
/* note: filtered graphs have same num_{vertices,edges} as base */
dMin.assign(numVerts, DIST_UNREACHABLE);
dMax.assign(numVerts, DIST_UNREACHABLE);
dMin[mindist_g[srcVertex].index] = 0;
using boost::make_iterator_property_map;
auto min_index_map = get(vertex_index, mindist_g);
breadth_first_search(mindist_g, srcVertex,
visitor(make_bfs_visitor(record_distances(
make_iterator_property_map(dMin.begin(),
min_index_map),
boost::on_tree_edge())))
.color_map(make_small_color_map(mindist_g)));
auto max_index_map = get(vertex_index, maxdist_g);
dag_shortest_paths(maxdist_g, srcVertex,
distance_map(make_iterator_property_map(dMax.begin(),
max_index_map))
.weight_map(make_constant_property<EdgeT>(-1))
.color_map(make_small_color_map(maxdist_g)));
for (size_t i = 0; i < numVerts; i++) {
if (dMin[i] > DIST_UNREACHABLE) {
dMin[i] = DIST_UNREACHABLE;
}
DEBUG_PRINTF("%zu: dm %d %d\n", i, dMin[i], dMax[i]);
if (dMax[i] >= DIST_UNREACHABLE && dMin[i] < DIST_UNREACHABLE) {
dMax[i] = -DIST_INFINITY; /* max depths currently negative */
DEBUG_PRINTF("bumping max to %d\n", dMax[i]);
} else if (dMax[i] >= DIST_UNREACHABLE
|| dMax[i] < -DIST_UNREACHABLE) {
dMax[i] = -DIST_UNREACHABLE;
DEBUG_PRINTF("bumping max to %d\n", dMax[i]);
}
}
}
/**
* \brief Convert the integer distance we use in our shortest path calculations
* to a \ref depth value.
*/
static
depth depthFromDistance(int val) {
assert(val >= 0);
if (val >= DIST_UNREACHABLE) {
return depth::unreachable();
} else if (val == DIST_INFINITY) {
return depth::infinity();
}
return depth((u32)val);
}
static
DepthMinMax getDepths(u32 idx, const vector<int> &dMin,
const vector<int> &dMax) {
DepthMinMax d(depthFromDistance(dMin[idx]),
depthFromDistance(-1 * dMax[idx]));
DEBUG_PRINTF("idx=%u, depths=%s\n", idx, d.str().c_str());
assert(d.min <= d.max);
return d;
}
template<class Graph, class Output>
static
void calcAndStoreDepth(const Graph &g,
const typename Graph::vertex_descriptor src,
const vector<bool> &deadNodes,
vector<int> &dMin /* util */,
vector<int> &dMax /* util */,
vector<Output> &depths,
DepthMinMax Output::*store) {
calcDepthFromSource(g, src, deadNodes, dMin, dMax);
for (auto v : vertices_range(g)) {
u32 idx = g[v].index;
assert(idx < depths.size());
Output &d = depths.at(idx);
d.*store = getDepths(idx, dMin, dMax);
}
}
vector<NFAVertexDepth> calcDepths(const NGHolder &g) {
assert(hasCorrectlyNumberedVertices(g));
const size_t numVertices = num_vertices(g);
vector<NFAVertexDepth> depths(numVertices);
vector<int> dMin;
vector<int> dMax;
/*
* create a filtered graph for max depth calculations: all nodes/edges
* reachable from a loop need to be removed
*/
auto deadNodes = findLoopReachable(g, g.start);
DEBUG_PRINTF("doing start\n");
calcAndStoreDepth(g, g.start, deadNodes, dMin, dMax, depths,
&NFAVertexDepth::fromStart);
DEBUG_PRINTF("doing startds\n");
calcAndStoreDepth(g, g.startDs, deadNodes, dMin, dMax, depths,
&NFAVertexDepth::fromStartDotStar);
return depths;
}
vector<NFAVertexRevDepth> calcRevDepths(const NGHolder &g) {
assert(hasCorrectlyNumberedVertices(g));
const size_t numVertices = num_vertices(g);
vector<NFAVertexRevDepth> depths(numVertices);
vector<int> dMin;
vector<int> dMax;
/* reverse the graph before walking it */
typedef reverse_graph<NGHolder, const NGHolder &> RevNFAGraph;
const RevNFAGraph rg(g);
assert(num_vertices(g) == num_vertices(rg));
/*
* create a filtered graph for max depth calculations: all nodes/edges
* reachable from a loop need to be removed
*/
auto deadNodes = findLoopReachable(rg, g.acceptEod);
DEBUG_PRINTF("doing accept\n");
calcAndStoreDepth<RevNFAGraph, NFAVertexRevDepth>(
rg, g.accept, deadNodes, dMin, dMax, depths,
&NFAVertexRevDepth::toAccept);
DEBUG_PRINTF("doing accepteod\n");
deadNodes[NODE_ACCEPT] = true; // Hide accept->acceptEod edge.
calcAndStoreDepth<RevNFAGraph, NFAVertexRevDepth>(
rg, g.acceptEod, deadNodes, dMin, dMax, depths,
&NFAVertexRevDepth::toAcceptEod);
return depths;
}
vector<NFAVertexBidiDepth> calcBidiDepths(const NGHolder &g) {
assert(hasCorrectlyNumberedVertices(g));
const size_t numVertices = num_vertices(g);
vector<NFAVertexBidiDepth> depths(numVertices);
vector<int> dMin;
vector<int> dMax;
/*
* create a filtered graph for max depth calculations: all nodes/edges
* reachable from a loop need to be removed
*/
auto deadNodes = findLoopReachable(g, g.start);
DEBUG_PRINTF("doing start\n");
calcAndStoreDepth<NGHolder, NFAVertexBidiDepth>(
g, g.start, deadNodes, dMin, dMax, depths,
&NFAVertexBidiDepth::fromStart);
DEBUG_PRINTF("doing startds\n");
calcAndStoreDepth<NGHolder, NFAVertexBidiDepth>(
g, g.startDs, deadNodes, dMin, dMax, depths,
&NFAVertexBidiDepth::fromStartDotStar);
/* Now go backwards */
typedef reverse_graph<NGHolder, const NGHolder &> RevNFAGraph;
const RevNFAGraph rg(g);
deadNodes = findLoopReachable(rg, g.acceptEod);
DEBUG_PRINTF("doing accept\n");
calcAndStoreDepth<RevNFAGraph, NFAVertexBidiDepth>(
rg, g.accept, deadNodes, dMin, dMax, depths,
&NFAVertexBidiDepth::toAccept);
DEBUG_PRINTF("doing accepteod\n");
deadNodes[NODE_ACCEPT] = true; // Hide accept->acceptEod edge.
calcAndStoreDepth<RevNFAGraph, NFAVertexBidiDepth>(
rg, g.acceptEod, deadNodes, dMin, dMax, depths,
&NFAVertexBidiDepth::toAcceptEod);
return depths;
}
vector<DepthMinMax> calcDepthsFrom(const NGHolder &g, const NFAVertex src) {
assert(hasCorrectlyNumberedVertices(g));
const size_t numVertices = num_vertices(g);
auto deadNodes = findLoopReachable(g, g.start);
vector<int> dMin, dMax;
calcDepthFromSource(g, src, deadNodes, dMin, dMax);
vector<DepthMinMax> depths(numVertices);
for (auto v : vertices_range(g)) {
auto idx = g[v].index;
depths.at(idx) = getDepths(idx, dMin, dMax);
}
return depths;
}
} // namespace ue2
|